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ABSTRACT: We describe a strategy for the enantio- and
diastereoselective synthesis of homoallylic a-trifluoromethyl
amines by the catalytic hydroalkylation of terminal dienes.
Trifluoromethyl-substituted isatin-derived azadienolate nucleo-
philes undergo y-selective alkylation with a PA—DTBM-SEGPHOS
catalyst, which additionally promotes regioselective addition to the
diene and delivers products in up to 86% yield, 10:1 dr, and

97.5:2.5 er.

hiral amines bearing an a-trifluoromethyl group hold a

significant place among classes of medicinally important
N-containing molecules. The CF; group modulates a number
of pharmacological parameters, alters the amine basicity and
polarity significantly, and stands in as a non-hydrolyzable
amide surrogate.” Despite the beneficial properties this motif
might impart upon drug-like molecules, methods for the
catalytic enantioselective synthesis of a-trifluoromethyl amines
are fairly uncommon, with most approaches to these
enantioenriched compounds relying on chiral auxiliary
chemistry.”

A valuable subset of these compounds are a-trifluoromethyl
homoallylic amines. Recently, a number of groups have
investigated allylic substitution approaches to these molecules
utilizing azaallyl anion building blocks.” With an isatin®
activating group for the nucleophile (Scheme 1), an Ir-
catalyzed procedure gives rise to branch-selective coupling of
the allylic carbonate exclusively at the azadienolate’s a-
position; however, this product spontaneously undergoes aza-
Cope rearrangement to deliver a net y-allylation. As a result,
the unsaturated amines bear only one stereogenic center."’
The same class of nucleophiles have been utilized in a y-
selective allylation with Morita—Baylis—Hillman-type allylic
carbonates by employing a chiral nucleophilic catalyst (Scheme
1).° These coupling processes can yleld homoallylic amines
with vicinal syn stereogenic centers;"* however, the product
scope is limited to aryl-substituted allylic centers and carbonyl-
containing alkenes.””

Given our longstanding interests in both umpolung synthesis
of amines’ and diene hydrofunctionalization reactions,'’ we
envisioned that the merger of these strategies would allow for
the enantio-, diastereo-, and regioselective preparation of a-
CF; homoallylic amines that bear vicinal stereogenic centers
and internal alkenes,'” potentially enabling the anti diaster-
eomer to be accessed (Scheme 1). Several challenges had to be
met and overcome for the successful realization of this idea.

© 2020 American Chemical Society

\ 4 ACS Publications

1681

5.0 mol %
Pd-DTBM-SEGPHOS up to 86% vyield,
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10m0|%NaBArF4 10:1dr&97.5:2.5 er
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Scheme 1. Prior Catalytic Enantioselective a-CF;
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Table 1. Optimization for y-Selective Addition of an Isatin-Derived Azadienolate to Phenylbutadiene”

FiCy X _-Ph
5.0 mol % Me
[(L)Pd(n3-cinnamyl)]BAr", 3a
a NMe +
)N ~ P NN
Nelts 2a
1 2.0 equiv Et3N MeN o NVCF3
(1.5 equiv) +10 mol % NaBAr",
Et,0,22°C, 16 h O N\,
3a’
entry 1L, NaBAr', (Y/N) 3a:3a’ " conv to 3a/3a’ ¥ (%) dr of 32" er of 3a°
1 BINAP N 1:2.5 48 1:1 nd
2 MeO-BIPHEP N 1:2.5 66 1.5:1 nd
3 DTBM-MeO-BIPHEP N >20:1 49 7:1 nd
4 SEGPHOS N 1:1.1 30 3:1 nd
S DM-SEGPHOS N 1:1.5 38 3:1 nd
6 DTBM-SEGPHOS N >20:1 >98 9:1 91.5:8.5
7 DTBM-SEGPHOS Y >20:1 >98 9:1 93:7
8 DTBM-SEGPHOS N >20:1 >98 8:1 94:6
ge DTBM-SEGPHOS Y >20:1 97 (80) 8:1 95:5

“Reactions run under N, with 0.15 mmol of diene 2a (0.75 M). ®Determined by 376 MHz "’F NMR spectroscopy of the unpurified mixture.
“Determined by HPLC analysis of purified 3a. #1,4-Dioxane as solvent. “Reaction for 12 h./Tsolated yield of purified 3a. nd = not determined.

Primary among these was regioselectivity. In contrast to
previous metal-catalyzed allylic substitution methods, our goal
was to develop a kinetically y-selective allylation of isatin
azadienolates, obviating the aza-Cope rearrangement and thus
giving rise to a fundamentally different product connectivity
than would otherwise be available. Could a catalyst be found
that is y-selective, and would this process still be efficient?
Would the same catalyst also provide regioselectivity with
respect to the diene? Finally, would such a catalyst allow for
control of the relative and absolute stereochemistry of the
homoallylic amine products? Only recently has a diene
hydroalkylation that sets two stereogenic centers in one
bond-forming event been reported.11 Herein, we illustrate that
Pd—DTBM-SEGPHOS promotes the y-selective coupling of
azadienolates with the terminal olefin of dienes, generating the
anti diastereomer of homoallylic a-CF; amines with excellent
levels of stereocontrol.”

We initiated our investigations by exploring the coupling of
N-trifluoroethyl imine 1 and phenylbutadiene 2a (Table 1)."?
Whereas most ligands favor azadienolate a-alkylation product
3a’ under Pd catalysis, bis(phosphines) comprised of 3,5-di-
tert-butyl-4-methoxy (DTBM) aryl groups at phosphorus
exclusively deliver the desired p-alkylation product 3a
(compare entries 3 and 6 with entries 1-2 and 4-5)."*
Notably, the diastereomeric ratio for 3a is also considerably
higher with the more y-selective catalysts, affording the anti
diastereomer as the major isomer (entries 3 and 6). Use of
DTBM-SEGPHOS provides the greatest conversion to 3a,
which is isolated in 9:1 dr and 91.5:8.5 er (entry 6)."° We
discovered that the enantioselectivity could be improved by the
addition of 10 mol % NaBAr", (93:7 er, entry 7).'° By
switching the solvent from diethyl ether to 1,4-dioxane, the y-
alkylation product 3a is isolated in 80% yield, 8:1 dr, and 95:5
er (entry 9).

Taking the conditions in Table 1, entry 9, as optimal, we
next explored the scope of aryl-substituted terminal dienes for

1682

coupling with 1 (Table 2). Both electron-rich (e.g., entries 1
and 6—7) and electron-poor (entries 2—3) dienes generate the
homoallylic amine products with >87% conversion, >7:1 dr,
and moderate to good enantioselectivity. Heterocycles are
tolerated, with furyl-substituted 3i (entry 8) and pyridyl-
containing 3j (entry 9) isolated in good yields and stereo-

Table 2. Aryl Diene Scope in Azadienolate Coupling®

5 mol %
<o O Ph
Ar,
[e) @ §
Pd—
NMe /
NZ ° e
J 0 < O Ao
FiC 0 BAIF,
1 Ar = 3,5-(-Bu)y-4-(MeO)(CgH,) N 1
1.5 i - xR
(1.5 equiv) Fsc/Y\/
+ 2.0 equiv Et3N Me
RN 10 mol % NaBAr", 3b—j
2b-j 1,4-dioxane, 22 °C, 12 h
conv to 3a” (%);  dr of
entry product (3); R! yield of 3° (%) 3’ er of 3¢
1 3b; 4-(MeO)(C4H,) 87; 68 10:1 94:6
2 3¢ 4-CI(CH,) 98; 75 71 90.5:9.5
3 3d; 4-(F;C)(Cg¢H,) 94; 74 8:1 90:10
4 3e; 3-Me(CH,) 89; 72 6:1 937
5¢ 3f 2-Me(CgH,) 63; 59 21 92.5:7.5
6 3g; 2-naphthyl 94; 62 8:1 94:6
7 3h; 34-dioxolato(C¢H,) 94; 86 10:1  91.5:8.5
8 3i; 2-furyl 69; 59 8:1 93:7
9 3j; 3-pyridyl 83; 82 7:1 94:6

“Reactions run under N, with 0.15 mmol of diene 2 (0.75 M).
“Determined by 376 MHz “F NMR or 400 MHz 'H NMR
spectroscopy of the unpurified mixture. “Isolated yield of purified 3.

Determined by HPLC analysis of purified 3. “Reaction run without
NaBArf,; 9:1 3£:3f.
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selectivities. The majority of dienes lead exclusively to the y-
alkylation product; however, an ortho substituent on the arene
results in a more sluggish reaction (44% conversion in 12 h)
that furnishes approximately 10% a-coupling of the azadieno-
late (entry S). Improving reaction efficiency required the
omission of NaBAr",, and while diastereoselectivity was lower,
enantioselectivity remained high (92.5:7.5 er). In all, aryl-
substituted dienes readily participate in couplings with 1 at
room temperature, affording homoallylic oa-trifluoromethyl
amines 3b—j in 59—86% yield.

Alkyl-substituted terminal dienes are also effective coupling
partners; however, the PdA—DTBM-SEGPHOS-catalyzed pro-
cesses with imine 1 require elevated temperature (50 °C) to
proceed effectively (Table 3). Consequently, we also omitted

Table 3. Azadienolate—Alkyl Diene Coupling Scope®

5 mol %
(O O Ph
Ar,
O L@
Pd—)
NMe /
NZ o g
) o < Ar2
FaC o BAI, Ay
1 Ar = 3,5-(t-Bu),-4-(MeO)(CgHy) ;
(1.5 equiv) F3C/Y\/R
+ 2.0 equiv Et;N Me
S VSN 1,4-dioxane, 50 °C, 12 h 3k-o0
2k-o
conv to 3 (%);?
entry product (3); R’ yield of 3 (%)°¢ dr of 3° er of 3¢
1° 3k; Ph(CH,), 82; 69 4:1 88:12
2 31; n-hexyl 65; 60 4:1 81.5:18.5
3 3m; EtO,C(CH,), 84; 83 3:1 91:9
4 3n; Cy 61; 43 3:1 90:10
5f 83; 83 3:1 86.5:13.5

30;
BnN

“Reactions run under N, with 0.15 mmol of diene 2 (0.75 M).
“Determined by 376 MHz F NMR or 400 MHz 'H NMR
spectroscopy of the unpurified mixture. “Isolated yield of purified 3.

Determined by HPLC analysis of purified 3. “A 10:1 mixture of y-
alkylation products 3k and 3k” was formed; see ref 17./11:1 30:30’.

the NaBAr", additive to enable the reaction to proceed at a
higher rate. Both linear (entries 1—3) and a-branched (entries
4-S5) dienes participate in the reactions, affording homoallylic
amines 3k—o in 43—83% yield in up to 4:1 dr and 91:9 er.
Products derived from isomerization of the diene along the
alkyl chain (“chain walking”) prior to enolate addition could
not be detected, including with phenethyl 2k or heptadienoate
2m. Alkyl dienes largely or solely lead to y-alkylation of the
azadienolate, although it is notable that piperidine 20 affords
ca. 9% a product 30’. We also observed roughly 8% of an
additional y-alkylation product 3k” with phenethyl diene 2k.
Homoallylic amine 3k” bears a different connectivity with
respect to the diene-derived fragment, and a series of
experiments suggest that 3k” is formed from the aza-Cope
rearrangement of a-alkylation product 3k’."”

Intriguingly, in the course of our alkyl diene studies, we
discovered that hexadienoate 2p (Scheme 2) undergoes diene
isomerization into conjugation with the ester prior to its
coupling with 1, furnishing the ethyl-substituted stereogenic
center of homoallylic amine 3p. The process is reasonably
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Scheme 2. Isomerization/Alkylation of 3,5-Hexadienoate
and Comparison to Its Internal Diene Isomer

’é'ﬁ
A CO,Me
Fac/Y\/ ‘

Bt 3p

48% conv, 48% yield
12:1dr, 97.5:2.5 er

’&':‘
A CO,M
F3C/Y\/ o

Et 3p

18% conv, 18% yield
12:1dr, 97:3 er

Table 3 conditions
MeOsz _ >

1.5 equiv 1
2p

Table 3 conditions
MeOzC\MMe e

1.5 equiv 1
4

efficient, with the a@-CF; amine obtained in 48% yield, 12:1 dr,
and 97.5:2.5 er. Comparatively, its internal diene analogue 4
also delivers acrylate 3p with similar levels of stereoselectivity
but lower conversion.

We have explored a number of additional reaction partners
to expand the scope of the hydrofunctionalization (Figure 1).

e couplings with 2a e couplings with 1

HO/\M

NMe NMe

N7 N7 2q
) )\ 0 AN
F,HC F3C Ph TBSO X
5
. 6 2r
nucleophile <2% conv

decomposition complex mixture: 3, 3', 3"

Figure 1. Limitations in Reaction Partners.

Imine § was tested in a coupling with diene 2a in order to
access a-difluoromethyl amines, but unfortunately, the
nucleophile undergoes complete decomposition without
alkylation. Substituted imines, such as 6, would form products
bearing tetrasubstituted stereogenic centers”™® but were
unreactive. Other dienes were also investigated. Alcohol- and
silyl ether-containing alkyl dienes 2q and 2r lead to a complex
mixture of products, which we surmise to be a combination of
the desired y-alkylation 3, the regiomeric a-alkylation 3’, and
the aza-Cope rearrangement products 3”, all as a mixture of
diastereomers, rather than products attributable to chain
walking.

The diene hydroalkylation with imine 1 can be performed
on a 1.0 mmol scale to furnish the a-trifluoromethyl isatin-
protected homoallylic amine 3a in 82% vyield (Scheme 3).
Additionally, hydrolysis of the isatin moiety under mildly acidic
conditions delivers the free amine 7 in 77% yield.

Catalytic enantioselective diene hydrofunctionalization
provides an enabling route toward highly valuable chemical
building blocks that are not readily prepared by other methods.
Here, in combination with imine umpolung,” we have shown
that important homoallylic a-trifluoromethyl amines bearing
contiguous stereogenic centers and an internal olefin can be
accessed for the first time. Utilizing an isatin auxiliary, we have
discovered that, in contrast to other transition-metal-catalyzed
processes, palladium ligated with DTBM-SEGPHOS allows for
regioselective y-alkylation of the derived azadienolate, generat-
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Scheme 3. Scale Up of Azadienolate Hydroalkylation and
Product Imine Hydrolysis

5 mol %
<o Ar Ph
NMe o P\Z ®
)N i pd—
(0] o} =]
FiC { O A, A,
1 o O,
. BAr : S _Ph
(1.3 equiv) A = 3.5-(LBU)4-(MeO)(CHy) F3C/Y\/
+ Me
PR N 2.0 equiv EtsN 3a
2a 10 mol % NaBAr", 82% yield
(1.0 mmol) 1,4-dioxane, 22 °C, 12 h 8:1dr, 95:5 er
NH;
MeN i.) 1.0 M aq HCI H

Ph
N . FSC/Y\/

0 ; x._Ph  THF, 22°C,2h Me
Fgc/\‘/\/ )
be ii.) EtsN 7
77% yield
3a i

8:1dr, 94.5:5.5 er

ing the anti diastereomer of the homoallylic a-CF; amines with
high levels of stereocontrol. This catalytic process should open
up new chemical space for drug discovery.
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