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Unifying scrambling, thermalization and
entanglement through measurement of fidelity
out-of-time-order correlators in the Dicke model
R.J. Lewis-Swan1,2, A. Safavi-Naini1,2, J.J. Bollinger3 & A.M. Rey1,2

Scrambling is the process by which information stored in local degrees of freedom spreads

over the many-body degrees of freedom of a quantum system, becoming inaccessible to local

probes and apparently lost. Scrambling and entanglement can reconcile seemingly unrelated

behaviors including thermalization of isolated quantum systems and information loss in black

holes. Here, we demonstrate that fidelity out-of-time-order correlators (FOTOCs) can elu-

cidate connections between scrambling, entanglement, ergodicity and quantum chaos

(butterfly effect). We compute FOTOCs for the paradigmatic Dicke model, and show they

can measure subsystem Rényi entropies and inform about quantum thermalization. More-

over, we illustrate why FOTOCs give access to a simple relation between quantum and

classical Lyapunov exponents in a chaotic system without finite-size effects. Our results open

a path to experimental use FOTOCs to explore scrambling, bounds on quantum information

processing and investigation of black hole analogs in controllable quantum systems.
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Recent studies have shown that isolated many-body quan-
tum systems, under unitary time evolution, can become
highly entangled and thus thermalize. This understanding

has led to insights as to how statistical mechanics emerges in
closed quantum systems1–3. Moreover, the relevance of entan-
glement as a resource for quantum information processing,
quantum communication and metrology has stimulated cross-
disciplinary efforts to quantify and characterize entanglement.
Experimental progress in controlling clean, highly isolated, and
fully tunable quantum systems, where entanglement can be
measured, have resulted in radical advances in this direction.
However, such measurements have been restricted to few body
systems, including arrays of 6 × 2 bosonic atoms4, three super-
conducting qubits5, and systems of ≲20 trapped ions6,7. The
model we study here and the measurements we propose can be
implemented in trapped ions with more than 100 spins.

Concurrently, out-of-time-order correlations (OTOCs)8–13

FðtÞ ¼ hŴyðtÞV̂yŴðtÞV̂i; ð1Þ

have been identified as measures of the dynamics of quantum
information scrambling. Here, ŴðtÞ ¼ eiĤtŴe�iĤt , with Ĥ a
quantum many-body Hamiltonian, and Ŵ and V̂ two initially
commuting and unitary operators. While OTOCs can be com-
puted with respect to any (possibly mixed) state, here we focus on
the case where the initial state of the system is pure. The quantity
Re½FðtÞ� ¼ 1� h½V̂y; ŴyðtÞ�½ŴðtÞ; V̂ �i=2 encapsulates the degree
that ŴðtÞ and V̂ fail to commute at later times due to the time
evolution of Ŵ under Ĥ. (If V̂ is not unitary but a projector, e.g.
V̂V̂y ¼ V̂ and V̂ commutes with the density matrix of the initial
state, then Re½FðtÞ� ¼ 1� h½V̂y; ŴyðtÞ�½ŴðtÞ; V̂�i.) The fastest
scramblers8–10,14, such as black holes, feature an exponential
growth of scrambling which manifests as 1� Re½FðtÞ� � eλQt .
Here, λQ is the quantum Lyapunov exponent that serves as a
proxy for quantum chaos. Regardless of the OTOCs’ apparent
complexity13,15–17, the capability to perform many-body echoes
(see Fig. 1) in current experiments18–21 has opened a path for the
experimental investigation of quantum scrambling; however, so
far those have not probed quantum chaos or fast scrambling.

Here we show that fidelity out-of-time-order correlators
(FOTOCs), a specific family of fidelity out-of-time-order corre-
lators, which set V̂ to be a projector on the initial state, can
provide profound insight on scrambling behavior. We explicitly
compute FOTOCs in the in the Dicke model22, an iconic model
in quantum optics, and illustrate how FOTOCs elucidate theo-
retical connections between scrambling, volume-law Rényi
entropy (RE) and thermalization, while linking quantum and
classical chaos (Fig. 1a). Additionally, we discuss how one can
probe these connections readily in experiments.

Results
Model. The Dicke model (DM)22 describes the coupling of a
single large spin and a harmonic oscillator and has been recently
implemented in atomic23–26 and trapped ion setups27. The
Hamiltonian of the DM is given by

ĤD ¼ 2gffiffiffiffi
N

p âþ ây
� �

Ŝz þ δâyâþ BŜx; ð2Þ

where B characterizes the strength of the transverse field, δ the
detuning of the bosonic mode from the driving field with strength
g that generates the spin−boson coupling. Here, g, δ, B ≥ 0. The
operator â (ây) is the bosonic annihilation (creation) operator of
the mode, and Ŝα ¼

PN
j¼1 σ̂

α
j 2 are collective spin operators with

σ̂αj (α= x, y, z) the Pauli matrices for the jth spin-1/2.

Connections between scrambling dynamics and chaos. Even
when restricted to the Dicke manifold, i.e. states with S=N/2,
with S(S + 1) the eigenvalue of the total spin operator
Ŝ2 ¼ Ŝ2x þ Ŝ2y þ Ŝ2z , this model exhibits rich physics (see Fig. 2a).
At zero temperature, T= 0, the DM features a quantum phase
transition (QPT) as the system crosses a critical field Bc= 4g2/δ.
For B > Bc (normal phase), the ground-state is described by spins
aligned along the transverse field and a bosonic vacuum. For B <
Bc (superradiant phase), the ground-state is ferromagnetic,
hjŜZ ji � N=2, and characterized by macroscopic occupation of
the bosonic mode (Fig. 2a). Furthermore, in the superradiant
phase (B < Bc), the DM features a family of excited-state quantum
phase transitions (ESQPTs). The ESQPTs are signaled by singu-
larities in the energy-level structure and a change in the spectral
statistics28–31 at a critical energy Ec=−BN/2 that coincides with
the ground-state energy of the normal phase. Figure 2a shows
how the nearest-neighbor spacing distribution P(s), where s is a
normalized distance between two neighboring energy levels,
features a different character on either side of Ec. For E > Ec the
spectral statistics are similar to the Wigner−Dyson distribution
PWðsÞ ¼ πs=2expð�πs2=4Þ, which in random-matrix theory
describes a chaotic system. For E < Ec the shape of the histograms
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Fig. 1 Unifying chaos, scrambling, entanglement and thermalization through
the measurement of fidelity out-of-time-order correlators (FOTOCs).
a Scheme: an initial state, |ψ0〉 is evolved under an interacting Hamiltonian
Ĥ for a time t. Inverting the sign of Ĥ and evolving again for time t to the
final state |ψf〉, implements the many-body time-reversal, which ideally
takes the system back to the initial state |ψ0〉. If a perturbation ŴðϕÞ is
inserted between the two halves of the time evolution and the many-body
overlap with the initial state is measured at the end of the protocol,
V̂ ¼ Ψ0j i Ψ0h j, then a special type of fidelity OTOC (FOTOC) is
implemented. b The Dicke model is engineered in a Penning trap ion crystal
by applying a pair of lasers, resonant only with the center-of-mass mode, to
generate the spin−phonon interaction and resonant microwaves to
generate the transverse field
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is neither Wigner−Dyson nor Poissonian PP(s)= exp(−s). The
latter characterizes level statistics of non-ergodic systems, and is
observed in the normal phase. While the deviations from clear
Wigner−Dyson or Poissonian statistics in regimes II and III are
attributable to finite-size effects28, we emphasize that even for this
small system they clearly show a stark contrast in the degree of
level repulsion, which is a qualitative signature of quantum chaos.

Similar features appear in the classical dynamics of the DM30,32–35,
manifested in the different behavior of trajectories in phase-space
computed from the mean-field equations of motion for:
~x ¼ ðhŜxi; hŜyi; hŜzi; αR; αIÞ, where h¼ i denotes the expectation
values, and αR(I) is the real (imaginary) part of hâi. In the
superradiant phase and for mean-field energies E > Ec, two

trajectories initially separated by Δ~xð0Þ in phase-space diverge as
jΔ~xðtÞj � jΔ~xð0ÞjeλLt at sufficiently long times36. The exponential
growth, associated with a positive Lyapunov exponent λL > 0,
diagnoses chaos in a classical system. In Fig. 2b we show the
maximal Lyapunov exponent for an ensemble of random initial
product states as a function of the transverse field and the normalized
mean-field energy E/Ec (see Methods). For E < Ec in the superradiant
phase (B < Bc) and all energies in the normal phase (B > Bc), the
Lyapunov exponent is small or zero, consistent with the Poissonian
character of the quantum-level statistics in this parameter regime34,35.
For E > Ec and B < Bc a positive exponent is found signaling chaos.
Note that the state jΨc

0i ¼ jð�N=2Þxi � j0i, where
Ŝxjð�N=2Þxi ¼ �N=2ð Þjð�N=2Þxi, lies exactly at the ESQPT
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Fig. 2 Characterization of classical and quantum chaos in the Dicke model. a Phase diagram of the Dicke model. At zero temperature it exhibits a quantum
phase transition between a normal to a superradiant phase, at B= Bc. A line of excited energy quantum phase transitions (ESQPTs) occurs at the critical
energy Ec=−BN/2, signaled by singularities in the energy level structure (indicated by stars). Note that for figure clarity we have used a small system N=
20 resulting in the small deviation of the ESQPTs from Ec=−BN/2. The ESQPTs are accompanied by a change in the level statistics which we denote by (I)
−(III) (note that no eigenstates exist in the unlabeled white region). For (II) and (III) the spectrum is divided into low and high energy parts, separated by
the ESQPT at E= Ec, from which the statistics P(s), where s is the level spacing, are computed separately. (I) exhibits Poissonian statistics (regular regime),
while (II) displays statistics similar to a Wigner−Dyson distribution indicative of level repulsion and quantum chaos, and (III) exhibits a mixture of both.
The numerical parameters are g/(2π)= 0.66 kHz and δ/(2π)= 0.5 kHz. b Lyapunov exponents for the mean-field dynamics of an ensemble of random
states sorted by normalized mean-field energy E/|Ec| with Ec=−BN/2, as a function of the field
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relative to critical field Bc= 4g2/δ. A crossover

between regular (B > Bc) and chaotic dynamics (B < Bc) characterized by λ ’ 0 and λL > 0 respectively, occurs at B= Bc. For B > Bc and energies E ≲ Ec the
dynamics becomes increasingly regular. Source data are provided as a Source Data file
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Fig. 3 Signatures of classical chaos in quantum FOTOCs. a Initial exponential growth of the FOTOC, ½1� FXðtÞ�=ðδϕÞ2 and the initial state jΨc
0i ¼

jð�N=2Þxi � j0i (see Supplementary Note 1 for examples of exponential growth in other states). We assume δϕ � 1=N such that we may equivalently use
varðX̂Þ ’ ½1�FXðtÞ�=ðδϕÞ2 for the plotted data. The scrambling time t* is defined by the saturation of the FOTOC, which we extract from the first
maximum and plot in the inset (blue data). We find t� � a0 þ logðNÞ=λQ with a0 a fit parameter (gray line). b Lyapunov exponent, λ, as a function of
transverse field: Quantum λQ (red markers) and classical 2λL (solid lines). Superscript notation of the exponents denotes the initial polarization of the
chosen coherent spin state. Top panel for jΨc

0i, the same state as (a), and bottom for jΨy
0i � jð�N=2Þyi � j0i, here N= 104 particles. In both plots we

observe λQ ’ 2λL. Error bars for λQ are a 95% confidence interval from an exponential fitted to the numerical data. Coupling g and detuning δ are same as
Fig. 2. In (a) B/(2π)= 0.7 kHz (B/Bc= 0.2). Source data are provided as a Source Data file
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critical energy, hΨc
0jĤDjΨc

0i ¼ Ec, and possesses the largest classical
λL (see Fig. 2).

In quantum systems OTOCs may serve as a diagnostic for
quantum chaos. However, such diagnosis has proved difficult,
since any exact numerical treatment is only possible in small
systems, where many-body observables saturate quickly at the
Ehrenfest time given by λQt

� � logN , at which the quantum
information is thoroughly lost to a “local” observer. Here we
demonstrate that we can overcome this limitation and compute
OTOCs for macroscopic systems if, for a Hermitian operator Ĝ,
one restricts ŴG ¼ eiδϕĜ to be a sufficiently small perturbation
δϕ � 1ð Þ and sets V̂ to be a projection operator onto a simple
initial state |ψ0〉, i.e. V̂ ¼ ρ̂ð0Þ ¼ jΨ0ihΨ0j. This is because in the
perturbative limit δϕ � 1, this particular type of fidelity OTOC
(FOTOC)18,19, FGðt; δϕÞ � hŴy

GðtÞρ̂ð0ÞŴGðtÞρ̂ð0Þi (such that

for a pure state FGðtÞ � jhψ0jeiĤteiδϕĜe�iĤt jψ0ij2) reduces to37
1� FGðt; δϕÞ 	 δϕ2ðhĜ2ðtÞi � hĜðtÞi2Þ � δϕ2var½ĜðtÞ�; ð3Þ
where var½ĜðtÞ� is the variance of Ĝ. This relation establishes a

connection between the exponential growth of quantum variances
and quantum chaos, enables us to visualize the scrambling
dynamics of a quantum system using a semi-classical picture38

and to map the FOTOC to a two-point correlator which can be
computed using well-known phase-space methods, such as the
truncated Wigner approximation (see Methods)39,40. We observe
perfect agreement between the exact dynamics of the FOTOC
with the associated variance, varðĜÞ for sufficient small δϕ,
enabling us to use phase-space methods to compute the FOTOCs
in a parameter regime inaccessible to exact numerical diagona-
lization where exponential scrambling can be clearly identified.

Moreover, it provides a link between the FOTOCs and the
quantum Fisher information (QFI)19,41–43, as the variance of Ĝ is
proportional to the QFI of a pure state, whilst for a mixed state
the variance gives a lower bound on the QFI. Note that in the
latter case FOTOCs are defined by replacing V̂ by the initial
density matrix jΨ0ihΨ0j ! ρ̂0, and expectation values are
computed by appropriate traces. The QFI quantifies the maximal
precision with which a parameter δϕ in the unitary of Ŵ can be
estimated using an interferometric protocol with an input
quantum state |ψ(t)〉, while simultaneously serving as a witness
to multipartite entanglement19,44–46.

In Fig. 3a we plot the FOTOCs of a small perturbation using
Ĝ ¼ X̂ ¼ 1

2 ðâþ âyÞ starting with jΨ0i ¼ jΨc
0i. In the super-

radiant phase we observe that after a short time of slow dynamics,
tλ � λ�1

Q , the FOTOCs feature an exponential growth � eλQt ,
before saturating at t� � log N (see inset). The quantum
exponent is found to be independent of system size N. For this
initial state, and all the product states we have investigated
numerically (Supplementary Note 1), we have observed that
λQ ’ 2λL, as shown in Fig. 3b. Indeed, for any Ĝ that corresponds
to a linear function of the classical phase-space variables (see
Methods and Supplementary Note 1), the quantum exponent
should be related to the classical Lyapunov exponent by this
relation. A similar factor of two relating the classical and
quantum exponents has previously been observed in refs. 37,47–49.
This correspondence can be explained by semi-classical argu-
ments (see Methods), and the numeric prefactor is attributable to
the definition of the classical Lyapunov exponent in terms of a
distance in phase-space, while the FOTOC reduces to the
quantum variance.

FOTOCs as a probe of entanglement and quantum thermali-
zation. We now move beyond the semi-classical arena and

explore connections between FOTOCs and entanglement
entropy. In a closed system S the second-order Rényi entropy, RE,
S2ðρ̂AÞ ¼ �logTrðρ̂2AÞ measures the entanglement between a
subsystem A and its complement Ac= S− A, with ρ̂A the reduced
density matrix of A after tracing over Ac. Although scrambling
and entanglement buildup are closely connected, they are not the
same. Nevertheless, a formal relationship between the OTOCs
and S2ðρ̂AÞ exists11, which requires averaging OTOCs over a
complete basis of operators of the system subsystem A. Based on
this relation, measuring RE via OTOCs appears as challenging as
directly measuring S2ðρ̂AÞ. However, this is not always the case.
We will show that for collective Hamiltonians, such as the DM,
there is a simple correspondence between the Fourier spectrum of
FOTOCs and the RE, which facilitates experimental access to
S2ðρ̂AÞ via global measurements and collective rotations.

To illustrate the connection we first write the density
matrix of the full system in a basis spanned by the eigenstates
of the spin operator Ŝr � ðer 
 SÞ; where er is a unit vector in
the Bloch sphere, satisfying Ŝrjmri ¼ mrjmri, and n̂jni ¼ jni
the mode number operator n̂ ¼ âyâ, i.e.
ρ̂ ¼ P

n;n′
mr;m

′
r

ρn′;nm′
r;mr

jn′ihnj � jm′
rihmrj. We adopt a convention for

the coefficients of the density matrix elements where superscripts
are associated with the bosonic mode, and subscripts with the
spin. In this basis the density matrix can be divided into blocks,

ρ̂ ¼ P
M ρ̂ŜrM with ρ̂ŜrM ¼ P

n;n′
mr

ρn′;nmrþM;mr
jn′ihnj � jmr þMihmrj,

in such a way that ρ̂ŜrM contains all coherences between states
with spin eigenvalues that differ by M. A similar decomposition
can be performed in terms of the bosonic coherences as ρ̂ ¼P

M ρ̂n̂M with ρ̂n̂M ¼ P
nmr;m

′
r
ρnþM;n
m′

r;mr
jnþMihnj � jm′

rihmrj. Asso-
ciated with this representation one can define the so-called
multiple quantum intensities IĜM ¼ Tr½ρ̂Ĝ�M ρ̂

Ĝ
M �. Of particular

interest for us are the IĜ0 components which are “incoherent”
with respect to Ĝ.

The intensities IĜMðtÞ can be accessed experimentally from
FOTOCs via the relation FGðt; ϕÞ ¼

P
M IĜMðtÞe�iMϕ18,19,50–52 by

choosing ŴGðϕÞ ¼ e�iϕĜ and Ĝ ¼ Ŝr or Ĝ ¼ n̂, i.e. collective spin
or boson rotations respectively. In terms of the IĜMðtÞ the
entanglement between the spins and the phonons characterized

by the purity Tr ρ̂2ph

h i
¼ P

n;n′
mr;m

′
r

ρn;n′mr;mr
ρn′;nm′

r;m
′
r
can be written as

Tr ρ̂2phðtÞ
h i

� IŜr0 ðtÞ þ In̂0 ðtÞ � DŜr;n̂
diagðtÞ þ CŜr;n̂

off ðtÞ: ð4Þ

The terms DŜr;n̂
diagðtÞ and CŜr;n̂

off ðtÞ are explicitly detailed in the

Methods, but importantly DŜr;n̂;
diag ðtÞ is composed purely of the

diagonal elements of ρ̂ while CŜr;n̂
off ðtÞ contains information about

coherences. During unitary evolution the characteristic dephasing
time of the coherences is tc � λ�1

Q , which for scrambling systems
is much faster than t� � λ�1

Q log N . After tc any remaining
coherences are fully randomized and destructively interfere

yielding CŜr;n̂
off ! 0. This feature, together with the fact that for

those systems also the magnitude of DŜr;n̂
diag becomes much smaller

than IŜr0 and In̂0 as the density matrix spreads out over the systems
degrees of freedom, allows us to approximate

Tr ρ̂2phðtÞ
h i

	 IŜr0 ðtÞ þ In̂0 ðtÞ. While at t < tc these conditions are

not necessarily satisfied, we still find that there can be a
correspondence between the FOTOCs and RE by picking a state

that is fully incoherent at time t= 0, CŜr;n̂
off ð0Þ ¼ 0. An example of
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such a state is jΨc
0i and Ĝ ¼ Ŝx. This choice enforces the CŜr;n̂

off
term to remain small at short times. Moreover, for |Ψ0〉 we find it

is also possible to access S2ðρ̂phÞ via IŜr0 even in the regime B > Bc,
where no scrambling occurs. This is because the contributions

from In̂0 and DŜr;n̂
diag cancel and Tr ρ̂2phðtÞ

h i
	 IŜr0 .

In Fig. 4a we show the typical behavior of the RE, S2ðρ̂phÞ, in
the two different phases for |Ψ0〉. First, in the normal phase (panel
(i)), B≪ Bc, the dynamics is dominated by precession about the
transverse field and the entanglement entropy exhibits small
amplitude oscillations53. Conversely, in the superradiant phase
(panel (ii)) B≪ Bc we observe a rapid growth of entanglement
and saturation past the transient regime. We summarize our
results in Fig. 4b where we plot the time-averaged value of

S2 ρ̂ph

� �
vs.

ffiffiffiffiffiffiffiffiffiffi
Bc=B

p
. We associate the fast growth of S2 ρ̂ph

� �
at

B=Bc � 1 with a crossover from the integrable to the chaotic
regime. To further illustrate this connection, we compare the

approximate RE obtained via SŜr;n̂F � �log½IŜr0 ðtÞ þ In̂0 ðtÞ� and

SŜrF � �log½IŜr0 � with the exact RE in Fig. 4b. It is observed that in
all parameter regimes one can make a quantitative link between
the RE and FOTOCs, especially under proper optimization of the
rotation axis Ŝr at each time to minimize the coherence and
diagonal terms in Eq. (4) (see Methods and Supplementary
Methods).

The saturation of S2ðρ̂phÞ for B < Bc is a signature of
thermalization. One can test how “thermalized” the quantum
system is by comparing the behavior of the spin and phonon
distributions in the long time limit with those of the correspond-
ing diagonal ensemble, characterized by a mixed density matrix
ρ̂D with purely diagonal elements (see Methods)1–3. These
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SŜrF ¼ �logðIŜr0 Þ and SŜr ;n̂F ¼ �logðIŜr0 þ In̂0Þ respectively. Here, Ŝr is chosen to minimize the coherence and diagonal terms in Eq. (4) (Supplementary
Methods). b Long-time spin−phonon RE S2ðρ̂phÞ as a function of transverse field. To remove finite-size effects and residual oscillations we plot a time-
averaged value S2ðρ̂phÞ for 4ms ≤ t ≤ 12 ms (FOTOC quantities are averaged identically). The regular and chaotic dynamics for the initial state jΨc

0i are
clearly delineated: S2ðρ̂phÞ 	 0 for B > Bc and S2ðρ̂phÞ > 0 for B < Bc respectively. Error bars indicate standard deviation of temporal fluctuations. In the inset
we plot the same FOTOC quantities but including decoherence due to single-particle dephasing at the rate Γ= 60 s−1. The coherent parameters g, B and δ
are enhanced by a factor of 16 compared to the main panel, as per ref. 60. c Time-averaged distribution functions (markers) for spin-projection P(Mz) and
phonon occupation P(n) (6 ms≤ t≤ 12 ms). We compare to the distribution of the diagonal ensemble (purple bars, see Methods). d Bipartite RE S2ðρ̂LA Þ
(black markers) as a function of partition size LA of the spins, averaged over same time window as (c). For comparison, we plot the RE of a thermal
canonical ensemble with corresponding temperature T fixed by the energy of the initial state jΨc

0i, Stherm2 and the RE of the diagonal ensemble (see
Methods). Volume-law behavior of the RE is replicated by the FOTOC quantity (blue markers). Note that the dimension of the spin Hilbert space scales
linearly with LA. Shaded regions indicate standard deviation of temporal fluctuations. Data for (a)–(d) is obtained for N= 40, with g and δ identical to
calculations of Fig. 2. For (c) and (d) we choose B/(2π)= 0.7 kHz (B/Bc= 0.2). Source data are provided as a Source Data file
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comparisons are shown in Fig. 4c, where the time evolved
distributions and the ones drawn from the diagonal ensemble are
almost indistinguishable.

We can also investigate the growth of entanglement on
different size bipartitions for B < Bc. For that we split the spin
system into a subsystem of size LA ≤N and evaluate S2ðρ̂LAÞ by
computing the reduced density matrix ρ̂LA by tracing over the
bosonic degree of freedom and the remaining N− LA spins. To
demonstrate the entanglement grows with system size in a
manner consistent with an equivalent thermal state we plot the
predictions of a canonical ensemble (see Methods). We observe
volume-law entanglement growth for LA≪N (see Fig. 4d).
However, for LA ~ N the entanglement growth deviates from this
simple prediction. These deviations occur as the full state of the
system is pure, and thus eventually one needs to recover
S2ðρ̂Þ ¼ 0, requiring a negative curvature. To demonstrate the
intertwined nature of thermalization and the buildup of
entanglement we plot the predictions of a canonical ensemble
indicated by the dotted purple line (see Methods). We note that
FOTOCs can also be used to probe this scaling of the RE with
subsystem size. To this end, both V̂ and Ŵ should be restricted to
a partition of size LA of the system, but otherwise the
corresponding multiple quantum intensities are computed as
discussed above (see also Methods). Figure 4d shows the excellent
agreement between the partial system FOTOCs (blue squares)
and RE (black diamonds), comparisons that illustrate the utility
of FOTOCs to characterize complex many-body entanglement.

Experimental implementation in trapped ion simulators.
Trapped ions present a promising experimental platform for the
investigation of the physics discussed here27,54,55. Here we focus
on two-dimensional arrays in a Penning trap where a tunable
coupling between the ion’s spin, encoded in two hyperfine states,
and the phononic center-of-mass (COM) mode of the crystal can
be implemented by a pair of lasers with a beatnote frequency
detuned by δ from the COM mode and far from resonance to all
other modes, which remain unexcited (Fig. 1b). In the presence of
microwaves (which generate the transverse field) resonant with
the spin level splitting, the effective Hamiltonian is of the form of
Eq. 2 as benchmarked in refs. 27,56. The dynamical control of the
transverse field and sign of the detuning from the COM mode
enables straightforward implementation of a time-reversal pro-
tocol to measure FOTOCs19 (see Fig. 1). Additionally, the many-
body echo requires the application of a spin echo π pulse along
er ¼ ŷ which reverses the signs of Ŝx and Ŝz simultaneously.

Our proposal requires the ability for measuring the fidelity of
the full spin−phonon state, which we have not yet demonstrated
experimentally. However, this will be possible through a
generalization of the protocol discussed in ref. 57 (see Methods).
Additionally, our proposal can be adversely affected by
decoherence present in the experiment. However, the impact of
decoherence will be minimized in future experiments by
increasing the magnitude of relevant couplings of the DM via
parametric amplification of the ions’ motion27,58, thus reducing
the ratio of dissipative to coherent evolution. We illustrate the
predicted effect of decoherence, which is dominated by single-
particle dephasing due to light scattering from the lasers, in the
inset of Fig. 4b. We include the enhancement of the coherent
parameters via the protocol described in ref. 58 while using the
typical experimental decoherence rate of Γ= 60 s−1. The single-
particle decoherence is modeled by an exponential decay of the
FOTOC components IĜ0 ! IĜ0 e

�ΓNt (see Methods). The numer-
ical calculation indicates that even with decoherence the crossover
between the two regimes at B ~ Bc is still well captured. Due to

numerical complexity of solving a master equation we restrict our
simulations to N= 40 ions.

Discussion
We have demonstrated that FOTOCs connect the fundamental
concepts of scrambling, chaos, quantum thermalization, and
multipartite entanglement in the DM. While the concepts pre-
sented here have been limited to collective Hamiltonians, we
believe they can be generalized to more complex many-body
models (Supplementary Note 2). For example, FOTOCs could
provide an alternative approach for performing efficient mea-
surements of RE in a way comparable to other state-of-the-art
methods which have been used to probe entanglement in systems
with up to 20 ions7. Generically, FOTOCs could serve as an
experimental tool capable of uncovering bounds on information
transport and computational complexity, and shed light on how
classical behaviors in macroscopic systems emerge from purely
microscopic quantum effects.

Note added: Upon completion of this manuscript we became
aware of the recent preprints59,60, which present the numerical
and analytic investigation of OTOCs in the Dicke model.

Methods
Classical dynamics and equations of motion. The results presented for the
classical model in Fig. 3 are obtained from the Heisenberg equations of motion for
the operators via a mean-field ansatz, wherein the operators are replaced by the c-
number expectation values, i.e., Ŝj ! hŜji for j ¼ x; y; z and â ! hâi (where we
adopt αRðIÞ as the real (imaginary) component of hâi). We thus obtain an equation

of motion for ~x ¼ ðhŜxi; hŜyi; hŜzi; αR; αIÞ,
d~x
dt

¼ Fð~xÞ; ð5Þ
where

Fð~xÞ ¼

�δαI
δαR � 2gffiffiffi

N
p hŜzi

� 4gffiffiffi
N

p αRhŜyi
�BhŜzi þ 4gffiffiffi

N
p αRhŜxi

BhŜyi

0
BBBBBBBB@

1
CCCCCCCCA
: ð6Þ

Lyapunov exponent. The existence of classical chaos can be characterized by the
Lyapunov exponent λL. By definition, classical chaos implies that two initially close
trajectories separated by a distance in phase-space Δ~xð0Þ ¼ j~x1ð0Þ � ~x2ð0Þj diverge
exponentially, jΔ~xðtÞj 	 jΔ~xð0ÞjeλL t , and thus λL > 0 is a signature of chaotic
dynamics.

Formally, the Lyapunov exponent is then defined by taking the limit36

λL � lim
t!1 lim

jΔ~xð0Þj!0

1
t
log

jΔ~xðtÞj
jΔ~xð0Þj : ð7Þ

As the phase-space of our co-ordinate system is bounded, we evaluate Eq. (7)
using the tangent-space method35,61. Essentially, rather than monitoring the
physical separation jΔ~xðtÞj of a pair of initially nearby trajectories, one can instead
solve for the separation in tangent space, denoted by δ~xðtÞ, and substitute this
distance into Eq. (7). The tangent-space separation δ~xðtÞ can be dynamically
computed by assuming an infinitesimal initial perturbation to a reference trajectory
starting at ~xð0Þ ¼ ~x0, leading to the system of equations

d~x
dt

¼ Fð~xÞ; ð8Þ

dΦ
dt

¼ MΦ: ð9Þ
Here, Φ is the fundamental matrix and Mij � dFi=dxj . The tangent-space

separation with respect to the initial point in phase-space ~xð0Þ ¼ ~x0 is extracted by
computing δ~xðtÞ � Φδ~xð0Þ with Φð0Þ ¼ I.

As we are only interested in the maximum Lyapunov exponent, it suffices to
choose the initial separation δ~xð0Þ along a random direction in phase-space, and
we propagate Eqs. (8) and (9) for each initial condition ~x0 for sufficiently large t
that our estimate of λL from Eq. (7) converges.

Connection between classical and quantum Lyapunov exponents. In our dis-
cussion of the exponential growth of FOTOCs, we have argued that λQ is intimately
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related to the classical Lyapunov exponent λL. Specifically, we have that λQ ’ 2λL.
Here, we further articulate this connection using a semi-classical description of the
quantum dynamics, specifically by considering the evolution in the truncated
Wigner approximation (TWA)39.

First, we remind the reader that for a small perturbation δϕ, a FOTOC
FGðt; δϕÞ can be expanded to Oðδϕ2Þ as FGðt; δϕÞ 	 1� δϕ2varðĜÞ. A simple
conclusion from this expansion is that if FGðt; δϕÞ grows exponentially we can
attribute this behavior to the variance, i.e. it must be true that varðĜÞi � eλQ t .

A semi-classical explanation of this exponential growth is simplified by
assuming that Ĝ is an operator which is linear in the classical phase-space variables
~x. For concreteness, let us consider Ĝ ¼ X̂ ¼ 1

2 ðâþ âyÞ as in Fig. 3 of the main text,
which corresponds to αR in the classical phase-space.

Next, we consider a description of the quantum dynamics within the framework
of the TWA. Here, the dynamics is computed by solving the classical equations of
motion (Eq. (5)) with random initial conditions sampled from the corresponding
Wigner phase-space distribution of the initial state39. Quantum expectation values
are then obtained by appropriate averaging over an ensemble of trajectories, e.g.,
hX̂i � αR where the overline denotes a stochastic average. The random sampling of
initial conditions serves to model the quantum fluctuations of the initial state.

For a classically meaningful initial state (i.e. a product of coherent states for the
phonon and spin degrees of freedom), the fluctuations in each of the phase-space
variables are typically Gaussian and centered around the expectation values of the
initial state. A concrete example to illustrate this is the state jΨc

0i ¼ jð�N=2Þxi �
j0i considered in the main text. For each trajectory, the variable (αR)j (j denoting
the trajectory), for example, is sampled from a Gaussian distribution with mean
zero and variance 1/4. The connection between the quantum dynamics and
classical chaos is made by instead considering sampling only the fluctuations δαR
about a central classical trajectory, i.e. ðαRÞj ! αclR þ ðδαRÞj .

Solving the dynamics of the central classical trajectory and the ensemble of
fluctuations is then identical to the calculation of Eqs. (8) and (9), from which the
Lyapunov exponent is calculated. In particular, the connection between quantum
and classical exponents is finally made clear by evaluating the quantum variance,

varðX̂Þ ¼ α2R � αR
2

� �
; ð10Þ

� δα2R � δαR
2

� �
: ð11Þ

As δαR is evaluated directly from Eq. (9), then we expect from our previous
calculations that jδαRj � eλLt for a generic random perturbation, sampled
according to the TWA prescription, in parameter regimes where there is classical
chaos. Thus, we extrapolate that the quantum variance will grow like

δα2R � δαR
2 � e2λL t . Inspection of this final result shows that we should expect

λQ ’ 2λL.

Connection between FOTOCs and RE. The connection between the FOTOCs and
entanglement entropy is best established by first considering the case of the spin
−phonon RE S2ðρ̂phÞ. We begin by writing the purity of the reduced density matrix
explicitly in terms of the elements of the density matrix,

Tr ρ̂2phðtÞ
h i

¼
X
n;n′

mr ;m
′
r

ρn;n
′

mr ;mr
ðtÞρn′ ;nm′

r ;m
′
r
ðtÞ: ð12Þ

Our insight is that, in the case of a pure global state, the summation in
Eq. (12) for the purity of the reduced density matrix can be manipulated and
re-expressed as

Tr ρ̂2phðtÞ
h i

� IŜr0 ðtÞ þ In̂0 ðtÞ � DŜr ;n̂
diagðtÞ þ CŜr ;n̂

off ðtÞ; ð13Þ
where

DŜr ;n̂
diagðtÞ ¼

X
n;
mr

ρn;nmr ;mr
ðtÞ

h i2
; ð14Þ

CŜr ;n̂
off ðtÞ ¼

X
n≠n′
mr≠m

′
r

ρn;n′mr ;mr
ðtÞρn′;nm′

r ;m
′
r
ðtÞ; ð15Þ

are the sum of the squared diagonal elements of the density matrix and the sum
over the off-diagonal coherences, respectively. Thus, we seek to understand when
these latter terms can be neglected and thus the purity (and associated entropy) is

expressible in terms of only the IĜ0 .
Firstly, there is the case of a large transverse field, B � Bc and an initial state

which is polarized along the direction of the transverse field with vacuum
occupation, i.e., jΨ0i ¼ jð±N=2Þxi � j0i. In this case, we expect the collective spin
to remain strongly polarized along the field direction. If we choose the FOTOC
spin rotation axis to be along that of the initial state and transverse field, Ŝr ¼ Ŝx ,

then we have that CŜx ;n̂
off ðtÞ 	 0 due to the absence of initial coherences between the

spin sectors in this basis, and by similar reasoning In̂0 ðtÞ 	 DŜx ;n̂
diagðtÞ. Hence, we

expect Eq. (13) to simplify so that Tr½ρ̂2phðtÞ� 	 IŜx0 ðtÞ. Identical reasoning can be
applied in the normal phase (B > Bc) when the phonon detuning is the largest
energy scale, such that Tr½ρ̂2phðtÞ� 	 In̂0 ðtÞ.

The second scenario is closely related to the first. Consider an initial coherent
spin state polarized along an arbitrary spin direction and vacuum phonon
occupation. For arbitrary transverse field strength and on sufficiently short time-
scales t≲λ�1

Q , then the spin component of the evolved state remains largely
polarized along a particular axis dictated by the initial state. Similar to the first
scenario, by choosing the spin rotation of the FOTOC, Ŝr , to match the polarization

of the initial state, then we will have Tr½ρ̂2phðtÞ� 	 IŜ
2
r

0 ðtÞ. This is justified as CŜr ;n̂
off ðtÞ

and In̂0 ðtÞ þ DŜr ;n̂
diagðtÞ vanish, as again the state at short times will not have

appreciable coherences between different spin sectors in this basis.
Lastly, for a small transverse field, B � Bc, and beyond short times t ≳ λ�1

Q (i.e.,
beyond the time-scale when the spin state is still strongly polarized and the second

scenario is still valid), we expect Eq. (13) to be well approximated by Tr½ρ̂2phðtÞ� 	
IŜr0 ðtÞ þ In̂0 ðtÞ for any spin rotation axis Ŝr. This is because initially pure states which
are sufficiently scrambled after a quench of the system parameters closely resemble so-
called canonical pure thermal quantum (cTPQ) states62 in a generic basis. For cTPQ

states, the summation over off-diagonal coherences CŜr ;n̂
off vanishes exactly for a

sufficiently large system as the coherences can be considered as random variables62.
Moreover, for a typical spin rotation axis Ŝr , the cTPQ state will have a spin

distribution PðMŜr
Þ which is largely delocalized implying that DŜr ;n̂

diag � 1=ðNnphÞ
where nph is some constant which characterizes the spread of the boson number

distribution. The term DŜr ;n̂
diag is then typically much smaller in magnitude when

compared to the remaining terms IŜr0 and In̂0 . This reasoning leads to

Tr½ρ̂2phðtÞ� 	 IŜr0 ðtÞ þ In̂0 ðtÞ. Discussion of the sensitivity of these arguments to the
rotation direction can be found in Supplementary Methods.

More generally, we can extend these arguments to extract a correspondence with
the Renyi entropy of a generic bipartition of the spin−phonon system. Specifically,
splitting the system S into a subsystem A: L spin-1/2s, and its complement Ac: N − L
spin-1/2s and the bosonic mode. In the weak-field regime B � Bc, Tr½ρ̂2A� 	 IA0 þ IAc

0 .

Here, the terms IA0 and IAc
0 are obtained as the Fourier amplitudes of fidelity OTOCs

for generalized rotations within each subsystem. Specifically, a local rotation eiϕŜr;A
taken to act on the spin-12s in the A subsystem, and a joint (but uncorrelated) rotation

eiϕŜr;Ac eiθâ
y â of the spins and bosons in the complement Ac.

Experimental implementation. By preparing an initial spin polarized state, recent
experiments18 demonstrated it was possible to measure the many-body overlap of
the final state with the initial configuration by fluorescence detection. The Dicke
model, however, includes spin and phonon degrees of freedom.

While the full spin–phonon fidelity measurement has not yet been
demonstrated experimentally, such measurement is possible by extending the
method in57 to a multi-qubit system. In particular, we note that this proposal is
comprised of a two-step measurement, where we first measure the spin degree of
freedom. The probability of all ions being in the dark state (i.e. all in the state |↓〉z)
can be measured with excellent fidelity and has been previously demonstrated18.
The dark state does not scatter photons, and as such, this measurement will not
change the state of the phonons. Next one can proceed to measure the phonon
occupation via the protocol described in ref. 57.

Finally, as noted in the main text, we have taken into account the single-particle
decoherence present in the experiment. The results presented in the main text
accounted for this by approximating the effects of decoherence by an exponential

decay, �IĜ0 ! �IĜ0 e
�ΓNt . We have justified this approximation by comparing to an

efficient numerical solution of the full Lindblad master equation19,63,64 for smaller
system sizes (N= 10). We find that the decoherence is well-captured by the
approximate model for all transverse field strengths B considered.

Thermal and diagonal ensembles. The canonical thermal ensemble, used in

Fig. 4, is defined by the density matrix ρ̂therm ¼ e�βĤD=Tr½e�βĤD �, which is char-
acterized by the inverse temperature β= 1/(kBT). This inverse temperature is
chosen such that energy of the ensemble is matched to that of the initial state of the
dynamics, hEitherm � Tr½ĤDρ̂therm� ¼ hΨ0jĤDjΨ0i. The RE for bipartitions of the

thermal ensemble is then obtained via the definition Stherm2 � �log Tr½ðρ̂thermLA
Þ2�

� �

where ρ̂thermLA
¼ Trph;N�LA

ðρ̂thermÞ is the reduced density matrix obtained after tra-
cing out the phonon degree of freedom and the remaining N− LA spins.

A related concept is the diagonal ensemble ρ̂D
1,65, which generically describes

the (time-averaged) observables of a quantum system which has relaxed at long
times. The ensemble is defined as the mixed state ρ̂D � P

En
jcEn j

2jEnihEnj; where
cEn � hΨ0jEni and |En〉 are the eigenstates of the Hamiltonian ĤD with associated
eigenvalue En. We use this diagonal ensemble as a comparison to the time-averaged
distribution functions P(Mz) and P(n) in Fig. 4.
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Data availability
The source data underlying Figs. 2–4 of the main text are provided as a source data file.
Additional numerical data and computer codes used in this study are available from the
corresponding author upon request.
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