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ABSTRACT
Functional electrical stimulation (FES) induced exercise,

such as motorized FES-cycling, is commonly used in rehabilita-
tion for lower limb movement disorders. A challenge in closed-
loop FES control is the presence of an input delay between the
application (and removal) of the electrical stimulus and the pro-
duction of muscle force. Moreover, switching between motor
control and FES control of various muscle groups can be destabi-
lizing. This paper examines the development of a control method
and state-dependent trigger condition to account for the time-
varying input delayed response. Uniformly ultimately bounded
tracking for a switched uncertain nonlinear dynamic system with
input delays is achieved.

INTRODUCTION1

A common rehabilitative technique for people with lower
limb movement disorders is to induce exercise via functional
electrical stimulation (FES) [1–4]. Closed-loop FES control has
several challenges. For instance, fatigue causes muscle force to
decay under a constant stimulation intensity [5], uncertainty ex-
ists in disturbances to the system and parameters in the dynamic
model [6], and the complex nonlinear mapping from electrical
input to generated muscle force is unknown [7]. In addition,
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more complicated functional tasks (e.g., FES cycling) require
switching control between different muscle groups and poten-
tially a motor [8]. Moreover, the complex electrophysiological
process involved in human muscle contraction due to an external
electric field results in an input delay.

Results for continuous exercises (e.g., leg extensions), fo-
cus on the delay resulting from the application of an electrical
stimulus [9–13]. However, for exercises like cycling that re-
quire limb coordination by switching between multiple muscle
groups, residual forces resulting from the delayed response after
removing the electrical stimulus is also an important consider-
ation. Such residual forces may come from antagonistic mus-
cles, leading to unfavorable biomechanics and an increased rate
of fatigue. Fatigue is undesired because it reduces the number
of effective repetitive limb movements and may result in even
greater destabilizing delay effects [9]. To date, no closed-loop
FES controller has been developed for switched system dynam-
ics to include the effects of input delay. FES controllers have
been developed recently to account for the delayed response of
muscle. In [12], an unknown constant delay and exact model
knowledge of the lower limb dynamics are assumed and a global
asymptotic tracking controller is developed. A uniformly ulti-
mately bounded result was developed in [13] for uncertain dy-
namics with a known delay. In [10] and [11] an input delay that
is both unknown and time-varying is assumed for a continuous
leg extension exercise.

Over the last decade, the stability of general input de-
layed systems has been studied extensively [14–20]. The re-
sult in [16] considers uncertain dynamics and a known input
delay. However, it is often difficult to measure the input de-



lay [21], so more recent papers have assumed the delay is un-
known [17]. Switching in the presence of unknown delays has
been explored recently [18–20]. The result in [18] considers
time-varying state delays, while time-varying input delays and
non-time-varying input delays are considered in [19] and [20],
respectively. Lyapunov–Krasovskii functionals are developed
in [19] for a certain class of nonlinear systems to yield input-
to-state stability, whereas a linear system was examined in [20].
The aforementioned results do not account for the unique cir-
cumstances associated with switched FES-cycling, such as the
need for complex state-dependent switching and the need to
compensate for residual antagonistic forces resulting from delays
after the stimulation has been withdrawn. For example, the re-
sult in this paper combines a controller that is robust to the time-
varying delay and a delay-dependent trigger method to appro-
priately schedule the activation of muscle groups and the motor.
Specifically, this paper examines the development of switching
conditions and the associated stability analysis to account for the
time-varying input delayed response of closed-loop FES control.
It is the first paper to develop a controller for a switched uncer-
tain nonlinear dynamic FES system with unknown time-varying
input delays.

DYNAMICS
Throughout the paper, delayed functions are defined as

ht ,
⇢
h(t� t(t))

0
t� t(t)� t0
t� t(t)< t0

,

where t0 2 R�0 is the initial time and time is denoted by t 2
R�0. The time-varying electromechanical delay, i.e., the de-
lay between the application/removal of the current and the on-
set/elimination of muscle force production is denoted by t :
R�0 ! S, where S⇢R denotes the set of delay values [21]. The
motorized cycle-rider system can be modeled as [8]2

tM (q, q̇,t, t)+ te (q, t) =M (q) q̈+V (q, q̇) q̇
+G(q)+P(q, q̇)+bcq̇+d (t) ,

(1)

where q : R�0 ! Q , q̇ : R�0 ! R, and q̈ : R�0 ! R denote the
measurable crank angle and velocity, and unmeasured acceler-
ation, respectively. The set Q ✓ R denotes all possible crank
angles. The inertial effects, gravitational effects, centripetal-
Coriolis effects, and passive viscoelastic tissue forces are de-
noted as M : Q ! R>0, G : Q ! R, V : Q ⇥R ! R, and P :
Q ⇥R! R, respectively. The viscous damping effects and dis-
turbances applied about the crank axis are denoted by bc 2 R>0
and d : R�0 ! R, respectively. The torque contributions due to
the motor and FES induced muscle contractions are denoted as

2For notational brevity, all explicit dependence on time, t, within the terms
q(t), q̇(t), q̈(t) is suppressed.

te : Q ⇥R�0 ! R and tM : Q ⇥R⇥S⇥R�0 ! R, respectively
defined as

te (q, t), BeuE (q, t) , (2)

tM (q, q̇,t, t), Â
m2M

Bm (q, q̇)um (qt, q̇t,t, t) , (3)

where the unknown motor control effectiveness is denoted by
Be 2 R>0. The control effectiveness for the electrically stim-
ulated muscle groups in (3) are denoted by Bm : Q ⇥ R !
R>0, 8m 2 M , where m 2 M , {RH, RQ, RG, LH, LQ, LG}
indicates the right (R) and left (L) hamstrings (H), quadriceps
femoris (Q), and gluteal (G) muscle groups. The delayed elec-
trical stimulation input (i.e., pulse width) delivered to the rider’s
muscles, denoted by um : Q ⇥R⇥ S⇥R�0 ! R, 8m 2 M ,
and the control current to the electric motor denoted by uE :
Q ⇥R�0 ! R, are defined as

um (qt, q̇t,t, t), kmsm,t (qt, q̇t)ut, (4)

uE (q, t), kese (q)ue (t) , (5)

where km,ke 2 R>0, 8m 2M are selectable constants. The de-
layed switching signals denoted by sm,t (qt, q̇t) , 8m 2 M in-
dicate which muscle groups received the delayed FES input ut
at the time t � t(t). The subsequently designed non-delayed
FES control and motor inputs are denoted by u : R�0 ! R and
ue : R�0 ! R, respectively. The state-dependent trigger condi-
tion and switching function, denoted by sm (q, q̇) is designed to
activate the muscles at the appropriate location at time t. The de-
signed piecewise left-continuous switching signal for each mus-
cle group is denoted as sm : Q ⇥R! {0, 1} and is defined as

sm (q, q̇),

8
<

:

1,
1,
0,

qa 2 Qm,q 2 Qe

qb 2 Qm

otherwise
, (6)

8m 2M , where trigger conditions qa,qb : Q ⇥R ! R are de-
fined as qa , f1 (q, q̇) and qb , f2 (q, q̇), where f1 and f2 are
designed to stimulate the rider’s muscles sufficiently prior to the
crank entering the FES region and for stimulation to cease suffi-
ciently prior to the crank leaving the FES region. The functions
f1 and f2 utilize the fact that the delay can be lower and upper
bounded as determined from experimental results such as [21]
and do not require explicit knowledge of the actual delay. This
allows qa and qb to act as trigger conditions that adjust the acti-
vation/deactivation of the FES input based on the delay bounds.



Because the motor delay is negligible, the switching signal to
activate the motor is implementable at time t. Hence, in (5),
se : Q ! {0, 1} denotes a piecewise left-continuous switching
signal for the motor and is defined as

se (q),
⇢
1,
0,

q 2 Qe

q /2 Qe

. (7)

Definitions for the subsequent FES regions, denoted by
Qm ⇢ Q , and switching laws are based on [8], where each mus-
cle group is stimulated in specific regions of the crank cycle (i.e.,
when kinematically efficient). In this manner, Qm is defined for
each muscle group as

Qm , {q 2 Q |Tm (q)> em} , (8)

8m 2 M , where em 2 (0, max(Tm)] is the lower threshold for
each torque transfer ratio denoted by Tm : Q ! R, which lim-
its the FES regions such that each muscle group can only con-
tribute to forward pedaling (i.e., positive crank motion). The
union of all muscle regions defined in (8) represents the entire
FES region, denoted by QFES, and defined as QFES , [

m2M
{Qm}.

The motor regions (i.e., kinematic deadzones) are defined as
Qe , Q \Q

FES
. Substituting (3)-(5) into (1) yields3

B
t
M
ut +BEue =Mq̈+Vq̇+G+P+bcq̇+d, (9)

where B
t
M

, Âm2M Bm (q, q̇)kmsm,t (qt, q̇t) and BE (q) ,
Bekese (q).

The parameters in (9) capture the torques that affect the dy-
namics of the combined cycle-rider system, but the exact value
of these parameters are unknown for each rider and the cycle.
However, the subsequently designed FES and motor controllers
only require known bounds on the aforementioned parameters.
The switched system in (9) has the following properties [8].

Property 1. cm M  cM, where cm, cM 2R>0 are known con-
stants.

Property 2. |V |  cV |q̇|, where cV 2 R>0 is a known constant
and | · | denotes the absolute value.

Property 3. |G| cG, where cG 2 R>0 is a known constant.

Property 4. |P| cP1+cP2|q̇|,where cP1, cP2 2R>0 are known
constants.

Property 5. bcq̇ cc|q̇|, where cc 2 R>0 is a known constant.

Property 6. |d| cd , where cd 2 R>0 is a known constant.

Property 7. 1
2Ṁ =V , by skew-symmetry.

3For notational brevity, all functional dependencies are hereafter suppressed
unless required for clarity of exposition.

Property 8. The muscle control effectiveness Bm is lower and
upper bounded 8m 2 M , and thus, when Â

m2M
sm,t > 0, cb 

B
t
M
 cB, where cb,cB 2 R>0 are known constants.

Property 9. ce  Be  cE , where ce, cE 2 R>0 are known con-
stants.

Property 10. The mismatch between the actual input delay t(t)
and the constant estimated input delay, denoted by t̂ 2 R>0, is
bounded by a known constant ¯̃t 2R>0 such that sup

t2R�0

|t� t̂| ¯̃t.

CONTROL DEVELOPMENT
In this paper, the control objective is for the pedal crank to

track a desired cadence q̇d :R�0 !R despite the uncertainties in
the dynamic model and an unknown time-varying input delay. To
facilitate the subsequent analysis, measurable auxiliary tracking
errors, denoted by e : R�0 ! R and r : R�0 ! R are defined as4

e, qd �q, (10)

r , ė+ae+heu, (11)

where a,h 2 R�0 are selectable constants. To incorporate a
delay-free input term in the closed-loop error system, an aux-
iliary error signal, denoted by eu : R�0 ! R, is defined as

eu ,�
Z

t

t�t̂
u(q)dq. (12)

The open-loop error system can be obtained by taking the time
derivative of (11), multiplying by M, adding and subtracting
B

t
M
ut̂ + e, and using (9), (10), and (12) to obtain

Mṙ = �Vr� e+c�BEue�Mhu
+B

t
M
(ut̂ �ut)+(Mh�B

t
M
)ut̂,

(13)

where the auxiliary term c : Q ⇥R⇥R�0 ! R is defined as

c , Mq̈d +V (q̇d +ae+heu)+G

+P+bcq̇+d+Maė+ e.

From Properties 1-6, c can be bounded as

|c| F+r(kzk)kzk , (14)

4The control objective can be quantified in terms of the first time derivative
of e, (i.e., ė).



where F 2 R>0 is a known constant, r(·) is a positive, radially
unbounded, and strictly increasing function, and z 2R3 is a vec-
tor of error signals defined as

z,
⇥
e r eu

⇤
T
. (15)

Based on (13) and (14), and the subsequent stability analy-
sis, the FES control input is designed as

u= ksr, (16)

where ks 2R>0 is a selectable constant. The motor control input
is designed as

ue = k1sgn(r)+(k2+ k3)r, (17)

where sgn(·) denotes the signum function, and k1, k2, k3 2 R>0
are selectable constants. Substituting (16) and (17) into (13)
yields the closed-loop error system

Mṙ = �Vr�BE (k1sgn(r)+(k2+ k3)r)
+ksB

t
M
(rt̂ � rt)+(Mh�B

t
M
)ksrt̂

�Mhksr� e+c.
(18)

Based on the subsequent stability analysis and the closed-
loop error system in (18), let the Lyapunov-Krasovskii function-
als Q1, Q2 : R�0 ! R>0 be defined as

Q1 , e1w1ks

Z
t

t�t̂
r (q)2 dq, (19)

Q2 ,
w2ks

t̂

Z
t

t�t̂

Z
t

s

r (q)2 dqds, (20)

where e1,e2,w1,w2 2 R>0 are selectable constants. To facilitate
the subsequent stability analysis, auxiliary bounding constants
b1,b2,d1,d2 2 R>0 are defined as

b1 ,min
✓

a� e2h2

2
,
1
4
cmhks,

w2

3kst̂2
� 1

2e2
� w1ks

e1

◆
, (21)

b2 ,min
✓

a� e2h2

2
, cek2�2e1w1ks�w2ks,

w2

3kst̂2
� 1

2e2
� w1ks

e1

◆
, (22)

d1 ,min
✓

b1

2
,

w2

3t̂e1w1
,
1
3t̂

◆
, (23)

d2 ,min
✓

b2

2
,

w2

3t̂e1w1
,
1
3t̂

◆
. (24)

STABILITY ANALYSIS
To facilitate the analysis, switching times are denoted by�

t
i

n

 
, i 2 {u, e} , n 2 {0,1,2, ...} , which represent the time in-

stances when Bt
M
becomes nonzero (i= u), or the time instances

when B
t
M

becomes zero (i= e). Let VL : R5 ! R>0 denote a
positive definite, continuously differentiable, common Lyapunov
function candidate defined as

VL ,
1
2
e
2+

1
2
Mr

2+
1
2

w1e
2
u
+Q1+Q2. (25)

The common Lyapunov function candidate VL satisfies the fol-
lowing inequalities:

l1 kyk2 VL  l2 kyk2 , (26)

where y 2 R5 is defined as

y,
⇥
z
p
Q1

p
Q2

⇤
T
, (27)

and l1,l2 2 R>0 are known constants defined as

l1 ,
1
2
min(1,cm,w1) , l2 ,max

⇣
1,

cM

2
,

w1

2

⌘
.

For use in the following stability analysis, let D , Bg \R5

where Bg denotes a closed ball of radius g centered at the origin,
where g 2 R>0 is a known constant, and let5

SD ,
�
y 2D | kyk< inf

�
r�1 ��pk,•

��  
, (28)

where k , cmhksmin
� 1
2b1,2b2

�
.

5For a set A, the inverse image is defined as r�1 (A), {a | r(a) 2 A}.



Theorem 1. The closed-loop error system in (18) is uniformly

ultimately bounded in the sense that

ky(t)k 

s
l2

l1
ky(t0)k�

v

l1l3

·exp
✓
�l3

2
(t� t0)

◆
+

r
v

l1l3
, (29)

where v , 2F2

cmhks +
et°2

ks
, ° 2 R>0 is a known constant, l3 ,

l�1
2 min(d1,d2) 8t 2 [t0,•), provided ky(tu

n
)k , ky(te

n
)k 2 SD ,

and the following gain conditions are satisfied.

a � e2h2

2
, w2 � 3kst̂2

✓
1
2e2

+
w1ks

e1

◆
, (30)

max(|cMh� cb| , |cmh� cB|) e1w1, k3 �
cbks

ce

, (31)

et  1
c
2
B
k2
s

(2cmh�8e1w1�4w2) , (32)

k1 �
1
ce

(cbkst̂°+F) , k2 �
ks

ce

(2e1w1+w2) . (33)

Proof. When B
t
M
> 0, the delay effect is present in the system

because the rider’s muscles are receiving stimulation (i.e., t 2⇥
t
u

n
, te
n+1

�
). Furthermore, since Bt

M
and BE are discontinuous, the

time derivative of (25) exists almost everywhere (a.e.) within
t 2 [t0,•). After using (10)-(12), (18), and applying the Leibniz
Rule for (19)-(20), the time derivative of (25) can be expressed
as

V̇L
a.e.
= e(r�ae�heu)+ 1

2Ṁr
2+w1euks (rt̂ � r)

+r (�Vr� e+c+ ksB
t
M
(rt̂ � rt)�Mhksr

+(Mh�B
t
M
)ksrt̂)�BE (k1sgn(r)+(k2+ k3)r)

+e1w1ks
�
r
2� r

2
t̂
�
+ w2ks

t̂

⇣
t̂r2�

R
t

t�t̂ r (q)
2
dq
⌘
.

(34)

According to the switching laws in (6) and (7), when B
t
M
> 0,

BE = 0 or BE > 0. The more restrictive case is when BE = 0 (i.e.,
the system is being controlled only by the delayed FES input).
Hence, the subsequent proof does not include details for the case
when B

t
M
> 0 and BE > 0 since (34) with BE > 0 can be upper

bounded by (34) with BE = 0.

Using Properties 1, 7, and 8, canceling common terms, se-
lecting e1 and w1 such that max(|cMh� cb| , |cmh� cB|) e1w1,
and setting BE = 0 in (34) yields

V̇L

a.e.
 �ae2+h |eeu|+ kscB |r (rt̂ � rt)|

+e1w1ks |rrt̂|� cmhksr2+ e1w1ks
�
r
2� r

2
t̂
�

+w1ks (|eurt̂|+ |eur|)+ |r| |c|
+w2ks

t̂

⇣
t̂r2�

R
t

t�t̂ r (q)
2
dq
⌘
.

(35)

To facilitate the analysis, Young’s Inequality is used to obtain the
following inequalities:

|eeu|
1

2e2h
e
2
u
+

e2h
2

e
2, (36)

|rrt̂|
1
2
r
2+

1
2
r
2
t̂ , (37)

|eurt̂|
1
2e1

e
2
u
+

e1
2
r
2
t̂ , (38)

|eur|
1
2e1

e
2
u
+

e1
2
r
2. (39)

Substituting (14) and (36)-(39) into (35), and completing the
squares on |r| |c|, yields

V̇L

a.e.
 �

⇣
a� e2h2

2

⌘
e
2+

⇣
1
2e2 +

w1ks
e1

⌘
e
2
u
� 1

4cmhksr2

+kscB |r (rt̂ � rt)|+ 2
cmhks

⇣
r2 (kzk)kzk2+F2

⌘

�ks

� 1
2cmh�2e1w1�w2

�
r
2� w2ks

t̂
R
t

t�t̂ r (q)
2
dq.

(40)

Using (16) and the Cauchy-Schwarz inequality, an upper bound
for e2

u
is obtained as

e
2
u
 t̂k2

s

Z
t

t�t̂
r (q)2 dq, (41)

and an upper bound for Q2 can be obtained as

Q2  w2ks

Z
t

t�t̂
r (q)2 dq. (42)

Using (19), (41), and (42) the following upper bound can be de-
veloped

V̇L

a.e.
 �

⇣
a� e2h2

2

⌘
e
2�

⇣
w2

3ks t̂2
� 1

2e2 �
w1ks

e1

⌘
e
2
u

� 1
4cmhksr2� w2

3t̂e1w1
Q1� 1

3t̂Q2

+kscB |r (rt̂ � rt)|+ 2
cmhks

h
r2 (kzk)kzk2+F2

i

�ks

� 1
2cmh�2e1w1�w2

�
r
2.

(43)



Provided that ky(t)k 2 SD, 8t 2 [t0,•) it can be proven that
ṙ  °, which will allow the Mean Value Theorem to be used
to further upper bound (43). Specifically, from Properties 1-6, 8,
and 9, (14) and (18), and the fact that kyk � kzk,

ṙ  c1+ c2 kyk+ c3 kyk2+ c4 kytk+ c5 kyt̂k  °,

where c1,c2,c3,c4,c5 2R>0 are known constants. Subsequently,
by using the Mean Value Theorem, the definition of b1 in (21),
the fact that kyk� kzk, completing the squares, and imposing the
aforementioned gain conditions in (30)-(33), the following upper
bound for (43) is obtained as

V̇L

a.e.
 �

⇣
b1
2 � 2

cmhks r2 (kyk)
⌘
kzk2

�b1
2 kzk2� w2

3t̂e1w1
Q1� 1

3t̂Q2

+ 2F2

cmhks +
et°2

ks
.

(44)

Provided ky(tu
n
)k 2 SD and using (23) and (29), (44), can be

upper bounded as

V̇L

a.e.
 �d1 kyk2+ v. (45)

From (26), the bound in (45) can be further bounded as

V̇L

a.e.
 �d1

l2
VL+ v, (46)

8t 2
⇥
t
u

n
, te
n+1

�
.

When B
t
M
= 0, the delay effect is absent from the system

(i.e., t 2
⇥
t
e

n
, tu
n+1

�
). According to the switching laws in (6) and

(7), when B
t
M
= 0, BE > 0 (i.e., the system is controlled by the

motor only). Using Properties 1 and 7-9, canceling common
terms, choosing e1 and w1 such that cMh�cb  e1w1, and setting
B

t
M
= 0 in (34), an upper bound for (34) can be obtained as

V̇L

a.e.
 �ae2+h |eeu|+ |r| |c|� cek1 |r|+ cbksrrt̂

�(ce (k2+ k3)+ cmhks)r2+w1ks (|eurt̂|+ |eur|)
+e1w1ks

�
r
2� r

2
t̂
�
+ e1w1ks |rrt̂|

+w2ks
t̂

⇣
t̂r2�

R
t

t�t̂ r (q)
2
dq
⌘
.

(47)

After substituting (14) and (36)-(39) into (47), using the Mean
Value Theorem, selecting the gain conditions according to (30)-
(33), and completing the squares on |r| |c|, (47) can be upper
bounded as

V̇L

a.e.
 �

⇣
a� e2h2

2

⌘
e
2+

⇣
1
2e2 +

w1ks
e1

⌘
e
2
u

�(cek2�2e1w1ks�w2ks)r2

+ 1
4cmhks r2 (kzk)kzk2� w2ks

t̂
R
t

t�t̂ r (q)
2
dq.

(48)

After following a similar development as the case when Bt
M
> 0,

(48) can be upper bounded as

V̇L

a.e.
 �d2

l2
VL, (49)

8t 2
⇥
t
e

n
, tu
n+1

�
provided that ky(te

n
)k 2 SD . The result in (49) can

be further upper bounded by adding the constant v and substitut-
ing the decay rate l3 , l�1

2 min(d1,d2) to yield

V̇L

a.e.
 �l3VL+ v. (50)

Hence, (46) can be used with (50) to verify (25) is a common
Lyapunov function across all regions of the crank cycle. Fur-
thermore, the decay rate in (50) represents the most conservative
decay rate across all regions (i.e., 8t 2 [t0,•)). Solving the dif-
ferential inequality in (50) yields the following bound

VL (t) 
�
VL(t0)�l�1

3 v
�

·exp(�l3(t� t0))+l�1
3 v. (51)

Sufficient conditions for ky(t)k 2 SD , 8t 2 [t0,•), are
ky(tu

n
)k ,ky(te

n
)k 2 SD . Therefore, provided that ky(tu

n
)k ,

ky(te
n
)k 2 SD and the aforementioned gain conditions are met,

(25) can be used with (51) to yield the exponential bound in (29).
From (25) and (50), e,r,eu 2 L•. By (16) and (17), u,ue 2 L•
and the remaining signals are bounded.

CONCLUSION
This paper examines the development of switching condi-

tions and the associated Lyapunov stability analysis to account
for the time-varying input delayed response of closed-loop FES-
cycling. A controller is developed to provide cadence tracking
that is robust to a time-varying input delay, uncertain nonlin-
ear lower limb dynamics, and bounded unknown additive dis-
turbances. Switching conditions are developed to activate and
deactivate the FES such that the muscles will generate torque
when entering kinematically efficient regions of the cycle and
stop generating torque when entering inefficient regions. Be-
cause it is currently unknown how the delay varies with time, a
constant delay estimate is used to provide robust cadence track-
ing for a time-varying input delay. A focus of future efforts will
be to quantify the FES delay and how it varies with time. Ad-
ditional efforts will then focus on implementing a time-varying
estimate of the time-varying input delay in the control design to
yield a more precise estimate and hence improved cadence track-
ing.
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