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Abstract—Cycling induced by functional electrical stimulation
(FES) coupled with motorized assistance is a promising rehabil-
itative strategy. A switching controller that activates lower limb
muscles alongside an electric motor based on the crank angle
is developed to facilitate cycling. Due to the periodic nature
of cadence tracking in cycling, a repetitive learning controller
(RLC) is developed to track a desired cadence trajectory with a
known period. The RLC is developed for an uncertain, nonlinear
cycle-rider system with autonomous state-dependent switching.
Electrical stimulation switches across multiple lower-limb muscle
groups based on the torque effectiveness throughout the crank
cycle. The electric motor provides assistance when the muscle
groups yield low torque production. A Lyapunov-based stability
analysis that invokes a recently developed LaSalle-Yoshizawa
corollary for nonsmooth systems is used to guarantee asymptotic
tracking. The developed controller was tested during FES-cycling
experiments in five able-bodied individuals and three participants
with neurological conditions. The added value of the RLC in
cadence tracking is illustrated by comparing the results of two
trials with and without the learning feedforward term. The results
indicate that the RLC yields a lower mean root-mean-squared
(RMS) cadence tracking error.

Index Terms—Functional Electrical Stimulation (FES), FES-
Cycling, Repetitive Learning Control (RLC), Switching Control

I. INTRODUCTION

Rehabilitative procedures and activity-based therapy have
shown the potential to facilitate neurological reorganization
and recovery based on the concept of motor learning by in-
tense, repetitive task completion [1]-[3]. Exposure to afferent
feedback and activation patterns hold the promise to influence
the nervous system to perform a desired motor task. Robotic
assistive devices and hybrid technologies such as exoskele-
tons and brain-computer interfaces have been coupled with
functional electrical stimulation (FES) to provide upper and
lower body training during multiple phases of rehabilitation
for neurological impaired populations [4], [5]. FES applies a
potential field across muscle fibers to artificially trigger tetanic
contractions [6]. Stationary FES-cycling is an often prescribed
therapy to activate multiple lower-limb muscles and facilitate
motor learning. Further, motorized assistance (i.e., adding an
electric motor to the system) has been incorporated in FES-
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cycling studies [7], [8] to facilitate continuous, consistent exer-
cise and thus maximize the training time to yield physiological
and functional benefits [9]-[12].

Closed-loop controllers have been developed to provide
robustness to the nonlinear dynamics of the cycle-rider system,
including the uncertain nonlinear muscle activation dynamics
[13]-[18]. FES controllers developed in [14]-[16], [19], [20]
use high-gain feedback to ensure robustness to the system’s
uncertainty. However, such high frequency control methods
often lead to accelerated fatigue [21], [22]. High gain feedback
can yield uncomfortable stimulation intensity and amplify
high frequency aspects of the feedback signal contributing to
muscle fatigue.

Switching control is inherent in FES-cycling since multiple
lower limb muscles are needed to produce a coordinated move-
ment. Switching between multiple muscle groups is desired
to achieve metabolic efficiency. In results such as [7], [13],
[23] an electric motor is included to provide assistance during
regions of the crank cycle where muscle stimulation is less
effective in producing torque. The goal in such results is to
maximize the muscle contribution during regions of the crank
cycle where efficient torque production occurs and to extend
the overall exercise duration by activating the electric motor
during low muscle torque output regions. Switching between
multiple muscle groups and the electric motor makes the
overall system a switched system. Since stability of individual
subsystems doesn’t guarantee stability of the overall system
[24], additional analysis is required. For example, results such
as [14] ensure stability of the overall switched system by
developing reverse dwell time conditions based on known
exponential convergence rates, where a sliding mode control
design provides the negative definite bound on the Lyapunov
function derivative.

Motivated by the desire to reduce high-gain/high-frequency
feedback, the goal in this paper is to develop an adaptive
FES-cycling controller. Due to the periodic nature of cadence
tracking in cycling, the use of repetitive learning control
(RLC) is well motivated. However, a technical challenge to
design adaptive controllers with a switching control input is
that a negative-definite bound on the time derivative of the
Lyapunov function candidate is unlikely without persistence
of excitation.

Learning control techniques have been widely applied to
systems that perform repetitive or periodic tasks such as
robotic systems. Iterative learning control (ILC) and repetitive
learning control (RLC) are the two primary learning control



methods. The basic premise of both control methods is to im-
prove tracking performance by exploiting past control signals
(i.e., from previous iterations or trials) and thus compensate
for an inherent state and/or time periodicity present in the
system [25]—[31]. ILC addresses repetitive tracking tasks to be
performed over a finite interval, where the initial conditions
are set to the same value at the beginning of each trial
[32], [33]. RLC is intended for continuous operation with
no resetting of the initial conditions. Lyapunov-based tools
have been used to synthesize and analyze ILC, RLC, and
repetitive controllers for nonlinear dynamical systems. In [34],
a learning control input was designed to ensure asymptotic
convergence. A saturated learning-based feedforward term was
developed in [35] to compensate for periodic dynamics along
with the use of adaptive control to compensate for non-periodic
dynamics. In [29], a RLC approach is constructed to track a
desired trajectory with known periodicity and with the aid
of a Lyapunov-Krasovskii functional the boundedness and
convergence of the system’s states are ensured. In [30], an
adaptive learning method is developed using a fully saturated
learning law and an iterative learning formulation to prove
convergence of the states.

Many of the aforementioned learning control techniques
have been implemented in FES studies due to the highly
repetitive or periodic nature of the exercise. FES via ILC
has been applied in trajectory following of elbow and wrist
flexion [36], [37], planar and unconstrained upper arm tasks
for clinical rehabilitation in stroke and multiple sclerosis
populations [33], [38], [39], and foot trajectory tracking during
swing phase in gait using a drop foot neuroprosthesis [40].
Similarly, RLC has been implemented along with FES to
suppress tremor by stimulating wrist flexors/extensors [41].
A single study has applied ILC for FES-cycling in computer
simulation [42]. There is no previous work using one of the
mentioned learning techniques in FES-cycling while involving
a switching analysis between multiple muscle groups.

In this paper, a RLC is designed based on a saturated
feedforward learning term developed in [35] to track a desired
periodic cadence with known period on a stationary recumbent
FES-cycle. The RLC is developed to deal with the periodic
tracking control problem without the need to enforce a re-
setting condition. A nonlinear model of the motorized cycle-
rider system is used for the design of a switching controller
that activates lower-limb muscles based on a predetermined
activation pattern, which exploits the kinematic effectiveness
of the rider, and an electric motor coupled to the drive chain.
The electric motor provides assistance as needed during the
regions of the cycle crank where the muscle groups are not
activated due to torque transfer inefficiencies. Experimental
results on five able-bodied individuals and three participants
with neurological conditions (NCs) are presented in the exper-
imental section proving the feasibility of the control technique.
Comparative results of two trials with and without the learning
feedforward term are presented. The results indicate that the
inclusion of the RLC term in the switching controller yields
a lower average root-mean-squared (RMS) cadence tracking
error compared to the trial where the learning term was
turned off. A common Lyapunov-like function is constructed

by adding a Lyapunov-Krasovskii like term to account for the
periodicity of the system’s desired states. Although a negative
semi-definite bound is obtained on the Lyapunov derivative, as
opposed to the negative definite bound typically required for
switched systems, asymptotic tracking over the time horizon
of the overall switched system is ensured through the use of
a corollary to the LaSalle-Yoshizawa theorem for nonsmooth
systems [43, Corollary 2].

II. MODEL
A. Stationary Cycle-Rider Dynamic Model

A motorized recumbent stationary cycle and a two-legged
rider can be modeled as a single degree-of-freedom (DOF)
system with the following dynamics [15]

M(q)§+V (g, 4)¢+G(q)+P(q, ¢)+cad = Ta(q, 4, 1) +7e(t),

ey
where ¢ : R>o — O denotes the positive clockwise measur-
able crank angle, and Q C R denotes the set of crank angles
contained between [0,27); M : Q - R5o, V: QxR - R,
G : Q — R denote the inertial, centripetal-Coriolis, and
gravitational effects, respectively; P : Q x R — R denotes
the effects of passive viscoelastic tissue forces in the rider’s
joints, and ¢4 € R is the unknown coefficient of viscous
damping in the cycle; 7, : Q@ x R x R>¢ — R denotes the net
active torque produced by lower limb muscle contractions of
the rider, and 7. : R>o — R denotes the torque applied about
the cycle crank axis by the electric motor. The full system
is represented by a closed kinematic chain, thus when the
orientation of a segment (i.e., crank angle) is specified for a 4
-bar linkage system, the orientation of the remaining segments
(e.g., knee- or hip-joint angles) are defined. Figure 1 depicts
the single DOF dynamic system and the switching regions for
the muscle groups and electric motor determined by the crank
angle (described in Section II-B).
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Figure 1. Schematic of the stationary cycle-rider system. The crank angle is
denoted by g, while the knee, hip, and trunk angles are denoted by ggpee-
Qhips> and qgryunp respectively. The thigh length, shank length, cycle crank
length, and the horizontal and vertical seat position are denoted by lipigh,
lshanks lerank, lz, and ly, respectively. The switching regions are depicted
based on the crank angle to describe the regions of the crank cycle where the
muscle groups (Qm) and the electric motor (Q.) are active. For visualization
purposes in the schematic, electrical stimulation is only depicted for the right
quadriceps muscle group of the rider.



The passive viscoelastic effects of tissues surrounding the
hip and the knee joints can be represented by [14]

P(q,4) £ Ti(@)p;(a: ),

JjET
where T; : Q — R are the known joint torque transfer
ratios [44] with subscript j indicating an element in the set
J £ {RightHip, RightKnee, LeftHip, LeftKnee}, that
contains right and left hip and knee joints, and p; : xR — R
denotes the torque about the rider’s joint from viscoelastic
tissue forces [45], [46]. The net active torque produced by a
muscle contraction is

M

Ta(€,6,t) £ Bun(q, )um(t), )

m=1
where B,, Q x R — R represents the uncer-
tain control effectiveness of the involved muscle groups
with subscript m indicating an element in the set
M 2{RQuad, RHam, RGlute, LQuad, LHam, LGlute}
that contains the right (R) and left (L) quadriceps femoris
(Quad), hamstrings (Ham), and gluteal (Glute) muscle
groups respectively, where up to A muscles are contained
in M (ie., for this case M = 6), and u,, : R =+ R
is the subsequently designed electrical stimulation intensity
applied to each muscle group. The control effectiveness for
each muscle group is defined as [14]

B (4,4) = (g, 4)Tin(q), A3)

for m € M, where (2, : Q@ x R — R denotes the uncertain
relationship between stimulation intensity and the muscle
group’s evoked force which produces a resultant torque about
the joint it spans, and T}, : Q@ — R denotes the relationship
between a muscle’s resultant torque about a joint to torque
about the crank axis. Since most muscles cross multiple joints
in the lower limb, the ability of a muscle to actuate the limb in
a certain direction (i.e., flexion or extension) depends on the
values of T},,. Even so, there are proportional values that relate
the values of 73, among muscles, which depend on muscle
architecture, like cross sectional area, pennation angle, muscle
fiber length, and flexion/extension velocity. These effects are
captured in €),,, which aids to create lower and upper bounds
for the control effectiveness B,,,. The following assumption is
exploited in the subsequent analysis.

Assumption 1. Muscles that span multiple joints such as the
hamstrings and rectus femoris produce torque only about the
knee joint (i.e., with negligible hip coactivation). The torque
output is constrained to produce torque that results in forward
pedaling only based on the muscle activation switching law.

In (3), the function €, is defined as [20]

Qi (4, 4) £ G (Q)1m (4, §)cos(bm(q)), @)

where (,,, : @ — R denotes the uncertain moment arm of a
muscle’s output force about the joint it spans, 7,, : QxR — R
denotes the nonlinear function relating the stimulation inten-
sity to muscle force, and b, : Q@ — R denotes the uncertain

pennation angle of the muscle fibers. The following properties
will be exploited in the subsequent analysis.

Property 1. The moment arm (,,,, ¥m € M is nonzero with
a bounded first time derivative [47].

Property 2. The function 7,,, Vm € M depends on the
muscle force-length and muscle force-velocity relationships.
The function 7, is bounded [48] and is positive provided the
muscle is not fully stretched or contracting concentrically at
its maximum shortening velocity [49].

Property 3. The muscle fiber pennation angle b,,,, Ym € M
is non-constant [50] and bounded during muscle contractions,
such that cos(b,,) # 0 [51], [52].

Property 4. Based on Assumption 1 and Properties 1-3, €2,
is nonzero and bounded, ie., ¢, < Q,, < cq, Vm € M,
where ¢, co € Ry are positive known constants.

The torque about the crank axis provided by the electric
motor is modeled as

Te(t) £ Beue(t), )

where B, € Ry is a positive torque constant, and u. :
R>o — R is the current applied to the electric motor.

B. Switched System Model

In this section, the rider-cycle model in (1) is further devel-
oped to account for switching between the muscle groups. The
control input is commanded as stimulation intensities to the
muscle groups and current to the electric motor at particular
regions of the crank cycle. Stimulation is applied to each mus-
cle group in regions of the crank cycle where the muscles can
contribute to the forward pedaling motion (i.e., muscles acting
as functional synergists). The electric motor is activated only in
regions where the FES-induced torque is small, i.e., when the
torque transfer ratios 7j, Vj € J are small. This implies that
electric motor assistance is engaged during the rider’s weakest
torque production regions. This switching control design yields
an autonomous, state-dependent, switched control system [24].
The portion of the crank cycle over which a particular muscle
group is stimulated is denoted by Q,, C Q,Vm € M, where
the muscle groups are activated as described in [14]. The
portions of the crank cycle over which the electric motor
contributes to the torque production is denoted as Q. C Q.
In this development, Qn; £ U,eamQmn which implies that
Q. 2 o\Q a5 that is, when no muscle group is stimulated,
the electric motor is turned on. Based on these switching laws,
a piecewise constant switching signal can be developed for
each muscle group, o, € {0,1}, and for the electric motor,
o €{0,1} as

om(a) 240 TS
0 ifq¢ Qm

s )1 ifqge Q.
06(‘1)—{0 ifqgéQe’ (6)

Figure 1 denotes the switching regions (i.e., Q,, and Q)
where the muscle groups and the electric motor are activated



based on the crank angle. Using these state-dependent switch-
ing signals, the stimulation input to the muscles groups and
the motor input can be defined as [13]

um(t) £ kmam(‘])”(t)v ue(t) £ keae(Q)V(t)a (7

where k,,,, k. € Rsg, m € M are positive, constant control
gains, and v € R is the designed control input. Substituting
(7) into (1) and rearranging terms yields [13]

M(q)§+V(q,q)4+G(q)+P(q,4)+cad = Bs(q,4)v(t), (8)

where B, € R is a lumped, switched control effectiveness
term defined as

Bo(¢:4) £ Y Bu(q: @)kmom(q) + Bekeoe(q).  (9)
meM

The subscript 0 € P £ {1,2,3,...N} indicates the index of
B, and switches according to the crank position. A maximum
of N subsystems can be activated in a determined region of
the crank cycle, i.e., the muscle groups being stimulated and
the activation of the electric motor. The known sequence of
switching states, which are the limit points of Q,,, Vm € M,
is defined as {qn}, n € {0, 1, 2, ...}, and the corresponding
sequence of unknown switching times {tn} are defined such
that each t,, denotes the instant when g reaches the correspond-
ing switching state ¢,,. The switching signal ¢ is assumed to
be continuous from the right (i.e., o (¢) = lim__, +o (q)). The
switched system in (8) has the following properties [13].

Property 5. ¢, < M < cpr, where ¢, cpr € Rs are known
constants [53].

Property 6. |V| < cy |¢], where ¢y € Rsq is a known
constant [53].

Property 7. |G| < cq, where ¢ € Ry is a known constant
[53].

Property 8. |P| < cp1 +cp2lq
known constants [14].

, Where cpy, cpy € Ry are

Property 9. %M — V =0 by skew symmetry [53].

Property 10. Based on Properties 1-4, the lumped switching
control effectiveness is bounded as ¢, < B, < cg, Vo € P,
where ¢, cp € Ry are known constants.

III. CONTROL DEVELOPMENT

The objective is to design a controller to track a desired
crank cadence. The measurable crank position trajectory track-
ing error e : R>g — R is defined as!

e(t) £ qa(t) —q(t), (10)

where g : R>9 — R denotes the desired crank position with
bounded time derivatives such that |G4(¢)| < &4, and |ga(t)] <
&a,, Where &4,, €4, € R5 are known positive constants.

I'The control objective can be quantified in terms of the first time derivative
of e(t).

Remark 1. The desired crank trajectory is periodic in the sense
that q4(t) = qa(t = T), Ga(t) = Ga(t = T), Ga(t) = Ga(t — T)
with known period T'.

To facilitate the subsequent control development and sta-
bility analysis, an auxiliary tracking error r : R>g — R is
defined as

r(t) £ é(t) + ae(t), (1)

where a € Ry is a positive control gain. Taking the time
derivative of (11) and premultiplying by M, substituting for
(8) and (10), then performing some algebraic manipulation
yields

Mi = ~Vr+Wg+ x — Bov + Ny, (12)

where the auxiliary signals W; € R, x € R, and Ny € R are
defined as

Wa 2 M(qa)ja+ V(qa,4a)ga + G(qa) + caga, (13)
X £ M()(Ga+aé) +V(g,d) (4 + ae) + G(q)
+P(q,q) + cag — Wa — Ny, (14)
Ny £ cp1+cpada (15)
The auxiliary signal in (15) can be upper bounded as
|Na| <O, (16)

where © € Ry, is a known positive constant. By using
Properties 5-8, (10) and (11), the Mean Value Theorem can
be used to develop an upperbound for (14) as

x < p(llzIDI1=1), (17)

where 2 : R>g — R? is a composite vector of error signals
defined as

2(t) £ [e(t) r()]"

and p(-) € R is a known positive, radially unbounded, nonde-
creasing function. Based on (13) and the explicit boundedness
of the periodic desired trajectory

(18)

Wa(t)| < By,

where 3, € R is a known positive bounding constant.
Given the open-loop error system in (12), the control input
is designed as

19)

v = Watkir+kasgn(r)+ksp® (|| 2] ) r+ka|[Wa|sgn(r), (20)

where ki, ko, k3, kg € Ry are contro} gains, sgn(-) : R —
[—1,1] is the signum function, and Wy : R>o — R is the
repetitive control law designed as [35]

satg (Wa(t —T)) + pur(t),

Wa(t) = 2n

where 1 € R is a control gain, and satg,(-) is defined as



= for |2| < B,
sgn(Z)p,  for|Z| > B,

V= € R. The closed-loop error system is obtained by substi-
tuting (20) into (12) to obtain

satg,(Z)

Mi = —Vr+Wa+ x + Ng+ Wa — B,(Wy + k17
+ kasgn(r) + ksp® (||2])r + ka|Walsgn(r)), (22)

where W; € R is the learning estimation error defined as
Wd L 1,— Wd. Based on the periodicity and boundedness of
Wd(t), Wd(t) = Satﬂr(Wd(t» = SatﬂT(Wd(t — T)) Hence,
by exploiting (21), the following expression can be developed
for Wd

Wy = satg, (Wt —T)) — satg,(Wa(t — T)) — pr(t). (23)

IV. STABILITY ANALYSIS

Theorem 1. The controller in (20) with the repetitive learning
law in (21), ensures global asymptotic cadence tracking in the
sense that

lim é(t) =0,

t—o0

(24)

provided the control gains are selected to satisfy the following
sufficient conditions

1 1 © 1
o> -, (k16b+ﬁ)>*, ky > —, ky> +CBv
2 2 2 cp Cp

. 1 noo 1 1
(5—mm{(a—2>,<klcb+2—2>}> s

Proof: Let V, : R3 x R>9 — R be a positive-definite,
continuously differentiable function defined as

(25)

1
2
1 : R 9
+ / (sat s (Wa(g)) — sats, (Wa(p)))?dp. (26)
T

The function in (26) satisfies the following inequalities:

Mlyll? < Vely, t) < Xallyll?,

A - A
where \; £ mm(%,%,ﬁ), Ay & max(%,%,ﬁ) and

y & [T QT where Qp & [ (sats (Walp)) —
satg,(Wa(p)))2de. Let y(t) be a Filippov solution to the
differential inclusion ¢ € K[h](y), where K[| is defined as
[54], and h is defined by using (11) and (22) as h = [hy hs hs],
where

27

hi £ r—ae
hy & M Y-Vr+ Wi+ x + Ny — By (kyr + kasgn(r)
+Wa + ksp® (|12]))r + ka|Walsgn(r)) + Wa}
1 ~
hs 2 ———{(satg,(Wy(t)) — satg,(Wa(t)))?
3 2\/@{( ar(Walt)) ar(Wa(t)))

—(satp.(Wa(t — T)) — satg, (Wa(t — T)))?}.

The control input in (20) has the signum function and the
discontinuous lumped control effectiveness B,; hence, the
time derivative of (26) exists almost everywhere (a.e.), i.e.,
for almost all ¢. Based on [43, Lemma 1], Vo(y(t),t) ‘e
V.(y(t),t), where V, is the generalized time derivative of (26)
along the Filippov trajectories of y = h(y) is defined as in [43]
as

é
. 7=
ch = m ETK QL (67 T, 2 QLa t)7
€OV, 2vVQL
1

where OV.(y,t) is the generalized gradient of V at
(y,t) defined as OV (y,t) = co{limVV.(y,t)|(yi,t;)) —
(y,t), (yi, t;) & Qv.}, where Qy, is the set of measure zero
where the gradient of V is not defined and co denotes convex
closure [43], [55]. Since V.(y,t) is continuously differentiable
in y,

é

* ae. 1 1. 7

Ve - le, Mr, <)2 Qr, ~Mr?|K O
2 2 2VQr

1

Therefore, after substituting for (11) and (22), and using
Property 9, the generalized time derivative of (26) can be
expressed as

—ae’ +er+ T(Wd + Wy + X + Ny — K[B,|kir
—K[B,sgn(r)lks — K[Bs]Wq — K[B,]kzp®(||z[|)r
—K[B,sgn(r)]|ka|Wal)

—i(satﬂr(Wd(t _T)) — sat g (Wa(t — T)))?

< .e.
V. C

(st (Walt)) = satsr (Ws(1)*
where K [B,sgn(r)] = cSGN(r) such that ¢,SGN(r) =
{en} if r > 0, [—cp,cp] if r =0, and {—cp} if r < 0, and
K[B,] C [cp, cp]- Substituting for (16), (17), and (23), using
Property 10, and applying Young’s inequality, the expression
in (28) can be upper bounded as

53 a.e. 1 1
Ve < — (a - 2) e? — (lﬂcb - 2) r? — (kacy — ©) 7|
— (k;4Cb -1 CB) |Wd||7“| + V~Vdr

+ [p(lzD =l = ksenp®(ll=11)r?]

1 -
—— (W, 2
2M( d + pr)

(28)

1 R
+E(sat5T(Wd(t)) — satg (Wa(t)))?. (29)
By completing the squares for the term in the bracket in (29),
employing the property described in [35, Appendix I], and
canceling terms, (29) can be rewritten as



2 a.e.

1 1 1 IEll&

‘/; < _ - 2 k =, = 2 =i
hS <a 2)6 ( 1Cb+2M 2>r +4k38b
— (kacy — ©) |r| — (kacy — 1 — ) [Wallr|. (30)

Provided the gain conditions in (25) are satisfied, the inequality
in (30) can be further upper bounded as

B a.e. ) 1
< _(Z_
Ve < <2 4kscy

é
DT TR

By invoking [43, Corollary 2] le|, |r| — 0 as ¢ — oo. Since

V.>0and V. < 0, V. € L. Hence, e(t),r(t),Qr € Loos
which implies that y € L. From (21), r € L., implies that
W, € Lo, which along with the fact that Wy € L, from (19)
implies that W, € L.,. From the fact that e(t),r(t) € Loo
and W, € L., then v € L. Since e(t), r(t) € Lo, then
é(t) € Ly from (11), and hence, ¢(t),(t) € Lo which
implies §(t) € Lo from (8). [ ]

V. EXPERIMENTS

Experiments are provided to demonstrate the performance
of the controller developed in (20) with (learning ON trial) and
without (learning OFF trial) the learning feedforward control
term W, in (21). The switching control input was commanded
as stimulation intensities to activate a total of six lower-limb
muscle groups and as current to the electric motor.

A. Subjects

Five able-bodied individuals (three male, two female) with
ages ranging between 21 and 25 years participated in the
FES-cycling protocol at the University of Florida. Three male
individuals with NCs participated in the study at Brooks Re-
habilitation in Jacksonville, FL. Demographics of the Brooks
Rehabilitation participants are listed in Table I. Prior to
participation, written informed consent was obtained from all
participants, as approved by the Institutional Review Board
at the University of Florida. The neurologically impaired
individuals were medically stable, and a group of physical
therapists was present during the study to monitor vital signs
and provide assistance to the participants as needed. Both able-
bodied and neurologically impaired individuals were instructed
and reminded through the experiments to avoid voluntarily
contributing to the pedaling task. Able-bodied individuals
were not informed of the desired trajectory and could not
see the desired or actual trajectory. Subject A exhibited a
right side motor impairment, sensory deficit, and aphasia
(language disorder). Subject A had good muscle tone and
experience with strength training exercise, but not with FES-
cycling. Subject B exhibited a left side impairment, was a
part-time wheelchair user, and had previous experience with
FES-cycling. Subject C is a quadriplegic due to a suffered
spinal cord injury (C3 incomplete ASIA impairment scale
(AIS) A) with a limited range of motion for his left leg.
Subject C had previous experience with FES-induced cycling.
Subjects A and B had reduced or disturbed sensitivity to

electrical stimulation in the affected side. Despite the one-
sided impairment demonstrated by the neurologically impaired
participants, electrical stimulation was delivered to both lower
extremities.

Table T
DEMOGRAPHICS OF PARTICIPANTS WITH A NEUROLOGICAL CONDITION.

Subject Age  Sex Injury Months Since Injury
A 58 M Hemorrhagic Stroke 60
B 56 M Ischemic Stroke 16
C 32 M SCI C3 18

B. Experimental Setup

Testing was performed using a recumbent tricycle (Terra-
Trike Rover) mounted on an indoor trainer and adapted with
orthotic boots, which constrained the rider’s ankle to maintain
the sagittal alignment of the lower legs. A brushed 24 VDC
electric motor was mounted to the frame and coupled to the
drive chain. An optical encoder (US Digital) was coupled to
the cycle crank to measure the crank position. The controller
was implemented on a personal computer (Windows 10 OS)
running a real-time target (QUARC 2.5, Quanser) via MAT-
LAB/Simulink 2015b (MathWorks Inc) with a sample rate of
500 Hz. The Quanser Q8-USB data acquisition board was used
to read the encoder signal and to interface with an analog
motor driver (Advanced Motion Controls)? that commanded
the current control to the electric motor. A current-controlled
8-channel stimulator (RehaStim, Hasomed GmbH) operating
in Science Mode delivered biphasic, symmetric, rectangular
pulses to the participant’s muscle groups: quadriceps, ham-
strings, and gluteal muscle groups®. Self-adhesive PALS®
electrodes (3” by 5”)* were placed on each muscle group in
both extremities. The stimulation current amplitude was fixed
at 90 mA for the quadriceps, 80 mA for the hamstrings, and 70
mA for the gluteal muscle groups’. The stimulation frequency
was fixed at 60 Hz for all trials, and the pulsewidth was
determined by u,, in (7) and commanded to the stimulator.
Figure 2 illustrates the motorized cycling test bed. As safety
measures, participants had access to an emergency stop button
and software stop conditions were implemented to limit the
amount of motor current and stimulation intensity.

Electrodes were placed over the participant’s muscle groups
according to the electrode’s manufacturer manual®. Initial mea-
surements of the participant’s lower extremities were recorded
to obtain necessary anatomical lengths using visible landmarks
as in [14]. Subjects were then seated on the tricycle, their feet
were properly placed into the orthotic pedals, and necessary
seat adjustments were made to prevent knee hyper-extension.

>The servo drive was provided in part by the sponsorship of Advanced
Motion Controls.

3All the healthy and neurologically impaired participants, except Subject
C, were stimulated over all the six muscle groups. Subject C was stimulated
only over his quadriceps and hamstrings due to time constraints and practical
reasons.

4Surface electrodes for the study were provided compliments of Axelgaard
Manufacturing Co., Ltd.

5 All able-bodied individuals and participants with NCs received the same
current amplitudes across the lower-limb muscle groups.

Shttp://www.palsclinicalsupport.com/videoElements/videoPage.php



Figure 2. Motorized FES-cycling test bed. A) Current-controlled RehaStim
stimulator. B) A pair of PALS electrodes. C) Brushed DC motor. D) Cycle
crank fitted with sensors.

The distance from the surface level to the greater trochanter
and the distance from the greater trochanter to the cycle crank
were measured. These measurements were used to calculate
the torque transfer ratios 7),, and hence, to determine the
stimulation pattern (i.e., regions of the crank cycle where the
muscle groups were electrically stimulated).

For the participants with NCs, trials where the electric motor
was active at low speeds were conducted to familiarize the
participants with the cadence. Afterwards, low intensity open
loop stimulation trains were delivered to the targeted muscle
groups to assess the level of response to electrical stimulation.
Cadence tracking experiments were conducted for a duration
tq between 2-5 minutes, t; € [120,300]seconds. All able-
bodied individuals were able to cycle for 5 minutes. The
desired cadence trajectory ¢g smoothly approached a steady
state value of 50 revolutions per minute (RPM)’ during a
time interval of 16 seconds, ¢t € [0,¢1], t1 = 16. During this
interval, the switching controller only activated the motor (i.e.,
oe = 1, ¢ € Q. for the whole crank cycle). The cadence
trajectory remained constant at 50 RPM for a transition time
interval of 10 seconds, ¢ € [t1,t; + 10], where the width of
the regions of the crank cycle at which electrical stimulation
is delivered (ie., ¢ € Q,,) was gradually increased until it
reached a steady state value. The width of the stimulation
regions is determined by

€ = Amax(Ty,), (32)
where A € R is a positive threshold value designed as
t .
A Jl4=5 ?ft1§t<t1+10. (33)
0.75 ift >t +10

Both (32) and (33) define how the switching controller grad-
vally incorporates the activation of the lower limb muscles
during the experiments. This implies that the stimulation
regions (i.e., regions where o,, = 1, ¢ € Q,,,) grow based on
whether the transfer ratios 7,,, Vm € M at every crank angle
are greater than the current value of e defined in (32). After the
transition phase of 10 seconds, the stimulation regions reach
a steady constant stimulation pattern (i.e., regions where 7,
is greater than the 75% of the maximum value of T,,,). This

"For Subject C the desired cadence trajectory ¢4 approached a steady value
of 40 RPM due to participant comfort.

mechanism to smoothly integrate electrical stimulation to the
switching controller was selected because large muscle forces
are needed to enable forward pedaling from rest until enough
momentum has been achieved in the system. Then, the desired
crank velocity g4 was designed to be a periodic function of
time with an amplitude of 50+5 RPM and a period of T' = 12
seconds until the end of experiment, ¢t € [t1 + 10,¢4]. This
last section of the experiment where the cadence trajectory is
periodic is called the steady state.

To compare the tracking performance of the RLC, two
trials were developed for each enrolled participant. One trial
implemented the control input designed in (20) with the
learning feedforward term Wd in (21) (learning ON trial).
For the other trial, Wd = 0, which resulted in a control
input only containing the middle three terms of v in (20)
(learning OFF trial). Based on the limited availability of the
participants for multiple FES-cycling sessions, especially for
the population with NCs, both trials were completed in the
same session. However, rest breaks were given between trials
to avoid fatiguing the participant. The order of the two trials
was randomized for each participant.

Figure 3 provides an example of the switching control
inputs for both the muscle stimulation intensities and the motor
current distributed over a single crank cycle. The control gains
introduced in (7), (11), (20), and (21) were tuned to achieve ap-
propriate tracking performance during preliminary testing and
are defined as follows: k,, € [0.35,0.6], k. = 1, a € [2,3],
ki € [70,265], kom € [5,7.5], kam = kam = 0.001,
kie 29, koe = 4, k3. = 0.0009, ks = 0.009, and
i € [2,32], where the notation ky - is used to represent the
gains used for the motor control input (u.) and the electrical
stimulation input (u,,) defined in (7), where ¢ € {1,2,3,4},
w € {m, e}, the subscript m denotes the muscle groups, and
the subscript e the electric motor. All the control gains were
the same between the learning ON and OFF trials. However
in some OFF trials, k; ,, was increased to achieve similar
stimulation intensities for any given participant as for the ON
trial.
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Figure 3. FES stimulation intensities w,, and electric motor input ue during
a single crank cycle illustrating the switching controller in (7). A) Quadriceps
input. B) Hamstrings input. C) Gluteal muscles input. D) Motor current input.



C. Results

The FES-cycling protocol with the two trials (learning
ON and OFF) was completed by all the participants. Table
II summarizes the cadence RMS error, the average of the
cadence error é, and percent error (% error) for the able-
bodied individuals (S1-S5) and the participants with NCs (A-
C) during steady state, ¢ € [t; + 10,t4] seconds, for both
trials. The RMS error was calculated over moving time interval
windows of 1.2 and 12 seconds (corresponding to the period
of the desired trajectory). Figure 4 shows the cadence tracking
performance of Subject 5 (S5), a typical result, for the learning
ON trial, quantified by the RMS error and the instantaneous
error é. Figure 5 illustrates the stimulation intensities
delivered to the muscle groups, the electric motor current input
U, and the learning feedforward term Wd for Subject 5 (S5)
for the learning ON trial.
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Figure 4. Tracking performance for Subject 5 (S5) during the learning ON
trial quantified by the cadence RMS error (top) for two moving time interval
windows and the cadence instantaneous error é (bottom). The vertical solid
bar in the top plot corresponds to the time when the learning is turned ON,
that is when steady state is reached during the trial. Instantaneous cadence is
plotted by down sampling to 0.3 seconds.
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Figure 5. Distribution of the control input to each muscle group w.m, (top),
the elqctric motor current input u. (middle), and the learning feedforward
term W (bottom) for Subject 5 (S5) during the learning ON trial.

Figure 6 shows the tracking performance of Subject 5
(S5), for the the learning OFF trial. As an example of the
tracking of the participants with NCs, Figure 7 shows the
tracking performance of Subject A during the learning ON
trial. Figure 8 illustrates the muscle intensities delivered to
all the muscle groups, the motor current input, the cadence
tracking errors (RMS and instantaneous cadence tracking error
é), and the learning-based feedforward term Wy during several
consecutive crank cycles at the beginning of the ON trial and
then 100 crank cycles later for Subject 2 (S2).
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Figure 6. Tracking performance for Subject 5 (S5) during the learning OFF
trial quantified by the cadence RMS error (top) for two moving time interval
windows and the cadence instantaneous error é (bottom). The vertical solid
bar in the top plot corresponds to the time when the learning should have been
turned ON, that is when steady state is reached during the trial. Instantaneous
cadence is plotted by down sampling to 0.3 seconds.
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Figure 7. Tracking performance for Subject A during the learning ON trial
quantified by the cadence RMS error (top) for two moving time interval
windows and the cadence instantaneous error é (bottom). The vertical solid
bar in the top plot corresponds to the time when the learning is turned ON,
that is when steady state is reached during the trial. Instantaneous cadence is
plotted by down sampling to 0.3 seconds. The dashed black line in the top
plot depicts the maximum RMS error for the moving 12 seconds window.

D. Statistical Analysis

A Wilcoxon signed ranked test was performed at a signif-
icance level of @ = 0.05 to test for statistically significant
differences between the RMS cadence tracking error between



Table II
TRACKING RESULTS: RMS ERROR (MOVING WINDOW OF 1.2 S), AVERAGE OF THE CADENCE ERROR é, AND % ERROR REPORTED AS MEAN £STANDARD
DEVIATION (STD) DURING THE STEADY STATE OF THE EXPERIMENT FOR BOTH TRIALS WITH LEARNING (ON COLUMN) AND WITHOUT LEARNING (OFF
COLUMN). STD* REPORTS THE MEAN OVER THE STANDARD DEVIATIONS.

Subject RMS Error (RPM) ¢ (RPM) % Error
ON OFF ON OFF ON OFF
S1 3.31+0.53  3.94£0.56  0.04x3.34 0.03£3.98 0.03+6.82 0.05£8.07
S2 3.61+£042 420+0.51 0.03£3.61 0.01+4.23 0.06+7.35  0.05+8.56
S3 4.16+£0.64  4.70+0.77 0.02+£4.16  0.05+4.76  0.06£8.59  0.17+9.70
S4 3.85£0.41 4.33£0.55 0.03£3.85 0.02£4.36 0.05£7.85 0.04+8.86
S5 3.45+049 3.81£039 0.03+£347 0.01£3.83 0.03£7.09 0.02+7.78
Mean (S1-S5) 3.68 420 0.03 0.02 0.05 0.07
STD* (S1-S5) 0.51 0.57 3.70 4.24 7.57 8.62
A 2.14+£045 2.85+£0.40 0.01£2.19 0.01£2.92 0.02+4.33  0.02+5.82
B 4.21£1.04 4264121 0.09£4.21 035+431 0.17£8.73  0.5518.82
C 3.15+0.63  3.37£0.72  0.02+3.23  0.01£3.42  0.00+£8.06 0.1148.72
Mean (A-C) 3.17 3.49 0.04 0.12 0.06 0.23
STD* (A-C) 0.75 0.85 3.31 3.60 7.30 791
Combined Mean 3.68 4.09 0.03 0.06 0.05 0.12
Combined STD* 0.58 0.64 3.56 4.01 7.35 8.29
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Figure 8. FES control inputs w.,, motor current input u., cadence tracking error (RMS and instantaneous error €), and learning-based feedforward term Wd
during several consecutive crank cycles at the beginning of the learning ON trial (left column) and 100 crank cycles later in the same trial (right column) for

Subject 2 (S2).

trials (learning ON versus learning OFF) for the total number
of participants (N = 8). For both able-bodied and participants
with NCs, the learning ON trial yielded a lower RMS cadence
error than the learning OFF trial (p — value = 0.0156) with
median values of 3.61 and 4.20, respectively.

E. Discussion

The experimental results demonstrate the feasibility of the
controller in (20) to track a desired cadence with the combined
contribution of FES activation of the lower limb muscles
and motor assistance. The inclusion of the learning based
feedforward term designed in (21) during the ON trial resulted
in lower RMS cadence error and instantaneous tracking error
é compared to the OFF trial, where the learning term was

neglected for both able-bodied individuals and participants
with NCs. The mean instantaneous cadence tracking error is
0.03£3.70 RPM for the ON trial and 0.02+4.24 RPM for the
OFF trial across all healthy individuals. For people with NCs,
the mean instantaneous cadence tracking error is 0.04£3.31
RPM for the ON trial and 0.1243.60 RPM for the OFF trial.

Implementation of the RLC offers the advantage of adding
a feedforward term to the control input by exploiting the sys-
tem’s periodic desired trajectories rather than using a model-
based control, such as in classical adaptive control where a
regression matrix has to be known. In other words, the RLC
is added to a robust controller aiming to improve the tracking
performance as shown in Section V-C.

Despite the fact that the stability analysis yields an asymp-



totic tracking result, there are factors in the experiment that
could affect the steady-state tracking error, such as the inherent
electromechanical delay that occurs between the input being
delivered to the muscle and actual force production [56] or
the effect of non-periodic disturbances such as muscle fatigue.
Additional challenges were encountered while conducting ex-
periments with participants possessing NCs such as observed
intermittent muscle spasms, asymmetries between the lower
extremities, and potential electrical stimulation sensitivity
from residual sensory feedback. These challenges resulted
in shorter experiment durations (e.g., {4 < 300 seconds)
for the participants with NCs as compared to able-bodied
individuals. Although Subjects A and B had residual motor
control on their affected side and full motor control in their
contralateral side, no voluntary contribution to the pedaling
task was provided (monitored by the consistent non-vanishing
stimulation intensities delivered throughout the experiment) to
compare their tracking performance with Subject C, who had
no neurological motor control. The results reported in Table II
are representative of typical performance during FES-cycling
tasks.

The results show that by switching the control effort be-
tween muscle activation via FES and the electric motor, the
participants with NCs were capable of producing smooth
cadence without any voluntary contribution. This relevant
observation demonstrates the efficacy of the control technique,
since it has been reported that the intact leg of subjects with
hemiparesis provides enough muscle force without FES (i.e.,
voluntary contribution only) to complete the pedaling task
and to compensate for the affected leg [57], [58]. However,
this inherent compensation by the healthy leg diminishes
the potential FES benefits during cycling. Moreover in [57],
90% of the stroke participants were unable to increase crank
contribution when receiving open-loop stimulation on their
affected limb. In [58], a post-training voluntary pedaling
test was conducted where FES was also delivered open-loop
to both the affected and intact lower-limbs of participants
with postacute hemiparesis which showed improved motion
symmetry and activation timing of the impaired muscles. For
spinal cord injured populations, power output, metabolic rate,
and muscle strength increased after FES-cycling training using
fixed stimulation parameters [59]. Clinical trials with larger
neurologically impaired populations are required to investigate
the impact of the control method developed in the present
study. Ultimately, a cycling protocol that adopts closed-loop
FES and learning control for the affected limb and motivates
voluntary intent for the intact limb while using a split crank
cycle may result in a more suitable rehabilitation approach for
people with stroke.

VI. CONCLUSION

A switched controller with a learning based feedforward
term was designed to activate the lower limb muscles and
an electric motor to yield asymptotic cadence tracking. The
switching signal commands stimulation intensities to the
muscle groups when they can contribute efficiently to the
pedaling task and activates the electric motor in regions of

the crank cycle where muscles have low torque efficiency.
The developed controller compensates for periodic dynamics
(based on the desired periodic reference trajectory) using a
repetitive learning feedforward term combined with robust
feedback terms. Global asymptotic tracking is achieved with
the aid of a corollary to the LaSalle-Yoshizawa theorem for
nonsmooth systems in [43].

The RLC was successfully tested in experiments conducted
on five able-bodied individuals and three participants with
NCs. The added value of the RLC (e.g., against a pure robust
controller) for cadence tracking was illustrated by comparing
the tracking performance during two trials with and without
learning (ON and OFF trials, respectively). For the healthy
control group, a mean RMS cadence error of 3.68+0.51 RPM
(0.0547.57% error) was obtained for the ON trial compared
to the RMS cadence error of 4.204+0.57 RPM (0.07£8.62%
error) for the OFF trial. For the patient population, a mean
RMS cadence error of 3.17 +0.75 RPM (0.06 & 7.30% error)
was obtained for the ON trial compared to the RMS cadence
error of 3.49 + 0.85 RPM (0.23+7.91% error) for the OFF
trial. The results on the participants with NCs demonstrate the
ability to yield repetitive cycling despite lower-limb motion
asymmetries, sensitivity to electrical stimulation, constrained
range of motion, and lack of neurological motor control
(dysfunction to coordinate muscles and limbs to achieve a
motor skill). The developed controller holds the potential to
be extended to a larger set of populations with NCs such
as Parkinson’s disease, traumatic brain injury, cerebral palsy,
and multiple sclerosis. Additional challenges that may arise
through the testing of a broader population includes muscle
atrophy (limited muscle mass and tone) that may lead to a
mitigated response to an applied electrical stimuli. Moreover,
learning control techniques can be applied for different track-
ing objectives in FES-based exercise such as power control
(i.e., track a desired torque output). To advance the impact of
this system for rehabilitation, an extension of the developed
control technique to the case where the participants are al-
lowed and encouraged to participate in cycling performance
is the focus of future research. Future work also includes the
long-term investigation of the rehabilitative benefits of FES-
cycling using learning control methods in clinical trials.
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