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Arrays of ultracold dipolar gases loaded in optical lattices are emerging as powerful quantum simulators
of the many-body physics associated with the rich interplay between long-range dipolar interactions, contact
interactions, motion, and quantum statistics. In this work we report on our investigation of the quantum
many-body dynamics of a large ensemble of bosonic magnetic chromium atoms with spin S = 3 in a three-
dimensional lattice as a function of lattice depth. Using extensive theory and experimental comparisons, we
study the dynamics of the population of the different Zeeman levels and the total magnetization of the gas
across the superfluid to the Mott insulator transition. We are able to identify two distinct regimes. At low lattice
depths, where atoms are in the superfluid regime, we observe that the spin dynamics is strongly determined
by the competition between particle motion, on-site interactions, and external magnetic-field gradients. Contact
spin-dependent interactions help to stabilize the collective spin length, which sets the total magnetization of
the gas. On the contrary, at high lattice depths, transport is largely frozen out. In this regime, while the spin
populations are mainly driven by long-range dipolar interactions, magnetic-field gradients also play a major role
in the total spin demagnetization. We find that the dynamics at low lattice depth is qualitatively reproduced by
mean-field calculations based on the Gutzwiller ansatz; on the contrary, only a beyond-mean-field theory can
account for the dynamics at large lattice depths. While the crossover between these two regimes does not display
sharp features in the observed dynamical evolution of the spin components, our simulations indicate that it would
be better revealed by measurements of the collective spin length.

DOI: 10.1103/PhysRevA.100.033609

I. INTRODUCTION

Ultracold gases provide an excellent platform to study
strongly correlated out-of-equilibrium quantum matter. So far,
a broad range of atomic, molecular, and optical systems [1–3]
including trapped ions [4–7] polar molecules [8,9], Rydberg
atoms [10–14], magnetic atoms [15–21], and cavity QED
arrays [22,23] has been used to realize quantum many-body
systems with long-range interactions and to probe equilibrium
properties and out-of-equilibrium dynamics in both pinned
and itinerant systems.

Magnetic atoms trapped in optical lattices [24] naturally
form a quantum simulator for complex S > 1/2 models due
to the exponential growth in Hilbert space [25,26]. In these
systems, the large number of spin degrees of freedom, as
well as the ability to create lattices with itinerant particles,
where neither motional nor interaction effects can be ne-
glected, quickly limits the capability of current state-of-the-art
numerical methods to tackle the complex quantum dynamics.
The high level of control and tunability in these simulation

platforms has already resulted in numerous pioneering exper-
iments in three-dimensional (3D) optical lattices. These in-
clude studies of extended Bose-Hubbard models [16] and spin
lattice models [27] with erbium atoms using S = 6 bosonic
and F = 19/2 fermionic isotopes, respectively, as well as the
spin dynamics of S = 3 bosonic chromium (52Cr) atoms in
both the superfluid and the Mott insulator regimes [15,17,18].

In this work we present experimental results together with
an extensive numerical study of the spin dynamics seen in
an array of bosonic 52Cr atoms in a 3D lattice. By tuning
the lattice depth, we explore the itinerant regime, where
spin dynamics and tunneling occur over similar timescales.
This regime is expected to be the most relevant for quantum
simulations, since the complexity is then such that exact
calculations are intractable by classical computers. We focus
on lattice depths that span the Mott insulator to superfluid
transition. The dynamics is initialized by rapidly rotating
a fully polarized equilibrium state, initially pointing in the
magnetic-field direction, to orient the atomic spins in a di-
rection perpendicular to the magnetic field, corresponding to
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a coherent superposition of all the magnetic sublevels. The
system is then left to freely evolve at a fixed lattice depth.
A residual magnetic-field gradient and both dipolar and con-
tact interactions generate spin dynamics beyond the expected
simple spin precession. Notably, the populations of the seven
different Zeeman sublevels are observed to evolve following
the spin rotation in a nontrivial way. We also investigate
theoretically the dynamics of the total magnetization (i.e.,
collective spin length) of the gas which tends to decay as the
system evolves.

Through our theoretical analysis we find that the system
dynamics falls into two general regimes of behavior. (i) At low
lattice depths, where the system is in the superfluid regime,
spin transport is important as the gradient field drives the
magnetic sublevels to spatially separate. The spin dynam-
ics happens in a way that is strongly affected by the on-
site interactions. We develop a mean-field Gutzwiller model
[28,29] to study this regime. The Gutzwiller model is able to
qualitatively describe the experimentally observed population
dynamics as well as the inhibition of the demagnetization
process due to the spin-dependent on-site interactions. This
is similar to the protection against demagnetization and the
persistence of ferromagnetic textures induced by the spin-
dependent contact interactions recently observed in a Bose-
Einstein condensate in a dipole trap [30]. (ii) In deeper lattices
transport is inhibited as the system enters the Mott insulator
regime. Here the dynamics of spin populations are driven
primarily by long-range dipolar interactions. We use a gen-
eralized discrete truncated Wigner approximation (GDTWA)
[15,31–33] to describe the dynamics in this frozen-atom
regime. Similar observations were reported before at deep
lattices [15]; however, what is surprisingly observed in this
study is that the spin population dynamics remains almost
independent of the lattice depth as the system approaches
the Mott insulating regime and that we are able to reproduce
well the observed dynamics using the GDTWAmethod over a
broad range of lattice depths.

The Gutzwiller method predicts a strong reduction of spin
dynamics as the lattice is raised and crosses the transition to
the Mott insulating state. However, this is at odds with the
experimental data, where a pronounced signature of the under-
lying quantum critical point in the spin population dynamics
is absent. We attribute this to the quantum fluctuations which
are not taken into consideration in the Gutzwiller treatment.
Instead of the abrupt change obtained within the Gutzwiller
approach, what is observed is a gradual change between the
two previously studied regimes: a classical ferrofluid without
lattices [34] and a correlated spin model at large lattice depths
[15]. We note that a clearer signature of the transition appears
in the theoretically calculated spin length, which we expect
could be measured in future experiments.

The paper is structured as follows. We discuss the exper-
imental system and introduce the corresponding generalized
Bose-Hubbard model that describes the dynamics. We then in-
troduce the Gutzwiller and the GDTWA methods and present
the results of a second-order perturbative treatment of the
spin dynamics. Next we study the dynamics starting from a
simplified two-site model, which can be simulated exactly.
We use the two-site model to identify key processes and to
also benchmark the validity of the Gutzwiller approximation

and the perturbative treatments. We then use the different
numerical approaches to model the experimentally observed
population dynamics at various lattice depths. We also study
the dynamics of the collective spin length (i.e., the dynamical
evolution of the total magnetization). We use both the popu-
lations and magnetization dynamics to look for signatures of
the superfluid to Mott insulator transition and to understand
the underlying physics in the two regimes.

II. SYSTEM AND HAMILTONIAN

Chromium atoms are loaded into a 3D optical lattice as
illustrated schematically in Fig. 1 and described by the lattice
vectors {uX ,uY ,uZ}. The lattice depth along each of the
three lattice vectors is proportional to V0. The spatial extent
of the system is determined by the harmonic confinement
Vtr = 1

2m
∑

α=x,y,z ω2
αx

2
α and the total number of atoms N ≈

3 × 104. The spin degree of freedom is encoded in the Zeeman
sublevels of the S = 3 ground state of the 52Cr atoms (see the
inset to Fig. 1). An external magnetic field in the direction
B̂ sets the quantization axis. This field has a bias value of
380 mG with the gradient lying approximately along the uZ
direction (see the inset to Fig. 1).

In the tight-binding regime chromium atoms in the lowest
band of the optical lattice are modeled as occupying Wannier
state spatial orbitals W (r − ri ), centered on each lattice site
ri. Here we consider the lattice site index i = (iX , iY , iZ ) a
triad of integers such that ri = ∑

α=X,Y,Z iαuα . The dynamics
of our system is described by the generalized Bose-Hubbard
model

Ĥ = −
∑

α=X,Y,Z

Jα

∑
〈i, j〉α

∑
m

â†m,iâm, j +
∑
i

Vtr (ri )N̂i

+ q
∑
j

∑
m

m2N̂m j − γB
∑
i

b(ri )
∑
mn

Szmnâ
†
m,iân,i

+ 1

2

∑
m,m′,n,n′

∑
i

Cmm′nn′
â†m,iâ

†
m′,iân′,iân,i

+ 1

2

∑
m,m′,n,n′

∑
i, j

Dmm′nn′
i j â†m,iâ

†
m′, j ân′, j ân,i, (1)

where the indices m,m′, n, n′ label the Zeeman sublevels of
the atoms and 〈· · · 〉α is used to indicate nearest neighbors
along the direction uα , with Jα the tunneling amplitude in this
direction. The operator âm, j (â

†
m, j) destroys (creates) a spin-3

bosonic particle in the m Zeeman sublevel at site j, N̂m j =
â†m, j âm, j , and the total number of atoms on each site is given by

N̂ j = ∑
m N̂m j . The constant part of the bias field is removed

by working in the rotating frame. In this frame the terms in
the Hamiltonian that do not preserve the total magnetization
are rotated out and only the terms that preserve it are retained.
The remaining contribution from the external field is the gra-
dient term described by b(r) ≈ br · uZ , with Sx,y,zmn the x, y, z
components of the spin-3 matrices, respectively, and γB =
gμB/h̄, where g � 2 is the Landé g factor and μB is the Bohr
magneton. The atoms also experience an effective quadratic
Zeeman energy shift q that arises from tensorial light shifts
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FIG. 1. Schematic of the system diagram indicating the 3D geometry of the optical lattice, the interactions, and tunneling processes. The
magnetic field (with direction B̂ in the uX -uY plane) has a gradient lying along the uZ direction (lower inset). Each spin-3 chromium atom also
has its sublevels shifted by a quadratic Zeeman term (upper inset).

of the atomic levels.1 The quadratic Zeeman energy q varies
with the lattice depth (see, e.g., Ref. [15]).

The last two terms in the Hamiltonian (1) describe the
interactions. The contact interaction is of the form [35]

Cmm′nn′ = U0δm,nδm′,n′ +U1

∑
α

Sα
mnS

α
m′n′ , (2)

where Un = c̃n
∫
dr|W (r)|4. The contact interaction can also

include higher-order spin terms (for the full form see
Appendix B), but for the states accessible during the dynamics
in consideration these have negligible effect compared to the
contributions from the U0 and U1 terms. Finally, the dipole-
dipole interactions (DDI) are described by (see [36])

Dmm′nn′
i j = (

1
2S

x
mnS

x
m′n′ + 1

2S
y
mnS

y
m′n′ − SzmnS

z
m′n′

)
×Udd (ri − r j ), (3)

where

Udd (R) = 4π

3
cddF−1

[(
1 − 3

(k · B̂)2
k2

)
F (|W (r)|2)2

]
(4)

is the kernel of the time-averaged (due to the rapid preces-
sion of the spin moments in the bias field) DDI between
atoms in Wannier states separated by distance R, with cdd =
μ0(gμB)2/4π . Here we have used F and F−1 to denote the
Fourier transform and its inverse, respectively. Because the
DDIs decay rapidly with spatial separation, we restrict the
summation to pairs of particles separated by up to one lattice
site in each direction. This restriction reduces the computa-
tional difficulty and we find that it does not affect the main
results of our paper, as long as only a qualitative agreement is
sought.

1Because 52Cr has no hyperfine structure, the magnetic field does
not create a quadratic Zeeman effect.

To understand the system dynamics it is important to
quantify the many microscopic parameters of the system
which appear in the Hamiltonian. We summarize these values
for three cases of the lattice depth V0 in Table I. We note
that the 3D lattice considered here is nonseparable and we
approximate the Wannier functions of the ground band as
Gaussians in order to obtain estimates of the interaction terms
{U0,Udd (R)}. The initial distribution of the atoms in the
lattice depends on lattice depth because it varies the strength
of the on-site interactions (Un) but also because the focused
lasers used to make the lattice contribute to the harmonic
confinement which increases with lattice depth.

In our experiments an initial state is produced by loading
a Bose-Einstein condensate of Cr atoms spin polarized in the

TABLE I. Parameters for different lattice depths V0 measured in
units of the recoil energy Er for λ = 532 nm. Here ωz is the estimated
trapping frequency in the direction of the magnetic-field gradient.
After the loading, sites are populated with at most three atoms, which
is the upper cutoff of our simulation. Note thatU1 = 7.40 × 10−2U0,
U2 = 0.795U0, andU3 = −4.71 × 10−3U0. The gradient, which does
not vary with lattice depth, is given by γBb(ri ) = 29 × 106 Hzm−1 ×
ri · ûZ , where the lattice spacing in the ûZ direction is 269 nm. The
values of the quadratic Zeeman shifts used in the simulations are
given in Fig. 3(o).

Parameter (Hz) V0 = 3Er V0 = 9Er V0 = 15Er

U0/h 1250 2860 4190
ωZ/2π 279 337 387
JX/h 917 106 18.6
JY /h 11.8 5.67 × 10−2 1.11 × 10−3

JZ/h 1380 297 82.3
Udd (0)/h −6.96 −15.9 −23.2
Udd (±uX )/h 2.86 3.02 3.02
Udd (±uY )/h −0.176 −0.175 −0.175
Udd (±uZ )/h −2.52 −2.60 −2.62
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m = −3 sublevel into the optical lattice at the desired depth
V0. We assume that the atoms are initially in equilibrium.

A fast π/2 microwave pulse (∼5 μs long) is then applied
to rotate the atomic spins to be along the spin x axis, thus
in a superposition of all seven Zeeman sublevels. The corre-
sponding populations Nm(t ) are then measured as a function
of hold time after the pulse, using Stern-Gerlach imaging.
The observed evolution in these populations (see data in
Fig. 3) motivates the theoretical analysis that we develop in
the following section. For our parameters the superfluid to
Mott insulator transition is predicted to occur according to the
Gutzwiller model at approximately Vc ≈ 8Er , where Er is the
recoil energy for λ = 532 nm.

III. THEORETICAL METHODS

A. Gutzwiller method

The Gutzwiller method is a mean-field technique suited
to describing bosons in an optical lattice. This approach has
been applied to spin-1 bosons (see, e.g., [28,29]), but here
we consider the extension of this method to describe spin-
3 bosons with DDIs. The Gutzwiller method treats on-site
terms exactly and intersite couplings (due to tunneling and
interactions) at the mean-field level. The system state in
this method is written as a product of states at each lattice
site, i.e.,

|ψ (t )〉G =
∏
i

|ψ (t )〉i, (5)

|ψ (t )〉i =
∑
N

f iN(t )|N〉i, (6)

where |N〉i = |N3,N2,N1,N0,N−1,N−2,N−3〉i is the spin-3
Fock state basis at site i and f iN are the respective amplitudes
of the on-site expansion. It can then be shown that the equation
of motion for the state at site i is given by

ih̄
d

dt
|ψ (t )〉i = Ĥ i

G|ψ (t )〉i, (7)

where Ĥ i
G is the Hamiltonian at lattice site i. This contains

the exact on-site Hamiltonian Ĥi with all the on-site terms of
Eq. (1) and the mean-field contribution from nearest neigh-
bors, giving [37]

Ĥ i
G = Ĥi −

∑
α

Jα

∑
j (i)α

∑
m

[〈
âm, j (i)α

〉(
â†m,i −

1

2
〈â†m,i〉

)
+ H.c.

]

+
∑

m,m′,n,n′

∑
j �=i

Dmm′nn′
i j 〈â†m′, j ân′, j〉

×
(
â†m,iân,i −

1

2
〈â†m,iân,i〉

)
, (8)

where j(i)α are the nearest neighbors to site i in the α direction
and we also choose to include only the sum over nearest
neighbor j in the DDI term.

The Gutzwiller ansatz reduces the Hilbert space dimension
significantly and couples sites only through mean-field terms.
As such, if every site is identical, the 3D problem only
requires the solution at one site, i.e., f iN(t ) → fN(t ) for all
i. However, in our problem the magnetic-field gradient and

the harmonic confinement break the translational symmetry.
Thus, the system can no longer be reduced to a single site
within the Gutzwiller approximation. To produce a computa-
tionally tractable case we use a model with spatially varying
coefficients only along the uZ direction and assume the other
two perpendicular directions to be spatially invariant, i.e.,
we use the ansatz f iZN (t ) to describe the dynamics which as-
sumes the sites i = (iX , iY , iZ ) behave identically to (0, 0, iZ ).
This choice leaves us explicitly modeling an effective one-
dimensional problem along the direction of the gradient field,
as schematically shown in the inset to Fig. 1, yet allows us to
retain the 3D character of the long-range DDIs and tunneling.

Due to the spin degrees of freedom, the local Hilbert
space grows rapidly with the number of atoms per site. We
restrict f iZN to {N :

∑
m Nm � 3}, i.e., up to three atoms per

site, which should be adequate as the experimental initial
state typically has some occupation of doublons (i.e., sites
with two atoms), but the number of triply occupied sites is
negligible both initially and during the dynamics. To match
the experimental system we consider a system of 30 lattice
iZ sites (see Appendix A for additional details). The initial
state is computed by finding the Gutzwiller ground state for
Ntot = 18 atoms (occupying the 1D line of sites along the
gradient direction), all restricted to the m = −3 sublevel. We
note that this choice for Ntot does not reproduce the initial
number of doublons observed experimentally. However, in
the experiment the total number of atoms is observed to
decrease rapidly with time as N (t ) ≈ N (0) exp(−γ t ), where
γ ≈ 100 s−1 (see Appendix B) due to dipolar relaxation.
Our Gutzwiller theoretical model does not include losses,
but our choice of Ntot gives a doublon fraction closer to the
average value observed experimentally over the �10 ms time
period. This accounts for the rapidly decaying population of
doubly occupied sites and our effective trapping conditions
(the choice of Ntot is discussed further in Sec. IVB). The
initial-state density distribution for various lattice depths is
shown as the black line in Fig. 3(p), with the result for V0 =
15Er demonstrating a uniformly filled Mott insulator state. To
initiate the dynamics we apply a π/2 spin rotation about the y
axis to this initial state.

B. GDTWA

In the deep lattice regime we describe the system with a
spin Hamiltonian of the form

Ĥ = γB
∑
i

b(ri )Ŝzi + q
∑
i

(
Ŝzi

)2

+ 1

2

∑
i, j �=i

Udd (ri − r j )
[
1

2

(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

) − Ŝzi Ŝ
z
j

]
, (9)

where the first two terms account for the linear and quadratic
Zeeman fields and the last term describes the long-range
dipolar interactions that couple Cr atoms in different sites.
A fraction of sites are doubly occupied in the experiment
and we model each of these sites as a pseudoatom of spin
6, i.e., the maximum total spin of two spin-3 Cr atoms,
and their dynamics are still governed by Eq. (9), but with
Ŝx,y,z replaced by operators corresponding to S = 6. This
treatment is motivated by the fact that the initial spin state
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for each doubly occupied site is in the symmetric S = 6
manifold and the dominant on-site contact interactions do not
change this total spin [see Eq. (2)]. We have also checked
numerically that this is a good approximation. We solve the
spin dynamics under the Hamiltonian (9) by applying the
GDTWA, a numerical approach first introduced in Ref. [15].
In the GDTWA approach, quantum dynamics is obtained by
properly sampling the initial quantum state in phase space
and averaging over the ensuing trajectories [38]. The GDTWA
method has been shown to be capable of capturing quantum
correlations developed during spin dynamics [15,27]. With
this method, we are able to perform calculations including
the effect of quantum fluctuations in a relatively large system
(lattice size 13 × 6 × 13) and check that a convergence in
system size is reached within experimental uncertainties. The
population of a spin state m is obtained via combining the
contributions from both singly and doubly occupied sites

Nm(t ) = η(t )
6∑

M=−6

〈3,m, 3,M − m|6,M〉2NS=6
M (t )

+ [1 − η(t )]NS=3
m (t ), (10)

where NS=3,6
M (t ) is the averaged population on a spin state

M calculated for the singly and doubly occupied sites, re-
spectively. The term 〈3,m, 3,m′|6,M〉 denotes the Clebsch-
Gordan coefficients and η denotes the fraction of atoms in
doubly occupied sites. Due to atom loss from doubly occupied
sites, η varies with time. The time dependence that we use for
η is extracted from experimental measurements of the total
atom number N (t ) (see Appendix B).

C. Perturbative treatment

Due to the complexity of the Hamiltonian (1), many factors
play a role in the system evolution following the spin rotation.
In order to have a better grasp of the contributions of the var-
ious terms in the Hamiltonian, we first consider the dynamics
of the system in the short-time limit using perturbation theory.

We consider the dynamics of an initial state with N =
2 atoms occupying two neighboring lattice sites, i = 1, 2,
described by the initial state

|ψ (0)〉 =
3∑

m,n=−3

fm fnâ
†
m,1â

†
n,2|0〉1|0〉2.

where |0〉i is the vacuum state in site i. The fm coefficients
specify the different spin amplitudes after the spin rotation,

f0 = −
√
5
4 , f±1 =

√
15
8 , f±2 = −

√
3
32 , and f±3 = 1

8 . To second
order in t the evolution of the population of the different
Zeeman levels is given by

N (2)
m (t )= 〈N̂m(0)〉− it〈[N̂m, Ĥ2]〉− t2

2
〈[[N̂m, Ĥ2], Ĥ2]〉, (11)

where Ĥ2 is the Hamiltonian (1) specialized to two sites
separated by uZ .

We find that the term proportional to t vanishes, and to
second-order in t , the spin population dynamics for m = 0 is
given by

N (2)
0 (t ) = 5

8 − 45
16 t

2Udd (uZ )
[
q + 3

4Udd (uZ )
]
. (12)

The evolution of the population of the other sublevels is of
a similar form and presented in Appendix C. We have also
ignored in the perturbative treatment the dynamics of doubly
occupied sites. As explained in Appendix C 3, the perturbative
treatment tends to break down very quickly when those terms
are included and a better approximation is obtained when
they are excluded. We also note that up to this order, our
perturbative result immediately generalizes to the many-body
system by simply summing over all pairs of particles.

Equation (12) provides valuable insight into the short-
time dynamics of the system. First, it shows that the DDIs
between neighboring sites and the quadratic Zeeman term are
what drive the dynamics at short times for all lattice depths.
Tunneling or linear magnetic-field gradients, when present,
only cause redistribution of the spin populations at a higher
order (see Appendix C 2).

IV. ANALYSIS OF DYNAMICS

A. Double-well dynamics

The computational complexity of simulating the Hamilto-
nian (1) makes any exact treatment beyond a few lattice sites
challenging. In order to benchmark our methods we compare
the predictions of the Gutzwiller dynamics and the perturba-
tive expressions obtained above to the exact dynamics of a
double-well system with two atoms. In Fig. 2(a) we plot the
proportion of doubly occupied sites (doublons) in the initial
states. This shows that the Gutzwiller approximation predicts
that the sites become singly occupied forV0 � 8Er , indicating
the existence of a superfluid to Mott insulator transition at
V0 ≈ 8Er (we adjusted the tunneling and nearest-neighbor
DDIs so the lattice depth at which the transition occurs is
similar to the 3D system). In contrast, the exact double-well
result shows that the doublon fraction varies smoothly with
lattice depth. Nevertheless, the range of lattice depths where
doubly occupied sites are dominant is well captured by the
Gutzwiller model. Figures 2(b)–2(f) compare the perturbative,
exact, and Gutzwiller dynamics for the m = 0 population. As
a mean-field method the Gutzwiller approach is not expected
to provide an accurate description of a two-particle system;
however, the comparison reveals that Gutzwiller results are
qualitatively correct for low lattice depths V0 � 8Er . In this
regime the populations tend to oscillate. Furthermore, we note
that we have not included the role of doubly occupied sites in
the above expressions (see Appendix C for the full results).
We find that by including the doublon sites the solution
matches the initial curvature of the exact solution [see the inset
of Fig. 2(b)]. However, this leads to a divergence between
the two approaches for longer times (see Appendix C 3). The
slower dynamics of the second-order perturbation theory for
singly occupied sites follows the exact solution for a longer
time as shown throughout the figures. For deeper lattices
V0 > 9Er , where the system is in the insulating regime and
doublons are negligible, the N0 population tends to decay and
is well described by the perturbative result. In this regime, in
contrast, the Gutzwiller model shows suppressed population
dynamics. This reveals the failure of the method to account
for the necessary quantum fluctuations that mainly drive the
dynamics in the frozen-atom limit.
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FIG. 2. Comparison of predictions for N0 population dynamics in the double-well system Ĥ2. (a) Doublon fraction of the two-particle
initial state. (b)–(f) The population of the m = 0 substate as a function of time for a double-well system allows us to compare the short-time
perturbative expansions at second-order to the Gutzwiller dynamics, as well as the exact dynamics for five different lattice depths. In the deep
lattice the second-order formula is a good approximation for longer times. The simulations parameters are given in Table I, with the tunneling
and nearest-neighbor DDIs adjusted so the lattice depth at which the transition occurs is similar to the 3D system and q/h = 2 Hz. The inset
in (b) shows the perturbative result (12) extended to include doublons, demonstrating that they give rise to rapid short-time dynamics captured
in the exact solution, but limiting the applicability of the perturbative result to short times. (g) Difference of Gutzwiller and second-order
populations compared to the exact population at 4 ms, as a function of lattice depth.

To quantify the validity of the different methods, in
Fig. 2(g) we plot the accumulated error during the time
evolution vs lattice depth. It explicitly shows that while the
Gutzwiller model gives a better description at low lattice
depths, the perturbative formula describes well the short-time
dynamics in the Mott regime. Note that the GDTWA results
were not shown in this two-site comparison as the GDTWA is
a method based on semiclassical trajectories, and thus requires
N � 2 for convergence.

B. Full system dynamics

In this section we use the Gutzwiller ansatz and the
GDTWA to study the dynamics of larger systems in the
parameter regimes used for the experimental measurements
of the spin population dynamics. As discussed above, in the
Gutzwiller model we do not include the particle loss (due to
dipolar relaxation) dynamically. Instead, we account for it
by sweeping over a range of particle numbers Ntot and find
that the experimental dynamics is best captured by Ntot = 18.
We note that the Gutzwiller treatment is not adequate in
the deep lattice limit, where we use the GDTWA formalism,
including the doublons and losses, to account for the observed
dynamics.

The second fitting parameter of the theory is the quadratic
Zeeman shift q. Since it arises from tensorial light shifts, it is
expected to vary with lattice depth V0, and while its precise

value is not known ab initio, experimental evidence [15]
suggests that its magnitude is bounded by |q/h| � 6 Hz in the
range of lattice depths considered. The observed dynamics,
most notably at short times, depends strongly on the sign and
magnitude of q [see, e.g., Eq. (12)]. We have determined the
values of q that give the best fit to the initial dynamics. The
optimized values of q are shown in Fig. 3(o) for the Gutzwiller
and GDTWA methods.

For V0 < 10Er the optimal value of q determined from the
Gutzwiller method is within the expected range of values.
However, for deeper lattices a much larger q value is required
to achieve dynamics of magnitude similar to that observed
experimentally. This suggests that the Gutzwiller dynamics
is failing in the deep lattice regime, consistent with our
observations of the double-well dynamics. In fact, we know
that quantum fluctuations, which play a key role in driving the
dynamics in the Mott insulator regime, are not accounted for
in the Gutzwiller model. Hence, the artificially large q value
obtained when fitting Gutzwiller results to the experimental
data compensates for the absence of these fluctuations in the
simulation. For the GDTWA calculations a value of q/h =
2 Hz is found to provide good agreement for all lattice depths
greater than 8Er .

In Fig. 3(p) we show the spatial distributions of the
different levels at t = 5 ms and various lattice depths in
the Gutzwiller model, which is a feature that has not been
resolved in our experiment. At low lattice depths (see the
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FIG. 3. Comparison of simulation (lines) to experiment (markers). Blue (solid line with circles) indicates m = 0, red (dashed line with
squares) indicates m = 1, yellow (dot-dashed line with crosses) indicates m = 2, and purple (dotted line with diamonds) indicates m = 3. Pale
markers indicate the negative m experimental populations. ForV0 < Vc the Gutzwiller model is shown, while forV0 � Vc the GDTWAmodel is
shown, with the corresponding q/h = 2 Hz Gutzwiller solution shown in gray. Experimental error bars are from statistical standard errors and
from 10% uncertainty in the estimated lattice depths. (o) Quadratic Zeeman field q fitted at each lattice depth in the simulations based on the
Gutzwiller ansatz and the q/h = 2 Hz value used in the GDTWA. The light gray region indicates the range of acceptable q values. The light
blue circles correspond to optimal values for the Gutzwiller approximation which however are outside the acceptable range. (p) Distribution
of the whole cloud across the lattice at t = 0 (black line) and distribution of individual Zeeman levels across the lattice at t = 5 ms.

V0 = 2Er result) the Gutzwiller method shows that the spin
states spatially separate in wave packets that are appreciably
narrower than the initial density distribution (black). The
spin-dependent transport is driven by the magnetic-field gra-
dient and causes the center of mass of the various wave
packets to undergo spatial oscillations. The packets tend to
be well separated at the time when there is a large dip in
the N0 population in Fig. 3(a) (and corresponding peak in
the higher |m| populations). This observation emphasizes the
relevant role played by the interplay between the magnetic-
field gradient, which drives the spin transport, and the spin-
dependent contact interactions which lead to a redistribution
of the spin populations as observed in the Gutzwiller pre-
dictions [see Figs. 3(a)–3(d)]. As the lattice depth increases
spin transport is inhibited and the wave-packet oscillations
gradually become less visible. The Gutzwiller results for
the density distributions at V0 = 8Er reveal a small center-
of-mass separation of the spin components (here the wave
packets are broad and mostly overlapping). The Gutzwiller
solution predicts that the system will become fully insulating,
with one atom per site and all transport dynamics freezing
out, as the lattice depth exceeds a critical value of Vc ≈
8Er . For V0 > Vc the Gutzwiller model fails to capture the

experimentally observed spin population dynamics. In con-
trast, in this regime the GDTWA is able to reproduce very
well the observed dynamics, even for V0 as shallow as Vc, as
shown in Figs. 3(h)–3(n).

The sharp change of behavior of the Gutzwiller dynamics
as the system crosses the Mott insulator transition is further
illustrated in Figs. 4(a)–4(c), which show the m = 0 popula-
tions with lattice depth at three times. There we can observe
that the Gutzwiller calculations show almost no dependence
as a function of lattice depth as soon as the Mott transition
is reached. This can also be seen in Fig. 3, which shows that
dynamics almost disappears in the Gutzwiller approach above
Vc. Such a change in behavior aroundVc = 8Er is also observ-
able in the experimental result but in a much less pronounced
way. This is because, above the Mott transition, spin dynamics
mainly occurs due to intersite DDIs and involves the growth
of quantum correlations, a feature which can be reproduced
by the GDTWA approach [15] but not by the Gutzwiller
simulations. As a consequence, there still exists significant
dynamics at large lattice depths, which the Gutzwiller ansatz
fails to capture.

Although we only observe a gradual and smooth evolution
of spin dynamics as the lattice spans the Mott to superfluid
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FIG. 4. (a)–(c) Gutzwiller (solid line) and GDTWA (dashed line) m = 0 populations compared to experimental results (symbols) as a
function of lattice depth. (d) Time τ for m = 0 population to decay to N0/Ntot = 0.25.

transition, it is worth pointing out that the observations are
qualitatively different above and below the transition. Below
the transition an oscillation is observed and above the tran-
sition the population follows a monotonic evolution, with a
weak lattice depth dependence. To better quantify this claim,
we plot in Fig. 4(d) the time at which the m = 0 fractional
populations decay from their initial value to 0.25. A clear
difference is observed below and above the Mott transition.
While the Gutzwiller model overestimates the amplitude of
the oscillation for V0 < Vc, it correctly captures its shape.
In particular, it is able to capture the slowing down of the
dynamics which is experimentally observed as the lattice
depth is raised, as highlighted in Fig. 4(d). To physically
understand this slowing down, it is worth referring to our
recent results [30], which show that when the dipoles are tilted
compared to the magnetic-field axis by π/2, no spin dynamics
can arise in the absence of magnetic-field gradients. The point
is that for Cr atoms the dominant component of the contact
interactions (set by the c1 coefficient; see Appendix B) tends
to favor alignment and prevent demagnetization. To leave the
initially polarized stationary state, a coupling between spin
and motional degrees of freedom is needed, which is here
provided by the gradient of the magnetic field. As shown in
Fig. 3(p), an important effect of the lattice potential is to re-
duce the relative motion of the different spin states, therefore
reducing the effect of the magnetic-field gradient and also
effectively screening the role of contact interactions in the
population dynamics by favoring sites populated by a single
atom. Under these conditions, DDIs become dominant. The
interplay of DDIs with magnetic-field gradients and quadratic
shifts all together can cause spin demagnetization. For the
range of lattice depths accessible in the experiment the time
decay rate is almost independent of lattice intensity, as shown
in Fig. 4(d).

The GDTWA successfully captures the magnitude of the
population decay for V0 > Vc. In fact, an unexpected out-
come of the comparison between the experimental data and
the GDTWA is that GDTWA reproduces well the dynam-
ics even for lattice depths barely above the Mott transi-
tion. At large lattice depths, the disagreement of the ex-
perimental data with Gutzwiller results together with the
good agreement with the GDTWA approach confirms that a
new regime is reached where the spin dynamics is governed
by different physical processes. As mentioned above, the
large lattice depth regime is impacted by strong quantum

correlations. We also observe in the simulations that while
spin dynamics is mostly driven by contact interactions at
shallow lattice depths, it is almost entirely driven by DDIs at
large lattice depths (V0 > Vc).

V. TOTAL MAGNETIZATION AND GAP PROTECTION

The dynamical evolution of the populations of the Zeeman
levels, as presented in Figs. 3(a)–3(n), varies smoothly when
crossing the underlying superfluid to Mott insulator transition.
In order to better understand the spin dynamics in both the
superfluid and Mott insulator regimes, we now study the dy-
namics of the collective spin length, corresponding to the total
magnetization, which we find better reveals the underlying
abrupt transition. It is given by

〈S̄〉 =
√

〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2. (13)

Here Ŝx,y,z = ∑
i

∑
m,n S

α
mnâ

†
m,iân,i are collective spin observ-

ables. For the case of an initial state following a π/2 rotation,
the quantity 〈Ŝz〉, which is conserved during the dynamics, is
equal to zero, and therefore 〈S̄〉 =

√
〈Ŝx〉2 + 〈Ŝy〉2.

In Fig. 5 we plot the dynamics of the collective spin
length obtained by the Gutzwiller predictions (V0 < 8Er) and
GDTWA (V0 � 8Er). The dashed green line also shows the
short-time dynamics obtained from perturbation theory of
the double-well system up to terms quadratic in time, O(t2),
summed over pairs of atoms at neighboring lattice sites:

〈S̄〉 ∼
∑
i

Ni

(
3 − 3t2

2

[
5q2 + [γ b(ri )]2

+ 27

2

∑
j (i)

[Udd (ri − r j )]2
])

, (14)

where Ni is the population at site i and the sum over j (i)

includes all of site i’s nearest neighbors. This is dominated
by the large magnetic gradient term and is therefore largely
independent of lattice depth.

The collective spin length provides direct information of
the spin coherence and it is experimentally accessible in a
Ramsey sequence [8,9,30] performed by applying a π/2 pulse
after the free evolution before measuring the population. Mea-
surements of the collective spin length can also be obtained
from Faraday rotation spectroscopy as this technique gives
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FIG. 5. Total spin as defined by Eq. (13) for a range of lattice depths. The blue solid line indicates the total spin using the Gutzwiller model,
with the results beyond the lattice depth Vc that the Gutzwiller model is considered reliable shown in gray. The red dot-dashed line indicates
the GDTWA result and the green dashed line gives the short-time second-order expansion, found by summing Eq. (14) over all pairs of atoms.
(o) Total spin in a double-well system (see Fig. 2) using the exact method with different lattice depths.

access to the transverse spin component [39–41]. Two lead-
ing processes are expected to generate magnetization decay:
the field gradient and the interactions. While the magnetic
gradient generates single-particle dephasing since it causes
different lattice sites to precess at slightly different rates,
interactions entangle the spins leading to a loss of information
when one traces out over a part of the total system as one
does when computing local observables such 〈ŝx,yi 〉 (see, e.g.,
Ref. [15]). The quadratic Zeeman term can also lead to
magnetization decay in this case due to the development of
intraspin correlations, i.e., correlations between the individual
electrons inside each atom [42].

While generically interactions and inhomogeneities both
can lead to magnetization decay, the spin-dependent interac-
tions proportional toU1 in Eq. (2) counterintuitively can favor
spin alignment for weakly interacting atoms. This is because
these interactions open a gap in the energy spectra that can
suppress dephasing processes as experimentally demonstrated
in recent work [22,30,43]. Signatures of the gap protection
can be observed in Gutzwiller predictions for shallow lattices
[Figs. 5(a)–5(f)]. The protection is present when there is more
than one atom per lattice site and when the U1 term can lock
the spins favoring alignment. This manifests as an oscillatory
behavior in the collective spin length instead of rapid decay.
The protection however enters as a higher-order process and

it is not observable in the perturbative analysis that neglects
third- and higher-order terms in time. The perturbative analy-
sis however does provide a relatively good description of the
short-time dynamics.

In the Mott regime, on the other hand, interactions and
magnetic-field gradient cooperate and both lead to a fast decay
of the contrast as can be observed in the GDTWA simulations
[Figs. 5(h)–5(n)]. Similar behavior is observed in the exact
solution of a double-well system [Fig. 5(o)], validating the
behavior observed in the many-body system.

The relatively sharp transition between oscillatory and
overdamped behavior around the critical point (V0 = 7Er to
V0 = 8Er) might be overestimated in the Gutzwiller approxi-
mation but might survive in the full quantum system. Experi-
mental measurements of the contrast will be needed to test if
this is the case.

VI. CONCLUSION

In this work we have presented extensive theoretical and
experimental comparisons of the dynamics of itinerant spin-3
Cr atoms in a 3D optical lattice and subject to harmonic trap-
ping along all three directions. The microscopic Hamiltonian
governing the dynamics of the system is complex and features
single-particle motion, as well as contact, and long-range
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dipolar interactions. Exact modeling of the experimental dy-
namics exceeds the capabilities of classical computation, so
to compare to our experimental results we have developed
a variety of approximate models. First, we studied the exact
population dynamics of the Zeeman levels of a two-site sys-
tem and compared our results to a Gutzwiller treatment, as
well as a short-time perturbative treatment. We thus demon-
strated that for shallow lattice depths below the superfluid to
insulator phase transition at Vc, where a significant portion
of the sites are doubly occupied, the Gutzwiller description
provides a good qualitative description of the exact dynamics.
However, we found that the Gutzwiller description fails to
reproduce the exact dynamics for large lattice depths, above
the Mott transition. For large lattice depths, on the other hand,
we have used an effective spin model description (GDTWA)
whose short-time dynamics was shown in [15] to match the
exact solution for large enough lattice depths, where tunneling
and double occupancy are suppressed.

Armed with the above intuition, we applied the Gutzwiller
approximation to lattice depths V0 < Vc and the GDTWA
method, which incorporates the effect of quantum fluctua-
tions, toV0 > Vc to benchmark the experimental observations.
We observed qualitative agreement between the experimental
results and the theoretical studies, which confirms that these
approximate methods can be trusted in their respective domain
of validity. In turn, the comparison with these two models
provides unique physical insights regarding the physics at play
for different lattice depths. While for lattice depths V0 > Vc
dipolar interactions and quantum effects play an essential
role in the observed dynamics, we found that for V0 < Vc
transport and contact interactions both play an essential role
(while intersite quantum correlations can then be neglected).
Our analysis thus shows that the two different regimes of
low and high lattice depths are qualitatively different. This
can indeed be seen by contrasting the behavior of spin
dynamics in these two regimes: While the spin dynamics
is oscillatory and lattice depth dependent for V0 < Vc, the
behavior is mostly monotonic and lattice depth independent
for V0 > Vc. The crossover between these two behaviors is
however smooth and does not reveal the sharp underlying
Mott insulator to superfluid transition. Therefore, we propose
an experimental measurement of the spin length which can
be readily implemented experimentally, as it should display
a more pronounced change in behavior as the system crosses
from the superfluid to the Mott insulator regime.
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APPENDIX A: NUMERICAL METHODS

The Gutzwiller dynamical equations can be obtained by
variationally minimizing 〈ψG|ih̄ ∂

∂t − Ĥ |ψG〉. This yields a set
of nonlinear differential equations for the evolution of the
Gutzwiller coefficients { f iN}, i.e.,

ih̄
∂ f jN
∂t

= F j
N

({
f iN

})
, (A1)

where F j
N ({ f iN}) = j 〈N|Ĥ j

G|ψG(t )〉. The form of the F j
N ({ f iN})

is analytically cumbersome (see, e.g., [44] for the spin-1 case),
but is easily evaluated numerically by taking expectations of
the various operators terms appearing in Ĥ j

G in terms of the
Gutzwiller coefficients. From the initial condition, the system
of equations (A1) is evolved using an adaptive step Runge-
Kutta method, with the tolerance set sufficiently low that the
solution converges.

APPENDIX B: PARAMETERS

The coefficients for the contact terms are given by
Ref. [35] as

c̃0 = c0 − c3
7

, c̃1 = c1 − 5c3
84

,

c̃2 = c2 − 5c3
3

, c̃3 = c3
126

, (B1)
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FIG. 7. Experimental values for the total number of atoms in the lattice, along side approximate exponential decay with γ = 100 and
170 s−1.

where c0 = 71gcaB, c1 = 3gcaB, c2 = −15gcaB, and c3 =
−46gcaB with gc = 4π h̄2/M and aB is the Bohr radius. This
gives Un = c̃n

∫
dr|W (r)|4. The contact interaction also con-

tainsU2 andU3 terms

Cmm′nn′ =U0δm,nδm′,n′ +U1

∑
α

Sα
mnS

α
m′n′

+ U2

7
(−1)m+nδm,−m′δn′,−n

+ U3

2

⎡
⎣∑

αβ

(SαSβ )mn(S
αSβ + SβSα )m′n′

⎤
⎦, (B2)

which are included in our model but have negligible effect
for the states accessible during the dynamics in consideration
compared to the largerU0 andU1 contributions.

In this paper, with the exception of the GDTWA treatment,
we use the nearest neighbor as the cutoff for the dipolar inter-
actions. This is justified, as in shallower lattices where doubly
occupied sites exist, the on-site dipolar interactions are dom-
inant. Generally, we find that for the range of lattice depths

considered in this paper, the effect of next-nearest-neighbor
interactions is small compared to that of nearest-neighbor
interactions. We provide a comparison between these terms
in Fig. 6.

Atom loss is significant in the experiment, and in Fig. 7
we show the experimental result for the population over
time, along with the N (t ) = N (0) exp(−γ t ) approximation
for two values of γ . At low lattice depths γ = 100 s−1 fits
the experimental data well, while at larger lattice depths there
is an initial fast decay of γ = 170 s−1, which then slows and
returns to the γ = 100 s−1 value by 10 ms.

APPENDIX C: PERTURBATIVE EXPRESSIONS FOR
SUBSTATE POPULATION DYNAMICS

1. Short-time dynamics at O(t2 )

In the main text, Eq. (12) provides a representative ex-
pression for the perturbative (short-time) dynamics of the
substate populations for an initial state of singlons. Here we
provide the rest of the expressions which take a form similar
to those presented in the main text. More generally, we can
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write

|ψ (0)〉 =
∑
m,n

fm fn

[
p1â

†
m,1â

†
n,2 + p2

2

√
1 + δm,n(â

†
m,1â

†
n,1

+ â†m,2â
†
n,2)

]
|0〉1|0〉2, (C1)

where p1 is the amplitude for the state with one atom per
site and p2 =

√
1 − p21 is the amplitude of the state with two

atoms on one site and zero on the other, both of which are
chosen to be real. To second order in t we find the substate
population dynamics is given by

N (2)
m (t ) = p21N

(2)
m,{1,1}(t ) + p22N

(2)
m,{2,0}(t ), (C2)

where we have used N (2)
m,{1,1} and N

(2)
m,{2,0} to indicate the expec-

tation value of N̂m for pairs of sites with singlons (ns) and the
number of atoms in a doublon (nd ) configuration, respectively.
These are given by

N (2)
0,{1,1}(t ) = 5

8
− ns(ns − 1)

2

45

16
t2U 1

dd

(
q + 3

4
U 1
dd

)
, (C3)

N (2)
0,{2,0}(t ) = 5

8
− nd (nd − 1)

2

45

8
t2

×
(
U1 + 1

2
U 0
dd

)(
q + 3

4
U 0
dd

)
, (C4)

N (2)
±1,{1,1}(t ) = 15

32
− ns(ns − 1)

2

45

64
t2U 1

dd

(
q + 3

4
U 1
dd

)
, (C5)

N (2)
±1,{2,0}(t ) = 15

32
− nd (nd − 1)

2

45

32
t2

×
(
U1 + 1

2
U 0
dd

)(
q + 3

4
U 0
dd

)
, (C6)

N (2)
±2,{1,1}(t ) = 3

16
+ ns(ns − 1)

2

45

32
t2U 1

dd

(
q + 3

4
U 1
dd

)
,

(C7)

N (2)
±2,{2,0}(t ) = 3

16
+ nd (nd − 1)

2

45

16
t2

×
(
U1 + 1

2
U 0
dd

)(
q + 3

4
U 0
dd

)
, (C8)

N (2)
±3,{1,1}(t ) = 1

32
+ ns(ns − 1)

2

45

64
t2U 1

dd

(
q + 3

4
U 1
dd

)
, (C9)

N (2)
±3,{2,0}(t ) = 1

32
+ nd (nd − 1)

2

45

32
t2

×
(
U1 + 1

2
U 0
dd

)(
q + 3

4
U 0
dd

)
, (C10)

where U 0
dd = Udd (0) is the on-site DDI and U 1

dd is the DDI
to the neighboring site. In this derivation we neglected theU2

andU3 terms as their contribution is negligible.

2. Short-time dynamics at O(t4)

In a double-well system, the t4 contribution to the short-
time dynamics is given by

N (4)
m (t ) = N (2)

m (t ) + t4

24

(
p21A

m
1 + p22A

m
2 + p1p2A

m
12

)
, (C11)

where Am
1 , A

m
2 , and Am

12 are the terms due to state with only
singlons, only doublons, and the superposition of the two,
respectively. Setting m = 0, we find

A0
1 = 45

8 U
1
dd

{
B2

(
3q − 2U 1

dd

) + 4
(
q + 3

4U
1
dd

)[
4q2 + 21

4 qU
1
dd

+ 37
4 (U

1
dd )

2
]} − 135J2

[(
U1 + 1

2U
0
dd

)(
2q + 3

4U
0
dd

)
+ 1

4

( − 4q + 3U1 +U 0
dd − 5

2U
1
dd

)
U 1
dd

]
, (C12)

A0
2 = 45

4

(
U1 + 1

2U
0
dd

)(
q + 3

4U
0
dd

)[
2q

(
8q − 3U1 + 21

2 U
0
dd

)
+ 121U 2

1 + 1
2U

0
dd

(
233U1 + 74U 0

dd

)]
+ 135J2

[(
U1 + 1

2U
0
dd

)(
2q + 5

4U
0
dd

)
− 1

4

(
4q −U1 +U 0

dd + 3
2U

1
dd

)
U 1
dd

]
, (C13)

where we have used B ≡ γB[b(r1) − b(r2)] for two nearest-
neighboring sites at r1 and r2. If the double well starts in a
superposition of {1, 1} (singlons) and {2, 0} (doublon-hole)
states, then we get an additional contribution to the fourth-
order dynamics given by

A0
12 = 45

4 J
{ − B2

(
U1 + 1

2U
0
dd −U 1

dd

) + 3U 0
dd

(
U1 + 1

2U
0
dd

)
× (

2U0 + 7U1 + 8U 0
dd

) + q
[
6U0 + 43U1

+ 35
(
U 0
dd −U 1

dd

)](
2U1 +U 0

dd −U 1
dd

)
+ 3

2U
1
dd

[
2U0U1 + 29U 2

1 + 3U1U
0
dd − 8(U 0

dd )
2
]

− 3
[
U0 + 13U1 + 4

(
U 0
dd −U 1

dd

)]
(U 1

dd )
2
}
. (C14)

Similarly for the m ± 1 we find

A±1
1 = 1

4A
0
1 + 135

4 U 1
dd

(
q − 7

2U
1
dd

)(
q + 3

4U
1
dd

)2
, (C15)

A±1
2 = 1

4A
0
2 + 135

4

(
2q − 17U1 − 7U 0

dd

)
× (

U1 + 1
2U

0
dd

)(
q + 3

4U
0
dd

)2
, (C16)

and

A±1
12 = 1

4A
0
12. (C17)

The remaining terms are given by A±2
n = − 1

2A
0
n and

A±3
n = −A±1

n .

3. Divergence timescales

In the inset of Fig. 2(b) we see that the second-order results
including doublons rapidly diverge from the exact simulation.
To predict the timescales over which this divergence occurs,
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we consider the largest term in the doublon expansion


N (2)
0 = −45(2π )2t2

8
U1

(
q + 0.75U 0

dd

)
. (C18)

The y axis in the inset covers 
N0 = 6 × 10−5, and we
find that 
N (2)

0 changes by this amount in t = 0.03 ms,
which agrees well with the figure. Divergence on an order
of magnitude similar to that of the main figure (i.e., 
N0 =

0.15) occurs when the higher-order terms become important.
Considering the largest fourth-order term, which depends on
tunneling, we get


N (4)
0 = 135(2π )4t4

24
J2U1

(
2q + 5

4
U 0
dd + 1

4
U 1
dd

)
. (C19)

Note that this predicts 
N (4)
0 = 0.15 at t = 0.29 ms, which

indicates that the second-order results will break down for
timescales on the order of t = 0.29 ms.
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