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Spin squeezing and many-body dipolar dynamics in optical lattice clocks
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The recent experimental realization of a three-dimensional (3D) optical lattice clock not only reduces the
influence of collisional interactions on the clock’s accuracy but also provides a promising platform for studying
dipolar many-body quantum physics. Here, by solving the governing master equation, we investigate the role of
both elastic and dissipative long-range interactions in the clock’s dynamics and study its dependence on lattice
spacing, dimensionality, and dipolar orientation. For small lattice spacing, i.e., k0a � 1, where a is the lattice
constant and k0 is the transition wave number, a sizable spin squeezing appears in the transient state which is
favored in a head-to-tail dipolar configuration in 1D systems and a side-by-side configuration in 2D systems,
respectively. For large lattice spacing, i.e., k0a � 1, the single atomic decay rate can be effectively suppressed
due to the destructive dissipative emission of neighboring atoms in both 1D and 2D. Our results will not only
aid in the design of the future generation of ultraprecise atomic clocks but also illuminates the rich many-body
physics exhibited by radiating dipolar system.

DOI: 10.1103/PhysRevA.100.041602

Alkaline-earth-metal atoms have recently attracted an in-
tensive research interest in the cold-atom community [1–3] as
they can be used for the development of atomic clocks with
unprecedented stability and accuracy [2,4,5]. Typical one-
dimensional (1D) optical lattice clocks suffer from systematic
frequency shifts induced by the atomic collisions [2,6,7] and
this has stimulated the built up of next-generation optical
lattice clocks in a deep 3D lattice loaded with at most one
atom per site [8]. In this regime, the clock becomes immune
to atomic collisions; however, atoms can still interact via
long-range dipolar interactions which yield non-negligible
frequency shifts and thus can impact the performance of the
clock [9]. Understanding these interactions is thus not only
fundamental to avoid undesirable systematic frequency shifts
to improve the clock performance [9,10] but also important for
us to take advantage of them for the generation of entangled
states, such as spin-squeezed states, which are useful for
enhanced metrology.

Spin-squeezed states are a class of quantum states having
suppressed spin variance along a certain direction, at the cost
of enhanced variance along the orthogonal directions [11–13].
These states offer a pathway to overcome the standard quan-
tum limit and to improve the accuracy of phase measurements
[14]. Various quantum systems, such as trapped ions [15–19],
Bose-Einstein condensates [20–22], and cold thermal atoms
[23–27], have been explored to generate spin-squeezed states.
In this work, we study spin-squeezing in the optical lat-
tice clocks and focus on the competition between dipolar
interaction and dissipation. Previous work has shown that,
without dissipation, the long-range dipole-dipole interaction
can generate spin-squeezing in the transient state [28,29].
Furthermore, in the absence of elastic dipolar interaction,
collective spontaneous emission may be engineered to yield
a spin-squeezed steady state by an external coherent driving
[30]. Here we show that a sizable spin-squeezing can be

achieved in the transient states without an external drive in the
small lattice spacing regime where the elastic dipolar inter-
action is much stronger than the dissipation. With increasing
lattice spacing, the elastic dipolar interaction becomes com-
parable to the dissipation and the spin-squeezing disappears.
In this regime, however, we find that the decay rate of the
atomic array can be effectively suppressed compared to their
single atom radiative decay rate due to destructive dissipative
emission of nearest neighbors (a type of subradiance effect
[31]). The change of the decay rate is approximately given by
M f12, where M is the number of nearest neighbors and f12 is
the cooperative emission rate between these neighbors.

We consider N two-level atoms which can be treated as
point dipoles pinned in an optical lattice with only one atom
per site. After eliminating the electromagnetic field modes,
one obtains the master equation governing the dynamics of
the atomic degree of freedom [31–34],

dρ

dt
= − i

h̄
[H0, ρ] + L f [ρ], (1)

where the two terms determine the coherent evolution and
dissipation of the system, respectively. The Hamiltonian that
governs the coherent dynamics reads

H0 = − h̄

2

∑
i

(�eikR·riσ+
i + H.c.) + h̄

2

∑
i �= j

g(ri j )σ+
i σ−

j . (2)

The first term describes the laser drive, resonant with the
atomic transition and with Rabi frequency � and laser wave
vector kR. In the following we will assume this term drives the
atomic transition at the beginning of the Ramsey protocol and
then is turned off during the dark time dynamics when only
dipolar interactions are present. The long-range elastic dipolar
interaction, which exchanges excitations between two atoms
at ri and r j , is characterized by g(ri j ) with ri j = ri − r j . The
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FIG. 1. (a) Illustration of the optical lattice clock where a is the
lattice constant and αi j is the angle between the dipole polarization
direction d = d (sin θ cosϕ, sin θ sin ϕ, cos θ ) and the position vector
ri j connecting the two atoms at sites i and j. Each atom can be
approximated as a two-level system with the ground state and excited
state labeled by |g〉 and |e〉. [(b) and (c)] Profile of the scaled elastic
interaction g(ri j )/� and dissipative interaction f (ri j )/� as a function
of the angle αi j and k0ri j , where k0 is the wave number of the clock
interrogation laser and ri j is the distance between the two atoms. It is
worth noting that f (ri j )/� → 1 as k0ri j → 0, reaching a collective
emission limit.

spin raising operator for the atom at site i is σ+
i = |ei〉〈gi|,

where |gi〉(|ei〉) is the ground (excited) state of the atom.
The dissipative interaction which describes the processes of
both independent and cooperative decay is described by the
Lindblad operator which is of the following form:

L f [ρ] = 1

2

∑
i, j

f (ri j )(2σ−
j ρσ+

i − σ+
i σ−

j ρ − ρσ+
i σ−

j ). (3)

The coefficients of the elastic and dissipative dipolar inter-
actions have the following explicit forms:

g(ri j ) = −3�

2

{
sin2 αi j

cos ζi j

ζi j
+ (3 cos2 αi j − 1)

×
[
cos ζi j

ζ 3
i j

+ sin ζi j

ζ 2
i j

]}
, (4)

f (ri j ) = 3�

2

{
sin2 αi j

sin ζi j

ζi j
+ (3 cos2 αi j − 1)

×
[
sin ζi j

ζ 3
i j

− cos ζi j

ζ 2
i j

]}
, (5)

where � = k30d
2/3πε0 h̄ is the single atom spontaneous emis-

sion rate, k0 is the transition wave number, d = |d| is
the dipole matrix element between the ground and excited

states, ζi j = k0|ri j | = k0a
√∑

μ(iμ − jμ)2 (μ = x, y, z) char-

acterizes the dimensionless distance between two atoms, a
is the lattice constant, and αi j is the corresponding angle
between the dipole polarization direction d and the vector ri j
connecting the two atoms [see Fig. 1(a)].

The profile of the elastic and dissipative interaction is
shown in Figs. 1(b) and 1(c). When the distance between the
two atoms is small compared with the transition wavelength,
i.e., when k0ri j � 1, the short-range (1/r3) term dominates
in the elastic dipolar interaction. An exception occurs at the
so-called magic angle αm = arccos(1/

√
3) ≈ 54.7◦ where the

(1/r3) and (1/r2) terms vanish and the elastic dipolar inter-
action becomes much smaller. The inelastic interaction, how-
ever, becomes homogeneous at small distance with f (ri j ) →
�, reaching the limit of collective superradiant emission.
When the distance between the atoms is large compared to
the dipolar transition wavelength, i.e., when k0ri j > 1, the
magnitudes of the elastic and dissipative interactions are
comparable and the sign of the dissipative interaction can
become negative [blue area in Fig. 1(c)]. As we will show
in the following, the negative nearest-neighbor dissipative
interaction can effectively reduce the single atom decay rate.

The initial state of the system after a π/2 Rabi pulse is
a coherent spin state with all the atoms prepared in an equal
superposition of the ground and excited states

|ψ (t = 0)〉 = ⊗N
j=1

1√
2
(|g j〉 + eiφ j |e j〉), (6)

where φ j = kR · r j is the phase accumulated along the prop-
agation direction of the Rabi pulse. In the following, we
set exp(iφ j ) = 1. This can be achieved by either considering
a low-dimensional system with the Rabi pulse propagating
perpendicular to the atomic array/plane or by choosing a
wave vector kR such that φ j = 2πn where n is an integer.
For the sake of simplicity, we shall focus on the following
low-dimensional systems: (i) a 1D array along x and (ii) a
2D lattice in the x-y plane [see Fig. 1(a)]. Without loss of
generality, we assume that the dipole polarization direction is
in the x-z plane (d = d{sin θ, 0, cos θ}) i.e., ϕ = 0 as shown
in Fig. 1). Consequently, for two dipoles at sites i and j along
the y direction, we have αi j = π/2 and αi j = π/2 − θ if they
are along the x direction.

Mathematically, the squeezing parameter of a spin system
can be calculated as

ξ = minn

√
N

√
〈(S · n)2〉 − 〈S · n〉2

|〈S〉| , (7)

where the minimization is over unit vector n perpendicular to
the mean spin direction 〈S〉 = ∑

i〈si〉 with sμi = σ
μ
i /2 (μ =

X,Y,Z) as the μ component of the spin operator for the ith
atom.

Let us first consider a 1D array system with L sites (thus
N = L atoms). The dipolar many-body dynamics can be ob-
tained by solving the master equation directly for a system
with a few atoms (here up to N = 6). This is relevant for
state-of-the-art experiments working with optical tweezers
where small arrays of alkaline earth atoms can be trapped
[35,36]. Our exact numerical calculation indicates that the
system quickly evolves into a spin-squeezed state and the
squeezing disappears for longer evolution time. For N = 2,
the minimum squeezing obtained is smaller for smaller val-
ues of k0a as the dipolar interaction becomes stronger. For
N > 2, the dipolar interaction between non-nearest neighbors
contribute to the squeezing in a nonuniform manner, causing
a different behavior for the squeezing compared to that for
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FIG. 2. Spin squeezing obtained in the transient state of atoms
in a 1D array. (a) Plot of the minimum squeezing as a function of
atomic distance k0a for N = 2 (circles), 3 (squares), 4 (diamonds),
5 (up triangles), and 6 (down triangles). (b) Plot of the minimum
squeezing as a function of the dipole polarization orientation θ where
the squeezing drastically disappears around the magic angle θm. The
system size is N = 4 and the atomic spacing k0a = 0.8 (blue dash-
dotted line), 0.5 (green dashed line), and 0.2 (red solid line). (c) Time
dependence of the squeezing for an L = 4 system with only elastic
interaction (red dash-dotted line), only dissipative interaction (green
dashed line), and with both interactions (black solid line) at present.
(d) Dependence of the minimum squeezing on the system size L of
the 1D array obtained from the exact calculation (black squares),
DTWA (red circles), and cumulant expansion (green triangles).

N = 2 [Fig. 2(a)]. Still, for N > 2, the optimal squeezing
improves with increasing particle number N and smaller
interparticle separation k0a. The squeezing tends to disappear
for larger values of k0a ∼ 1 where the dissipative interaction
becomes comparable to the elastic interaction.

Since the dipolar interaction is sensitive to the dipole
orientation θ (note that αi j = π/2 − θ in 1D), we plot the
minimum squeezing as a function of angle θ for different
values of k0a in Fig. 2(b). Consistently with the magnitude
of the elastic dipolar interactions set by g(ri j ) [Fig. 1(c)],
the squeezing tends to disappear near the magic angle θm =
π/2 − αm ≈ 35.3◦ and the variation of the minimum squeez-
ing as a function of angle θ becomes more pronounced for
smaller k0a. To better understand the role of the elastic and
dissipative interaction on the spin squeezing, we show the
time dependence of the spin squeezing for a system with
N = 4 atoms in Fig. 2(c). Spin squeezing is generated for
all the three cases presented where the squeezing is as ex-
pected optimal for a system with only elastic interactions
and surprisingly tiny but not zero if there is only dissipative
interaction. In fact, in the absence of elastic interactions, the
optimal spin squeezing could be �1 dB when the dissipative
interaction becomes homogeneous (collective emission). For
the real system, it is the interplay between both elastic and
dissipative interactions that dictates the achievable squeezing.

Since the Hilbert space scales as 4N , an exact solution of
the master equation becomes impractical for a larger system

size and hence we seek an approximate numerical method, the
recently developed discrete truncated Wigner approximation
(DTWA) [28]. The equation of motion for an operator A is
given by dA/dt = Tr[ρ̇A] which usually involves multiple-
point correlators. In DTWA, the closed set of differential
equations are obtained within the mean-field approximation
where only one-point correlators are involved [37]. To take
into account quantum fluctuations, the mean-field equations
are evolved for many different initial conditions chosen by
randomly sample the initial quantum spin distribution func-
tion. For the initial state considered in this work, this is done
by fixing 〈sXi 〉 = 1/2 and randomly choosing 〈sYi 〉, 〈sZi 〉 =
±1/2. The expectation values are obtained by averaging the
results of the corresponding observable over all the initial
samplings.

For comparison, we also study the system with the cumu-
lant expansion method [37] where the closed set of equations
involve both one-point and two-point correlators. The three-
point correlators and higher-order correlators are approxi-
mately decomposed into one-point and two-point correlators
[37]. In a wide parameter regime, these two methods give
qualitatively similar results. However, our simulation also
indicates that the cumulant expansion method is not adequate
to describe the system when entanglement becomes relevant,
in our case manifested as significant spin squeezing. The
variance of the average spin [the square root term in Eq. (7)]
may become negative and thus the squeezing pathologically
diverges. In this parameter regime, dissipation is less impor-
tant and the DTWA can be trusted, at the least at the qualitative
level as demonstrated in Ref. [28].

In Fig. 2(d), we show the optimal squeezing obtained in
the 1D system for different system sizes. Despite that there
is a discrepancy between the three methods, DTWA still
qualitativelly captures the behavior of the minimum squeezing
for small atom number. The value of the minimum squeezing
quickly saturates as a function of atom number N , indicating
that, at k0a = 0.5, the interaction between two far-separated
atoms is too weak to contribute to the squeezing. For much
smaller values of k0a, more atoms can be packed in the
same spatial region and interactions between close-by atoms
become stronger. Hence, a better optimal spin squeezing can
be obtained. To obtain the spin squeezing more accurately,
the DTWA method could be generalized by including the
two-point and even higher-order quantum correlations in the
equations of motion [38,39].

For a 2D square lattice with atom number N = L2, where
L is the dimension of the system along one direction, the
dipolar interaction becomes anisotropic, i.e., αi j are usually
different between different pairs of atoms. To investigate the
spin squeezing of a large-sized 2D system, we adopt the
DTWA method [37]. As shown in Fig. 3(a), the minimum
squeezing of a 2D system still becomes optimal at small
values of k0a. However, the dependence of squeezing on k0a
is nonmonotonous and the optimal squeezing could be as
large as 4.5 dB at k0a = 0.5 and θ = 0. The fact that the
system exhibits a much better squeezing at θ = 0 is related
to the fact that all the dipoles are aligned in a side-by-side
configuration in the 2D plane, giving rise to a more isotropic
dipolar interaction between any two nearest neighbors. At
θ = π/2, the orientation of the dipoles is side by side along
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FIG. 3. Spin squeezing in the transient state of the 2D optical lat-
tice clock. The results are obtained with the DTWA method. (a) Plot
of the minimum squeezing as a function of the atomic distance
k0a for θ = 0 (red squares) and θ = π/2 (black circles). (b) Plot
of the minimum squeezing as a function of the dipole polarization
orientation θ (note that we have taken ϕ = 0). (c) Time dependence
of the squeezing (left axis) and the average magnetization 〈SX 〉/N
(right axis) for a 2D system with L = 10 (solid lines), 20 (dashed
lines), and 30 (dotted lines) at small atomic spacing k0a = 0.05.
(d) Dependence of the minimum squeezing on the system size L of
the 2D system. The error bars in panel (a) indicate the uncertainty of
the DTWA results due to the finite number of sampling for the initial
state. In panels (a), (b), and (d), the results obtained with cumulant
expansion (green symbols) have been included for comparison.

y and head-to-tail along x. Hence, the dipolar interaction
between different neighbors may cancel each other due to its
anisotropic character and spin squeezing is not favored.

As shown in Fig. 3(b), the dependence of the optimal
squeezing on the angle θ resembles the behavior of the 1D
system. However, the value of the angle θ for which the spin
squeezing disappears is different from 1D. This is because the
magic angles αm cannot be reached simultaneously along all
directions in the 2D plane.

Recently, a spin-ordered phase has been identified for
the 2D spin system in the presence of a 1/r3 dipole-dipole
interaction [40]. In this phase, the observable quantity 〈SX 〉/N
first decays for a very short time and then remains at a certain
value for a long time. In our system, at k0a � 1, signature of
a similar spin-ordered phase shows up even in the presence
of collective emission ( fi j ≈ �). Our calculation shows that
the spin-ordered phase is accompanied by a long lasting
and oscillatory spin-squeezing which becomes prominent for
larger systems [Fig. 3(c)]. In fact our numerical simulations
in 2D suggest that squeezing survives longer for larger system
sizes, an observation that could have important implications
for the metrological usefulness of dense dipole arrays [41].
Nevertheless, the dissipative interaction eventually kills this
spin-ordered phase. Similarly to the dependence of the spin
squeezing on the system size in 1D [Fig. 2(d)], the minimum
spin squeezing also quickly saturates in 2D with increasing
system size [Fig. 3(d)]. In the cumulant expansion, the optimal
spin squeezing also quickly saturates. However, it exhibits an

FIG. 4. [(a) and (c)] Time dependence of 〈SX 〉/N and 〈SY 〉/N for
a 1D system with particle number N = 1 (black solid lines), N =
2 (black dashed lines), and N = 100 (blue squares) at k0a = 4.23.
[(b) and (d)] The same results for a 2D system.

oscillatory behavior which is likely due to the interferences
caused by finite-size effects.

In the presence of strong dissipation, the excited atoms
inevitably decay to their ground state. For noninteracting
atoms, the decay of each atom is solely determined by the
spontaneous emission constant � with 〈sX 〉 = 1

2e
−�t/2. An-

alytic solutions can also be obtained for an interacting two-
atom system. The closed equations of motion are

d

dt
〈σ+

i 〉 = −�

2
�〈σ+

i 〉 + 1

2
( fi j − igi j )

〈
σ+
j σ Z

i

〉
, (8)

d

dt

〈
σ+
i σ Z

j

〉 = −3�

2

〈
σ+
i σ Z

j

〉 − �〈σ+
i 〉 − 1

2
( fi j + igi j )〈σ+

j 〉
− fi j

〈
σ+
j σ Z

i

〉
. (9)

FIG. 5. [(a) and (c)] Contrast and frequency shift as a function
of k0a at �t = 2 for a 1D system with particle number N = 1 (black
solid lines), N = 2 (black dashed lines), and N = 100 (red circles
and blue squares). [(b) and (d)] The same results for a 2D system.
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To study the role of the dissipative interaction, it is instructive
to consider the situation where the elastic interaction gi j = 0.
Under this assumption, the exact solution has the following
simple form:

〈SX 〉/N = 1

2
e− 1

2 (�+ fi j )t

(
1 − fi j

2�
e−�t + fi j

2�

)
, (10)

which decays exponentially at the rate of � + fi j . Conse-
quently, the decay rate becomes slower than the single atom
spontaneous decay rate � if the inelastic interaction is nega-
tive fi j < 0, under the assumption that the elastic interaction
gi j ≈ 0. This condition can be fulfilled for large values of
k0ri j , for example, when αi j = π/2 and k0ri j ≈ 4.23 [see
Fig. 1(c)]. From the full expression of gi j and fi j [Eqs. (4)
and (5)], the optimal value of k0ri j that gives a vanishing
elastic interaction and negative dissipation can be analytically
estimated by letting sin ζi j = −1 which gives k0ri j = ζi j =
3π/2 ≈ 4.7, in agreement with the above exact numerical
value. The slow decay dynamics is similar to but also different
from the previously studied subradiance effect [42–44]. The
familiar subradiance effect occurs when the atoms are closely
packed and are prepared in an antisymmetric entangled state.
In our case, it occurs when the lattice constant is comparable
to the wavelength of the interrogated transition and for an
initial coherent spin states, both accessible in current clock
experiments.

For a system with many atoms, the decay rate depends
on the total number of nearest-neighboring atoms and the
geometry of the system. For example, as shown in Figs. 4(a)
and 4(b), the decay for an N = 4 system in 2D is much slower
than that of an N = 2 system in 1D. For a larger system in
2D, all the neighbors contribute to the decay dynamics in a
different way which complicates the dipolar dynamics. The
multiple contributions give rise to different behaviors at short
and long evolution times for an N = 102 system in 2D [see
Fig. 4(b)] [45].

In optical lattice clock experiments [46], two observables
are frequently measured: (i) the Ramsey fringe contrast, C =
2
√

〈SX 〉2 + 〈SY 〉2/N , and (ii) the density-dependent frequency
shift δν which can be calculated as tan(δν2πt ) = 〈SY 〉/〈SX 〉.
For a two-particle system, the contrast and frequency shift
can be obtained analytically [37]. In Fig. 5, we present the
numerical results for the contrast and the frequency shift as a
function of k0a. The contrast of the few-atom systems (N = 2
in 1D and N = 4 in 2D) exhibits a peak around k0a = 4.23
where the elastic dipolar interaction is very weak and the

corresponding frequency shift is very close to zero. This
offers a parameter regime where the clock’s performance can
be improved. For systems with a larger atom number, the
contrast and the frequency shift are qualitatively the same,
demonstrating again that the interaction from the next near-
est neighbors and beyond plays a small role in the dipolar
dynamics.

To observe the phenomena explored in this work, one
can consider the bosonic alkaline-earth atoms which have
zero nuclear spin and thus simple atomic structure [47].
For example, the 1S0 ↔ 3P1 transition of 88Sr atoms has a
transition wavelength λ = 689 nm and a natural linewidth
� = 2π × 7.5 kHz. The degeneracy of the three J = 1 levels
can be lifted by a magnetic field. For typical lattice constant
a ∼ 400 nm, the constant k0a ≈ 3.66 and hence f (k0a) < 0.
This setup provides a platform for the observation of the
slower decay dynamics. To observe the large spin squeezing,
one can instead choose the transition between the 3P0 and
3D1 states where the corresponding transition wavelength is
λ = 2.6 μm and the decay rate � = 2π × 290 kHz. At magic
wavelength, the lattice is identical for the two states and the
lattice constant a = 206.4 nm, the parameter k0a could be as
small as 0.25 [33], reaching the regime to observe a large spin
squeezing in a 2D system.

In conclusion, we have shown that the alkaline-earth-metal
atoms in optical lattices provide a platform for studying
dipolar many-body quantum physics. Particularly, we have
identified two regimes (i.e., k0a � 1 and k0a � 1) where
different many-body dynamics emerge and strongly depend
on the lattice spacing and the dipolar orientation. To enhance
the dipolar interactions the use of subwavelength lattices
could be an interesting direction [48–51]. A generalization
of the current work is to keep the external coherent Rabi
driving on during the dipolar dynamics where one may expect
richer dynamics and nontrivial steady states emerging from
the cooperation and competition between the drive, the elastic,
and the dissipative interactions.
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Campbell, Liang Jiang, and A. V. Gorshkov, Subwavelength-
width optical tunnel junctions for ultracold atoms, Phys. Rev. A
94, 063422 (2016).

[51] Y. Wang, S. Subhankar, P. Bienias, M. Lacki, T.-C. Tsui,
M. A. Baranov, A. V. Gorshkov, P. Zoller, J. V. Porto, and
S. L. Rolston, Dark State Optical Lattice with a Subwavelength
Spatial Structure, Phys. Rev. Lett. 120, 083601 (2018).

041602-7

https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1103/PhysRevLett.116.083601
https://doi.org/10.1103/PhysRevA.99.023802
https://doi.org/10.1103/PhysRevA.99.023802
https://doi.org/10.1103/PhysRevA.99.023802
https://doi.org/10.1103/PhysRevA.99.023802
https://doi.org/10.1038/s41567-017-0029-0
https://doi.org/10.1038/s41567-017-0029-0
https://doi.org/10.1038/s41567-017-0029-0
https://doi.org/10.1038/s41567-017-0029-0
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1038/ncomms11039
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1088/1367-2630/10/7/073015
https://doi.org/10.1103/PhysRevLett.117.233001
https://doi.org/10.1103/PhysRevLett.117.233001
https://doi.org/10.1103/PhysRevLett.117.233001
https://doi.org/10.1103/PhysRevLett.117.233001
https://doi.org/10.1103/PhysRevA.94.063422
https://doi.org/10.1103/PhysRevA.94.063422
https://doi.org/10.1103/PhysRevA.94.063422
https://doi.org/10.1103/PhysRevA.94.063422
https://doi.org/10.1103/PhysRevLett.120.083601
https://doi.org/10.1103/PhysRevLett.120.083601
https://doi.org/10.1103/PhysRevLett.120.083601
https://doi.org/10.1103/PhysRevLett.120.083601

