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Abstract—This paper examines torque tracking accomplished
by the activation of lower-limb muscles via Functional Electrical
Stimulation (FES) and cadence regulation by an electric motor.
Challenges arise from the fact that skeletal muscles evoke torque
via FES in a time-varying, nonlinear, and delayed manner. A
desired torque trajectory is constructed based on the crank
position and determined by the knee joint torque transfer ratio
(i.e., kinematic efficiency of the knee), which varies as a periodic
function of the crank angle. To cope with this periodicity, a
repetitive learning controller is developed to track the desired
periodic torque trajectory by stimulating the muscle groups.
Concurrently, a sliding-mode controller is designed for the
electric motor to maintain cadence tracking throughout the
entire crank cycle. A passivity-based analysis is developed to
ensure stability of the torque and cadence closed-loop systems.

Index Terms—Functional Electrical Stimulation (FES), FES-
Cycling, Repetitive Learning Control (RLC), Passivity-Based
Control

I. INTRODUCTION

Functional Electrical Stimulation (FES) is a rehabilitative
strategy that applies electrical current to a neuromuscular
system to enable function by assisting a person’s motor
output [1]. Motorized FES-cycling is recommended as an
effective exercise to activate lower-limb muscles, thus ex-
ploiting the physiological benefits of electrical stimulation
[2], [3]. Additionally, the exercise duration can be prolonged
due to the assistance provided by the electric motor. Closed-
loop controllers have been developed for cadence tracking
in FES-cycling while including a motor in the loop [4]–[6].
In [4], [5], switching control was used to activate lower-
limb muscles and an electric motor to cooperatively track
cadence. However, to maximize FES-cycling benefits, it is
recommended to maximize the torque output produced by
the activation of lower-limb muscles for strength and mass
building [7].

Several objectives have been identified for the design
of assistive devices, such as strength training (control of
resistive torque to enhance power output) and cardiovascular
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workout (focused on lower resistive torque but longer exer-
cise duration) [8]–[10]. A combined goal of torque tracking
with position/speed regulation is desired for the control of
an assistive device that interacts with people. This motivates
the use of robotic assistance to achieve a desired motion,
while the patient voluntarily or via FES exerts a torque
output. This shared control task between the human and
the machine exploits the functional benefits of the repetitive
exercise and avoids, or to a lesser degree delays, the issues
related to muscle fatigue and lack of controllability. However,
skeletal muscles evoke torque via FES in a time-varying,
nonlinear, and delayed manner. In addition, torque feedback
is challenging due to the sensing limitations to measure the
isolated muscle torque contribution in a system. To improve
cycling performance during power tracking protocols, there is
motivation to develop adaptive control algorithms with proof
of stability of the human-machine closed-loop system [9],
[11].

Torque tracking trajectories for human-robot applications
have been based on time, joint angles, mechanical phase-
variables, and electromyographic measurements [12]–[14].
The relationship between lower-limb joint angles and joint
torques has been utilized to regulate net joint power, es-
pecially in lower limb exoskeletons [12], [15]. In [16] a
transfemoral amputee subject pedaled a bicycle with asis-
tance from a powered prosthetic device, where the joint
torque references were generated using the knee joint power
distribution (as a function of crank angle) presented in [17].
The purpose of the aforementioned results is to develop
position-dependent stiffness or torque trajectories to avoid
unsafe interactions between people and the robotic devices.
Similarly, speed regulation is beneficial to avoid unstable
motion while evoking a torque output.

Passivity-based control has been applied in human-robot
interaction applications and series elastic actuation to ensure
safety of operation [9], [10], [18]. The use of passivity
properties has been instrumental for control design and to
prove stability of nonlinear systems [19], [20]. Adaptive
controllers have been developed for trajectory tracking of
fully actuated robot manipulators by taking advantage of
preserved passivity under parallel and feedback connections
of subsystems [20], [21]. Moreover, passivity-based control
has played a dominant role in designing and analyzing the
stability of feedback interconnections of complex systems,
such as hybrid and switched systems [22], [23].
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Learning control techniques, such as iterative learning con-
trol (ILC) and repetitive learning control (RLC), have been
developed to improve tracking performance for repetitive
or periodic (time or state) systems by using control inputs
from previous trials, iterations, cycles, or periods [24]–[27].
However in applications such as the control of the motorized
FES-cycling system, the associated dynamics and/or control
design involve a switched systems analysis.

In this paper, a switched FES repetitive learning con-
trol is designed to track a periodic torque trajectory by
stimulating lower-limb muscles on a stationary recumbent
cycle. The periodic desired torque trajectory is designed
based on the knee kinematic effectiveness of the rider, which
varies as a function of the crank angle. In parallel, a robust
sliding-mode controller is designed for the electric motor
to achieve cadence tracking.The cycle-rider model includes
the switching effects of activating multiple muscle groups
based on a state-dependent activation pattern that exploits
the kinematic effectiveness of the rider. A passivity-based
analysis is developed to ensure stability of the torque (muscle
control) and cadence (motor control) closed-loop systems.

II. CYCLE-RIDER DYNAMIC MODEL

The stationary cycle-rider system is modeled as a single
degree-of-freedom system with the following dynamics [28]

M(q)q̈ + V (q, q̇)q̇ +G(q)

+P (q, q̇) + cdq̇ + d(t) = τe(t) + τa(q, q̇, t), (1)

where q : R≥t0 → Q denotes the positive clockwise mea-
surable crank angle, Q ⊆ R denotes the set of crank angles
contained between [0, 2π), and t0 ∈ R is the initial time;
M : Q → R>0, denotes the combined inertial effects of the
rider and cycle; V : Q×R→ R and G : Q → R denote the
centripetal-Coriolis, and gravitational effects, respectively;
P : Q × R → R denotes the effects of passive viscoelas-
tic tissue forces in the rider’s joints; cd ∈ R>0 denotes
the unknown coefficient of viscous damping in the cycle;
d : R≥t0 → R denotes the disturbances applied by the rider
and unmodeled effects in the system; τa : Q×R×R≥t0 → R
denotes the net active torque produced by the rider’s lower
limb muscles, and τe : R≥t0 → R denotes the torque applied
about the cycle crank axis by the electric motor. The model
in (1) can be generalized as

τc(q̇, q̈) + τr(q, q̇, q̈, t) = τe(t), (2)

where τc : R2 → R denotes the torque applied about the
crank by the cycle and is given by τc(q̇, q̈) = Jq̈ + cdq̇, and
τr : Q × R2 × R≥t0 → R denotes the rider torque applied
about the crank as

τr(q, q̇, q̈, t) = τp(q, q̇, q̈, t)− τa(q, q̇, t), (3)

where τp : Q× R2 × R≥t0 → R denotes the passive torque
denoted as τp = Mp(q)q̈+V (q, q̇)q̇+G(q)+P (q, q̇)+d(t).

The torque applied by the electric motor about the crank axis
is defined as

τe(t) , Beue(t), (4)

where Be ∈ R>0 is a positive torque constant, and satisfies
Be ≥ ce, where ce ∈ R>0 is a positive known constant, and
ue : R≥t0 → R is the motor current control input. The net
active torque produced by muscle contractions is

τa(q, q̇, t) ,
∑
m∈M

Bm(q, q̇)um(t), (5)

where Bm : Q × R → R>0 represents the un-
certain control effectiveness of the muscle groups with
subscript m indicating an element in the muscle set
M ,{RQuad, RHam, RGlute, LQuad, LHam, LGlute}
that contains the right (R) and left (L) quadriceps femoris
(Quad), hamstrings (Ham), and gluteal (Glute) muscle
groups respectively, and um : R≥t0 → R denotes the
stimulation intensity applied to each muscle group. The
control effectiveness for the muscle groups is nonzero and
denoted as [28]

Bm(q, q̇) , Ωm(q, q̇)Tm(q), ∀m ∈M, (6)

where Ωm : Q× R→ R denotes the uncertain relationship
between stimulation intensity and the muscle group’s evoked
force which produces a resultant torque about the joint it
spans, and Tm : Q → R denotes the relationship between
a muscle’s resultant torque about a joint to torque about the
crank axis.

The stimulation intensities um, ∀m ∈ M are applied to
the muscle groups in regions of the crank cycle where the
torque transfer ratios Tm are above a predefined threshold
εm , Λmmax(Tm), ∀m ∈ M, where Λm ∈ [0, 1] is a
selectable value. The muscle switching control design yields
an autonomous, state-dependent, switched control system.
The portion of the crank cycle over which a particular muscle
group is stimulated is denoted by Qm ⊂ Q, ∀m ∈ M ,
where the muscle groups are activated as described in [28]
so that QM , ∪

m∈M
Qm. A piecewise constant switching

signal can be developed for each muscle group, σm ∈
{0, 1} , ∀m ∈M as

σm(q) ,

{
1 if q ∈ Qm
0 if q /∈ Qm

. (7)

Using (7), the stimulation intensity to the muscle groups is
defined as

um(t) , kmσmuFES , (8)

where km ∈ R>0, ∀m ∈ M are selectable positive control
gains, and uFES : R≥t0 → R is a subsequently designed
muscle input. Substituting (4), (5), and (8) into (1) and
rearranging terms yields

M(q)q̈ + V (q, q̇)q̇ +G(q)
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+P (q, q̇) + cdq̇ + d = BσuFES +Beue, (9)

where Bσ ∈ R≥0 is a lumped, switched control effectiveness
term defined as

Bσ(q, q̇) ,
∑
m∈M

Bm(q, q̇)kmσm(q). (10)

The subscript σ ∈ P , {1, 2, 3, ...n}, P ⊂ N, n ∈ N
indicates the index of Bσ , which switches according to the
crank position and P . The known sequence of switching
states, which are the limit points of Qm, ∀m ∈ M, is de-
fined as

{
qn
}
, and the corresponding sequence of unknown

switching times
{
tn
}

is defined such that each tn denotes
the instant when q reaches the corresponding switching state
qn. The switching signal σm is assumed to be continuous
from the right (i.e., σm (q) = limq→q+n σm (q)) and designed
to produce forward pedaling only. The following assumption
and properties of the switched system in (9) will be exploited
in the subsequent control design and stability analysis:

Assumption 1. The disturbance term d is bounded as |d| ≤
ξd, where ξd ∈ R>0 is a known constant.

Property 1. cm ≤ M ≤ cM , where cm, cM ∈ R>0 are
known constants.

Property 2. |V | ≤ cV |q̇|, where cV ∈ R>0 is a known
constant.

Property 3. |G| ≤ cG, where cG ∈ R>0 is a known constant.

Property 4. |P | ≤ cP1 +cP2 |q̇|, where cP1, cP2 ∈ R>0 are
known constants [28].

Property 5. 1
2Ṁ − V = 0 by skew symmetry [29].

Property 6. The lumped switching control effectiveness is
bounded as cb ≤ Bσ ≤ cB , ∀σm ∈ P , where cb, cB ∈ R>0

are known constants.

III. CONTROL DEVELOPMENT

A. Cadence Control

The first objective is to design a motor controller that
tracks a target cadence. The measurable crank position
trajectory tracking error e : R≥t0 → R is defined as1

e(t) , q(t)− qd(t), (11)

where qd : R≥t0 → R denotes the desired crank position and
its first two time derivatives are bounded such that |q̇d(t)| ≤
ξ1 and |q̈d(t)| ≤ ξ2, where ξ1, ξ2 ∈ R>0 are known positive
constants. To facilitate the subsequent control development,
an auxiliary tracking error r : R≥t0 → R is defined as2

r , ė+ αe, (12)

1The control objective is quantified using the first time derivative of e(t).
2Functional dependencies are removed henceforth unless they add clarity

to the exposition.

where α ∈ R>0 is a constant control gain. After taking the
time derivative of (12) and premultiplying by M , substitut-
ing for (9) and (11), and then performing some algebraic
manipulation yields

Mṙ = −V r + χ+ Ñ +BσuFES +Beue − e, (13)

where the auxiliary signals χ : R≥t0 → R and Ñ : R≥t0 →
R are defined as

χ = Wd −M(q)(q̈d − αė)− V (q, q̇)(q̇d − αe)−G(q)

−P (q, q̇)− cdq̇ +Nd + e, (14)
Ñ , −(Wd +Nd + d), (15)

and the signals Wd : R≥t0 → R and Nd : R≥t0 → R>0 are
defined as

Wd , M(qd)q̈d + V (qd, q̇d)q̇d +G(qd) + cdq̇d, (16)
Nd , cP1 + cP2q̇d. (17)

The auxiliary signal in (15) can be upper bounded as

|Ñ | ≤ Θ1, (18)

where Θ1 ∈ R>0 is a known positive constant. By using
Properties 1-5, (11) and (12), the Mean Value Theorem can
be used to develop an upper bound for (14) as

χ ≤ ρ(‖z‖)‖z‖, (19)

where z : R≥t0 → R2 is a composite vector of error signals
defined as

z , [e r]
T
, (20)

and ρ(·) ∈ R is a known positive, radially unbounded,
nondecreasing function. Given the cadence open-loop error
system in (13), the control input to the motor is designed as

ue = −k1r − (k2 + k3ρ(‖z‖)‖z‖) sgn(r) + νp, (21)

where k1, k2, k3 ∈ R>0 are selectable positive gain con-
stants, sgn(·) : R → [−1, 1] is the signum function, and
νp is a subsequently designed control input. The closed-loop
error system is obtained by substituting (21) into (13)

Mṙ = −V r + χ+ Ñ +BσuFES − e−Be(k1r − νp
+ (k2 + k3ρ(‖z‖)‖z‖) sgn(r)). (22)

B. Torque Control

The second objective is to track a desired torque trajectory
in the muscle stimulation regions (i.e., q ∈ QM ). The torque
tracking error signal is designed based on the difference
between desired torque and the torque produced by the mus-
cle contractions defined in (5). Wireless torque sensors are
commonly included on rehabilitation cycles which provide
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a measurement of the net torque contributions about the
crank. Direct measurement of muscle force requires real-
time invasive sensing which is not practical as discussed in
[15]. Similar to previous FES experiments (cf. [15], [30]),
a baseline measurement of the required torque to drive the
cycle-rider system at a desired speed is obtained a priori
where no electrical stimulation is applied to the lower-limb
muscles (i.e., τa = 0 such that τr = τp) and under the
assumption that the disturbances d by the rider and the cycle
are sufficiently small. Invariance of the cycle-rider system
dynamics is assumed along the system’s trajectory in the
absence of FES. Setting τa = 0 in (3), a nominal torque
measurement τn : R≥t0 → R of (2) can be obtained as

τn = τe = τc + τp. (23)

An estimate of the nominal torque measurement τ̂n : R≥t0 →
R (i.e., τ̂n = τ̂c + τ̂p) can be obtained by using fitting
techniques such as Fourier series using torque measurements
[30]. The mismatch between the nominal torque and the
nominal torque estimate τ̃n : R≥t0 → R is obtained as

τ̃n = τn − τ̂n ≤ εn, (24)

where εn ∈ R>0 is a known upper bound in the estimation
error. The measurable net active muscle torque τa is obtained
by subtracting the nominal torque estimate τ̂n from the
continuous time torque measurement τM : R≥t0 → R (i.e.,
the net torque contributions about the crank) such that

τa = τM − τ̂n. (25)

To quantify the torque control objective, a torque tracking
error-like term (integral of the actual torque tracking objec-
tive) eτ : R≥t0 → R is defined as [29]

eτ =

ˆ t

t0

(τd(ϕ)− τa(ϕ)) dϕ, (26)

where τd : R≥t0 → R denotes the periodic desired torque
trajectory.

Remark 1. The desired torque trajectory τd is periodic with
known period T in the sense that τd(t) = τd(t− T ).

The torque open-loop error system is obtained by taking
the time derivative of (26) and using (5), (8), and (10) yields

ėτ = τd −BσuFES . (27)

Given the open-loop error system in (27), the muscle control
input is designed as

uFES = Ŵd + k4eτ − νFES , (28)

where k4 ∈ R>0 is a constant control gain, νFES : R≥t0 →
R is a control term to be designed, and Ŵd : R≥t0 → R is
the repetitive control law designed as

Ŵd(t) = satβr
(Ŵd(t− T )) + kLeτ , (29)

where kL ∈ R>0 is a positive constant learning
control gain, and satβr

(·) is defined as satβr
(Ξ) ,{

Ξ for |Ξ| ≤ βr
sgn(Ξ)βr for |Ξ| > βr

, ∀Ξ ∈ R. The closed-loop error

system is obtained by substituting (28) into (27) as

ėτ = W̃d + Ŵd −Bσ(Ŵd + k4eτ − νFES), (30)

where W̃d : R≥t0 → R is the learning estimation error
defined as W̃d , τd − Ŵd. Based on the periodicity and
boundedness of τd, τd(t) = satβr (τd(t)) = satβr (τd(t−T )).
Hence, by exploiting (29), the following expression can be
developed for W̃d

W̃d = satβr (τd(t−T ))−satβr (Ŵd(t−T ))−kLeτ (t). (31)

IV. STABILITY ANALYSIS

Theorem 1. Given the closed loop error system in (30),
the system is output strictly passive (OSP) from input v1 =
γ1Ŵd + cbνFES to output eτ in q ∈ QM and the controller
designed in (28) and repetitive learning law in (29) ensures
asymptotic tracking in the sense that limt→∞ eτ (t) = 0.

Proof: Let V1 : R2 × R≥t0 → R be a nonnegative,
continuously differentiable, storage function defined as

V1 ,
1

2
e2τ +

1

2kL

tˆ

t−T

(satβr
(τd(ϕ))− satβr

(Ŵd(ϕ)))2dϕ.

(32)
The storage function in (32) satisfies the following inequal-
ities:

λ1‖w‖2 ≤ V1(w, t) ≤ λ2‖w‖2,

where λ1 , min( 1
2 ,

1
2kL

), λ2 , max( 1
2 ,

1
2kL

) and
w , [eτ

√
QL]T where QL ,

´ t
t−T (satβr

(τd(ϕ)) −
satβr(Ŵd(ϕ)))2dϕ. Let w(t) be a Filippov solution to
the differential inclusion ẇ ∈ K[h](w), where K[·] is
defined as [31] and h is defined by using (30) and the
first time derivative of QL as h , [h1 h2], where
h1 , W̃d + Ŵd − Bσ(Ŵd + k4eτ − νFES), h2 ,

1
2
√
QL
{(satβr (τd(t))−satβr (Ŵd(t)))

2−(satβr (τd(t−T ))−
satβr

(Ŵd(t − T )))2}. The control input in (27) has the
discontinuous lumped control effectiveness Bσ , hence the
time derivative of (32) exists almost everywhere (a.e.),
i.e., for almost all t. Based on [32, Lemma 1], the time
derivative of (32), V̇1(w(t), t)

a.e.
∈ ˙̃V1(w(t), t), where ˙̃V1

is the generalized time derivative of (32) along the Filip-
pov trajectories of ẇ = h(w) and is defined as in [32]

as ˙̃V1 ,
⋂
ξ∈∂V1

ξTK
[
ėτ

Q̇L

2
√
QL

1
]T

(eτ , 2
√
QL, t).

Since V1(w, t) is continuously differentiable in w, ∂V1 =
{∇V1}, thus

˙̃V1
a.e.
⊂ [eτ ,

(
1

2kL

)
2
√
QL]K

[
ėτ

Q̇L

2
√
QL

]T
. (33)
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Therefore, after substituting for (30), the generalized time
derivative of (32) can be expressed as

˙̃V1
a.e.
⊂ eτ

(
W̃d + Ŵd −K[Bσ](k4eτ + Ŵd − νFES)

)
− 1

2kL
(satβr

(τd(t− T ))− satβr
(Ŵd(t− T )))2

+
1

2kL
(satβr (τd(t))− satβr (Ŵd(t)))

2. (34)

By employing the following property(
τd(t)− Ŵd(t)

)2
≥
(
satβr

(τd(t))− satβr
(Ŵd(t))

)2
,

using a similar proof as developed in [33, Appendix I], and
using Property 6 to lower bound K[Bσ], and canceling terms,
an upper bound for (34) can be developed as

˙̃V1
a.e.
≤ −δ1e2τ + v1eτ , (35)

where v1 = γ1Ŵd + cbνFES , γ1 = 1 + cB , and δ1 , cbk4 +
kL
2 , δ1 > 0. Integrating (35) yields

´ t
t0
v1(ϕ)eτ (ϕ)dϕ

a.e.
≥(

Ṽ1(t)− Ṽ1(t0) +
´ t
t0
δ1e

2
τ (ϕ)dϕ

)
. Hence the system is

output strictly passive (OSP) from the input v1 to the output
eτ . Therefore, the closed-loop system in (30) is passive with
a radially unbounded positive definite storage function. From
[34, Theorem 2.28], to prove asymptotic tracking, the zero-
state observability condition has to be satisfied3. Thus by
designing νFES in (28) as νFES , −k5Ŵd, where k5 , γ1

cb
,

and substituting it in (35), ˙̃V1
a.e.
≤ −δ1e2τ ≤ 0. By invoking

[32, Corollary 2] and since ˙̃V1(w, t)
a.e.
≤ −W (w), W is

a continuous positive semi-definite function, |eτ | → 0 as
t → ∞. Since V1 ≥ 0 and V̇1

a.e.
≤ 0, V1 ∈ L∞, hence,

eτ , QL ∈ L∞. From (29), Ŵd ∈ L∞, which along with the
fact that τd ∈ L∞ implies that W̃d ∈ L∞. Then from (28),
uFES ∈ L∞, and from (8), um ∈ L∞ . Hence the closed-
loop system in (30) is passive and asymptotic tracking is
achieved.

Remark 2. The actual torque tracking error ėτ is uniformly
bounded from (30). Based on Theorem 1, eτ , Ŵd, W̃d ∈ L∞,
hence ėτ ∈ L∞.

Theorem 2. Given the closed loop error system in (22),
the system is output strictly passive (OSP) from input v2 =
BσuFES+ceνp to output r and achieves exponential tracking
when uFES = 0.

Proof: Let V2 : R2 × R≥t0 → R be a nonnegative,
continuously differentiable, storage function defined as

V2 =
1

2
e2 +

1

2
Mr2. (36)

The storage function in (36) satisfies the following inequal-
ities:

3In [35], the definition of zero-state observability is described for Filippov
solutions.

λ3‖z‖2 ≤ V2(z, t) ≤ λ4‖z‖2,

where λ3 , min( 1
2 ,

cm
2 ), λ4 , max( 1

2 ,
cM
2 ) and z

was defined in (20). Let z(t) be a Filippov solution to
the differential inclusion ż ∈ K[h](z), where K[·] is
defined as in [32], and h is defined by using (11) and
(12) as h , [h3 h4], where h3 , r − αe and h4 ,
M−1{−V r + χ + Ñ + BσuFES − e − Be(k1r − νp +
(k2 + k3ρ(‖z‖)‖z‖) sgn(r))}.The control input in (21) in-
cludes the discontinuous signum function; hence, the time
derivative of (36) exists almost everywhere (a.e.), i.e., for
almost all t. Based on [32, Lemma 1], the time deriva-
tive of (36), V̇2(z(t), t)

a.e.
∈ ˙̃V2(z(t), t), where ˙̃V2 is

the generalized time derivative of (36) along the Filip-
pov trajectories of ż = h(z) and is defined as ˙̃V2 ,⋂
ξ∈∂V2

ξTK
[
ė ṙ 1

]T
(e, r, t). Since V2(z, t) is con-

tinuously differentiable in z, ∂V2 = {∇V2}, thus ˙̃V2
a.e.
⊂

[e, Mr, 1
2Ṁr2]K[ė ṙ 1]T . Using (22), Property 5, and

canceling common terms, the generalized time derivative of
(36) can be expressed as

˙̃V2
a.e.
⊂ −αe2 + r

(
χ+ Ñ

)
+ rK[Bσ]uFES

−Bek1r2 −BeK[sgn(r)]k2r

−BeK[sgn(r)]k3ρ(‖z‖)‖z‖r +Beνpr, (37)

where, K[sgn(r)] = SGN(r) such that SGN(r) = {1} if
r > 0, [−1, 1] if r = 0, and {−1} if r < 0. Using (18), (19),
and using Property 6, the expression in (37) can be upper
bounded as

˙̃V2
a.e.
≤ −αe2 − k1cer2 − (k2ce −Θ1) |r|

− (k3ce − 1) ρ(‖z‖)‖z‖|r|
+ (BσuFES + ceνp) r. (38)

Integrating (38) yields
´ t
t0
v2(ϕ)r(ϕ)dϕ

a.e.
≥ (Ṽ2(t)−Ṽ2(t0)+´ t

t0
δ2‖z(ϕ)‖2dϕ), where δ2 = min {α, k1ce}, and v2 =

BσuFES+ceνp, which can be used to prove that the closed-
loop system in (22) is output strictly passive (OSP) from
input v2 to output r, provided the following sufficient gain
conditions are satisfied

δ2 > 0, k2 >
Θ1

ce
, k3 >

1

ce
. (39)

In fact, the system is strictly passive [19]. Moreover, set
νp , −kpr, kp ∈ R>0 in (38); hence, the system achieves

exponential tracking, V̇2
a.e.
≤ −δ3V2 where δ3 =

min{δ2,kp}
λ4

,
during q /∈ QM since uFES = 0, provided the gain
conditions in (39) are satisfied.

V. CONCLUSION

A cadence controller that commanded current to the elec-
tric motor and a torque controller that commanded stimula-
tion intensities to six muscle groups were implemented in

3730



this paper to achieve cadence and torque tracking in FES-
cycling. The switched muscle torque controller included a
feedforward learning input that compensated for the periodic
dynamics of the desired torque trajectory. A passivity-based
analysis was developed to ensure stability of the torque
and cadence closed-loop systems. Future work includes the
implementation of the control technique with people with
neurological conditions to study the long-term rehabilitative
benefits of FES-cycling using learning control methods.
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