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Abstract—In an effort to combine two rehabilitation strate-
gies, Functional Electrical Stimulation (FES) and robotic ther-
apy, a rehabilitation robot was developed to challenge an arm
during bicep curls elicited by closed-loop control of FES. The
robot is designed to act as an admittance and its robust, sliding
mode controller is proven to be passive with respect to the
human. The FES controller utilizes a robust, sliding mode
control design to then dominate the robot effects and obtain
global exponential stability as demonstrated by a Lyapunov-
based stability analysis. The two interacting controllers yield
arm position and velocity regulation, where the robot challenges
this movement with a desired admittance.

Index Terms—Functional Electrical Stimulation (FES), Re-
habilitation Robot, Lyapunov, Admittance, Passivity

I. INTRODUCTION

Functional Electrical Stimulation (FES) has been used in
the field of rehabilitation because of its numerous benefits
such as increased muscular strength [1], improved motor
control [2], and others [3]–[5]. However, some inherent
challenges to FES control include the nonlinear dynamics
exhibited by muscles and dynamically changing muscle char-
acteristics such as fatigue [6]. Hence, closed-loop control of
FES is motivated to produce accurate regulation of generated
movements [7].

An additional option for rehabilitation is robotic therapy
[8], which has shown promise in promoting somatosensory
stimulation [9], [10] and motor function [11]–[15]. However,
like FES, robotic therapy possesses challenges such as select-
ing the appropriate control scheme [16] and ensuring human
safety [17]. Admittance control, pioneered in [18], has been
shown to be an intuitive solution to many of the challenges
rising from human-robot interaction [6], [19]–[22] because
it modulates behavior instead of explicit force or position
trajectories [23], [24].

Furthermore, when controlling rehabilitation robots using
admittance, they can be assistive or resistive (challenge-
based) [25]. Assistive robots aid rehabilitative movements
[26]–[28], while resistive robots challenge rehabilitative
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movements [16]. Because muscle effort is essential for elic-
iting motor plasticity [29], [30], challenge based robots are
most often used to build muscle mass and strength. Addition-
ally, it has been shown that specific, goal-oriented, repetitive
tasks can be effective in reducing motor impairments [31],
which makes a case for further integration of robotics into
rehabilitative therapies. Based on recent trials, the American
Heart Association, Veterans Administration, and Department
of Defense have all endorsed upper extremity robotic therapy
[32].

In this paper, a single degree of freedom rehabilitation
robot is considered that is attached to a person’s forearm
and pivots at the elbow joint. Closed-loop control of FES is
employed on the biceps brachii muscle group to actuate the
forearm and perform biceps curls (tracking position), while
an admittance controller is employed on the robot to regulate
behavior and challenge the user. Although the user and robot
are interacting at all times, by treating them as two isolated
subsystems linked only by common positions, velocities, and
interaction torques, FES can be employed on the user to
regulate position and velocity while a motor is employed
on the robot to regulate behavior. For position tracking to
occur, the muscle must work to overcome the challenge
posed by the robot, while the robot maintains its compliant,
safe operation. A Lyapunov stability analysis is conducted on
the muscle subsystem and is proven to be globally exponen-
tially stable. The robot subsystem requires a passivity-based
analysis and is shown to be strictly passive for all time, and
globally exponentially stable when in isolation (i.e., when a
person is not coupled to the robot). The robot’s admittance
parameters are selected so that the robot will resist the user’s
movement during the biceps curl with a constant desired
interaction torque. A saturation function is also employed on
the admitted trajectory to ensure boundedness of the signal
for use in feedback. The goal of such a design is to allow
disabled individuals possessing partial or total loss of upper
extremity control to perform intensive, repetitive exercises to
regain muscle mass, motor control, and perform a range of
motion exercise simultaneously.

II. DYNAMICS

A. Human Subsystem

The human subsystem dynamics, which consist of the
forearm and muscle, are considered as
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Mmq̈ (t) +Gm (q (t)) + τp (q (t) , q̇ (t)) + dm (t)

= τint (q (t) , q̇ (t) , q̈(t), t) + τm (q (t) , q̇ (t) , t) ,
(1)

where q : R≥0 → Q and q̇ : R≥0 → R denote the
measurable elbow joint axis angle and computable velocity,
respectively, and Q ⊆ R denotes the set of safely achievable
angles (i.e., the range of motion) by the elbow joint. The
inertial and gravitational effects of the forearm are denoted
by Mm ∈ R>0 and Gm : Q → R, respectively. The torques
applied about the elbow joint by passive viscoelastic tissue
forces and unknown disturbances (e.g., spasticity or changes
in load) are denoted by τp : Q× R→ R and dm : R≥0 → R,
respectively. The torque applied on the forearm about the
joint axis by the robot’s interaction is denoted by τint :
Q × R × R × R≥0 → R and the torque applied about the
joint axis by the biceps brachii muscle group is denoted by
τm : Q×R×R≥0 → R. The torque applied by the muscle
can be expressed as 1

τm = Bm (q (t) , q̇ (t))um (q (t) , q̇ (t) , t) , (2)

where Bm : Q × R → R>0 is the function relating
stimulation current to torque, and is represented by

Bm = λ (q (t))ψ (q (t) , q̇ (t)) cos (β (q (t))) , (3)

where λ : Q → R>0, ψ : Q × R → R>0, and
β : Q → R denote the uncertain moment arm of the bicep
brachii’s output torque about the elbow joint, the uncertain
nonlinear function relating stimulation current to muscle fiber
force, and the uncertain pennation angle of the muscle fibers,
respectively. The subsequently designed muscle stimulation
current input is denoted by um : Q× R× R≥0 → R.

B. Robot Subsystem

The robot subsystem dynamics, which consist of a single
degree of freedom rotating arm, are considered as

Mr q̈ (t) +Gr (q (t)) + τb (q̇ (t)) + dr (t)

= τint (q (t) , q̇ (t) , q̈(t), t) + τr (q (t) , q̇ (t) , t) ,
(4)

where the robot’s inertial and gravitational effects are de-
noted by Mr ∈ R>0 and Gr : Q → R, respectively.
The torques resulting from viscous friction and unknown
disturbances are denoted by τb : R→ R and dr : R≥0 → R,
respectively. The torque applied about the joint axis by the
robot’s motor is denoted by τr : Q × R × R≥0 → R and
can be expressed as

τr = Brur (q (t) , q̇ (t) , t) , (5)

1For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.

where Br ∈ R>0 is the electric motor control constant relat-
ing input current to output torque, and ur : Q×R×R≥0 → R
is the subsequently designed motor control current input.
The following properties and assumptions are used in the
subsequent development.

Property 1. The unknown inertia terms in (1) and (4) can
be bounded by cMm ≤ Mm ≤ cMm, and cMr ≤ Mr ≤
cMr, where cMm, cMm, cMr, and cMr ∈ R>0 are known
constants [33].

Property 2. The unknown gravitational terms in (1) and (4)
can be bounded by |Gm| ≤ cGm, and |Gr| ≤ cGr, where
cGm and cGr ∈ R>0 are known constants [33].

Property 3. The unknown passive viscoelastic tissue torques
in (1) can be bounded as |τp| ≤ cP1 + cP2 |q̇|, where
cP1 and cP2 ∈ R>0 are known constants [34].

Property 4. The unknown viscous torques in (4) can be
bounded as |τb| ≤ cb |q̇| , where cb ∈ R>0 is a known
constant [34].

Property 5. The unknown motor control constant in (5) is
bounded below by Br ≤ Br, where Br ∈ R>0 is a known
constant.

Assumption 1. The unknown disturbances in (1) and (4)
can be bounded as |dm| ≤ cdm, and |dr| ≤ cdr, where
cdm and cdr ∈ R>0 are known constants.

Remark 1. Because the unknown moment arm of the biceps
brachii muscle group in (3) about the elbow joint is non-
zero, (i.e. λ 6= 0) [35]; because the unknown nonlinear
function relating stimulation current to muscle fiber force can
be bounded below as cψ ≤ ψ, where cψ ∈ R>0 is a known
constant, provided the muscle is not fully extended [36] or
contracting concentrically at its maximum shortening veloc-
ity [37]; and because the unknown muscle fiber pennation
angle for the biceps brachii muscle group is approximately
zero (i.e., cos (β) ≈ 1) due to parallel muscle architecture
[38]; (3) can be bounded below by Bm ≤ Bm, where
Bm ∈ R>0 is a known positive constant.

C. Admittance Model

An additional admittance model is used to describe the
human-robot interaction. The admittance model is

τint = Md (q̈α − q̈o) +Dd (q̇α − q̇o) +Kd (qα − qo) (6)

where qo : R≥0 → Q is the robot’s nominal non-contact
trajectory designed such that qo(t), q̇o(t), q̈o(t) ∈ L∞ (i.e.,
bounded). The designed inertial, damping, and spring effects
are denoted by Md ∈ R>0, Dd :∈ R>0 and Kd : ∈ R>0,
respectively. The admitted (or contact) trajectory is denoted
by qα : R≥0 → Q and generated by the above model
using the interaction torque and nominal trajectory. The
admittance model in (6) is designed to be passive (i.e.,
τint ∈ L∞ ⇒ qα ∈ L∞), by selecting the admittance
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parameters such that the transfer function is positive real
[39] and critically damped if Dd =

√
4MdKd [40].

A projection algorithm is employed so that a modified
(saturated) admitted trajectory, qa : R≥0 → Q, can be used
in feedback that not only preserves qα(t) when |qα(t)| ≤
2qo(t), but also remains bounded. The saturation function
also preserves smoothness because if qα(t) is continuously
differentiable, qa(t) is also continuously differentiable. The
saturation algorithm is given by

qa(t) , qo

[
2.13erf

(√
π

4

(
qα
qo
− 1

))
+ 1

]
, (7)

where the Gauss error function is given by
erf(x) = 2√

π

∫ x
0
e−t

2

dt [41]. Note, this saturation
function is passive because it is a memoryless system
and qa(t)qα(t) ≥ 0 by definition [39, Definition 6.1].

After qα(t) is passed through the saturation function in (7),
and a continuously differentiable qa(t) is generated, deriva-
tives may be taken to generate the saturated velocity and
acceleration, q̇a(t) and q̈a(t) to be used in the subsequently
designed controller.

III. CONTROL DEVELOPMENT

A. Muscle Position Controller

The muscle’s position tracking objective is quantified by
em : R≥0 → R, defined as

em(t) , qm(t)− q(t), (8)

where qm : R≥0 → R denotes the desired angular trajectory
which is sufficiently smooth (i.e., q̇m(t), q̈m(t) ∈ L∞). To
facilitate the control development and stability analysis, an
auxiliary tracking error rm : R≥0 → R is defined as

rm(t) , ėm + αmem, (9)

where αm ∈ R>0 is a constant control gain. Taking the time
derivative of (9), premultiplying by Mm, then substituting
(1), (2), and (8) yields the open-loop error system

Mmṙm = χm − τm − τint − em. (10)

From Properties 1-3, and Assumption 1, χm : R2 → R
is bounded as

|χm| ≤ c1 + c2 ‖zm‖ ,

where c1, c2 ∈ R>0 are known constants, ‖·‖ denotes the
standard Euclidean norm, and the error vector zm ∈ R2 is
defined as zm , [em rm]

T
. Based on (10) and the sub-

sequent stability analysis, the muscle controller is designed
as

um =
1

Bm
(k1rm + k2 + k3 ‖zm‖+ k4 |τint|) sgn(rm),

(11)

where k1, k2, k3, k4 ∈ R>0 denote constant control gains,
and sgn(·) denotes the signum function. Substituting (11)
into (10) yields the closed-loop error system

Mṙm = χm − τint − em−

− Bm
Bm

(k1rm + k2 + k3 ‖zm‖+ k4 |τint|) sgn(rm).

(12)

B. Robot Admittance Controller

The robot’s admittance behavior is accomplished through
the generation of an admitted trajectory based on the in-
teraction torque. However, the robot still requires an inner
loop position controller to track this admitted trajectory. This
position objective is quantified by er : R≥0 → R, defined
as

er(t) , qa − q, (13)

where qa is defined in (7). To facilitate the control devel-
opment and stability analysis, the auxiliary tracking error
rr : R≥0 → R is defined as

rr(t) , ėr + αrer, (14)

where αr ∈ R>0 is a constant control gain. Taking the
time derivative of (14), premultiplying by Mr and then
substituting (4), (5), and (13) yields

Mr ṙr = χr − τint − τr − er. (15)

By Properties 1-2 and 4-5, and Assumption 1, χr : R2 → R
is bounded as

|χr| ≤ c3 + c4||zr||+ c5 |q̈a|+ c6 |q̇a| ,

where c3, c4, c5∈ R>0 are known constants, and the error
vector zr ∈ R2 is defined as zr , [er rr]

T
. Based on

(15) and the subsequent stability analysis, a sliding mode
controller is designed for the motor input as

ur ,
1

Br

(
k5rr + k6 + k7 ‖zr‖

+k8|q̇a|+ k9|q̈a|
)

sgn(rr). (16)

Substituting (16) into (15) yields the closed-loop error system

Mr ṙr = χr − τint − er −
Br
Br

(
k5rr + k6

+k7 ‖zr‖+ k8|q̇a|+ k9|q̈a|
)

sgn(rr). (17)

IV. STABILITY ANALYSIS

Theorem 1. Given the open-loop error system in (15), the
controller in (16), and the admittance relation in (6), the
robot is passive with output y , rr and input v , τint,
∀t ∈ [t0, ∞), where t0 ∈ R≥0 is the initial time and the
robot error system is globally exponentially stable for q ∈ Q
when v = 0 in the sense that
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‖zr‖ ≤

√
Λr
Λr
‖zr(t0)‖ exp

[
−1

2
λr(t− t0)

]
, (18)

∀t ∈ [t0, ∞), where Λr, Λr ∈ R>0 are known constants
defined as Λr , min

( cMr

2 , 1
2

)
, Λr , max

( cMr

2 , 1
2

)
, and

λr ∈ R>0 is defined as

λr =
1

Λr
min (k5, αr) , (19)

provided the following constant gain conditions are satisfied:

k6 ≥ c3, k7 ≥ c4, k8 ≥ c5, k9 ≥ c6. (20)

Proof: Let Vr : R× R → R denote a continuously
differentiable, positive definite storage function defined as

Vr (rr, er) ,
1

2
Mrr

2
r +

1

2
e2r. (21)

The storage function satisfies the following inequalities:

Λr ‖zr‖2 ≤ Vr ≤ Λr ‖zr‖2 . (22)

Due to the signum function in the control input (16), the time
derivative of (21) exists almost everywhere (a.e.) and can be
expressed as

V̇r
a.e.
= rr (χr − τint − τr)− αre2r. (23)

Utilizing (16), (23) can be upper bounded as

V̇r
a.e.
≤‖zr‖ |τint| − k5r2r − αre2r − λ1 |rr| − λ2 |rr| ‖zr‖
− λ3 |rr| |q̇a| − λ4 |rr| |q̈a| , (24)

where λ1, λ2, λ3, λ4 ∈ R are defined as λ1 , k6 − c3,
λ2 , k7− c4, λ3 , k8− c5, and λ4 , k9− c6. Provided the
gain conditions in (20) are satisfied, λ1, λ2, λ3, λ4 ≥ 0 ;
thus, (24) can be upper bounded as

V̇r
a.e.
≤ ‖zr‖ |τint| − δz2r , (25)

where δ , min(k5, αr). Hence, by [39, Definition 6.3]
the robot system is output strictly passive with input |τint|,
output ‖zr‖, and storage function Vr. By [39, Lemma 6.5]
it follows that the system is finite-gain L2 stable and its L2

gain is than than or equal to 1
δ . Supposing the robot acts

in isolation (i.e., the human is decoupled from the robot),
τint = 0, and (25) can be rewritten as

V̇r
a.e.
≤ −λrVr, (26)

where λr was defined in (19). Hence, the system is zero-state
observable by [39, Definition 6.5] and the storage function
qualifies as a radially unbounded positive definite Lyapunov
function, resulting in global exponential stability in isolation.
Because τint = 0, qa = qα and (22) can be utilized in (25) to
obtain the result in (18). From the closed-loop error system

in (17), the admittance relation in (6), and the saturation
function in (7), the robot controller is bounded.

Theorem 2. Given the open-loop error system in (10), the
muscle controller in (11) yields global exponential tracking
for q ∈ Q in the sense that

‖zm‖ ≤

√
Λm
Λm
‖zm(t0)‖ exp

[
−1

2
λm(t− t0)

]
, (27)

∀t ∈ [t0, ∞), where Λm, Λm ∈ R>0 are known constants
defined as Λm , min

( cMm

2 , 1
2

)
, Λm , max

( cMm

2 , 1
2

)
,

and where λm ∈ R>0 is defined as

λm =
1

Λm
min (k1, αm) , (28)

provided the following constant gain conditions are satisfied:

k2 ≥ c1, k3 ≥ c2, k4 ≥ 1. (29)

Proof: Let Vm : R× R → R denote a continuously
differentiable, positive definite Lyapunov function candidate
defined as

Vm (rm, em) ,
1

2
Mmr

2
m +

1

2
e2m. (30)

The Lyapunov function candidate satisfies the following
inequalities:

Λm ‖zm‖2 ≤ V ≤ Λm ‖zm‖2 . (31)

Due to the signum function in the control input (11), the time
derivative of (30) exists almost everywhere (a.e.) and can be
expressed as

V̇m
a.e.
= rm (χm − τm − τint)− αme2m. (32)

Utilizing (11), (32) can be upper bounded as

V̇m
a.e.
≤ − k1r2m − αme2m − λ5 |rm|
− λ6 |rm| ‖zm‖ − λ7 |rm| |τint| , (33)

where λ5, λ6, λ7 ∈ R are defined as λ5 , k2 − c1, λ6 ,
k3 − c2, and λ7 , k4 − 1. Provided the gain conditions in
(29) are satisfied, λ5, λ6, λ7 ≥ 0 ; thus, (33) can be upper
bounded as

V̇m
a.e.
≤ −λmVm, (34)

where λm was defined in (28). Based on (31) and (34) the
result in (27) can be obtained, and from the closed-loop error
systems, the muscle controller is bounded.
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V. CONCLUSION

In this paper, a rehabilitative robot was successfully de-
signed and controlled to challenge an FES position controller
for the biceps brachii muscle group. With this method, the
two controllers operate alongside each other, challenging
each other, while ensuring safety for the user arm coupled
to the robot. A Lyapunov stability analysis was conducted
on the muscle subsystem and was shown to be globally ex-
ponentially stable. A passivity based analysis was conducted
on the robot subsystem, and was shown to be strictly passive
with respect to the interaction torque.

By appropriately designing the admittance, the nominal
robot trajectory, the saturation function, and the desired
interaction torque, the saturated admitted robot trajectory
overlapped the desired muscle trajectory. This ensured that as
long as the desired interaction torque existed, both controllers
could accomplish their tracking objective simultaneously yet
challenge each other. Controllers like these are extremely
promising for the field of rehabilitation because of their safe
performance during exercises that focus on both range of
motion and producing useful work from the muscle due
to FES. The admitting robot also ensures that it can be
utilized by a variety of people with movement conditions or
neurological disorders without the need for excessive gain
tuning.

Future work will involve making the admittance controller
on the robot adaptive in nature to improve overall system
performance. Because the robot admits to the interaction
torque which arises from the user and the FES controller, the
robot will adapt to the user and their performance, leading
to customized online rehabilitative therapy. Experiments will
be conducted with a focus on individuals with neurological
conditions.
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