
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332342562

Contextual Attention for Hand Detection in the Wild

Preprint · April 2019

CITATIONS

0
READS

104

5 authors, including:

Supreeth Narasimhaswamy

Stony Brook University

2 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Zhengwei Wei

Stony Brook University

2 PUBLICATIONS   0 CITATIONS   

SEE PROFILE

Yang Wang

Stony Brook University

14 PUBLICATIONS   42 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Yang Wang on 15 April 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/332342562_Contextual_Attention_for_Hand_Detection_in_the_Wild?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/332342562_Contextual_Attention_for_Hand_Detection_in_the_Wild?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Supreeth_Narasimhaswamy?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Supreeth_Narasimhaswamy?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stony_Brook_Medicine?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Supreeth_Narasimhaswamy?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhengwei_Wei?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhengwei_Wei?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stony_Brook_Medicine?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhengwei_Wei?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Wang289?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Wang289?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Stony_Brook_Medicine?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Wang289?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yang_Wang289?enrichId=rgreq-b3c49262432b74cdb1e611a7eea2d384-XXX&enrichSource=Y292ZXJQYWdlOzMzMjM0MjU2MjtBUzo3NDgwMjAxNzgxMDg0MTZAMTU1NTM1MzMxNjA0Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Contextual Attention for Hand Detection in the Wild
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Abstract

We present Hand-CNN, a novel convolutional network

architecture for detecting hand masks and predicting hand

orientations in unconstrained images. Hand-CNN extends

MaskRCNN with a novel attention mechanism to incorpo-

rate contextual cues in the detection process. This atten-

tion mechanism can be implemented as an efficient network

module that captures non-local dependencies between fea-

tures. This network module can be inserted at different

stages of an object detection network, and the entire de-

tector can be trained end-to-end.

We also introduce a large-scale annotated hand dataset

containing hands in unconstrained images for training and

evaluation. We show that Hand-CNN outperforms existing

methods on several datasets, including our hand detection

benchmark and the publicly available PASCAL VOC human

layout challenge. We also conduct ablation studies on hand

detection to show the effectiveness of the proposed contex-

tual attention module.

1. Introduction

People use hands to interact with each other and the envi-

ronment, and most human actions and gestures can be deter-

mined by the location and motion of their hands. As such,

being able to detect hands reliably in images and videos

will facilitate many visual analysis tasks, including gesture

and action recognition. Unfortunately, it is difficult to de-

tect hands in unconstrained conditions due to tremendous

variation of hands in images. Hands are highly articulated,

appearing in various orientations, shapes, and sizes. Oc-

clusion and motion blur further increase variations in the

appearance of hands.

Hands can be considered as a generic object class, and

an appearance-based object detection framework such as

DPM [9] and MaskRCNN [12] can be used to train a hand

detector. However, an appearance-based detector would

have difficulties in detecting hands with occlusion and mo-

tion blur. Another approach for detecting hands is to con-

sider them as a part of a human body and determine the

locations of the hands based on the detected human pose.

Pose detection, however, does not provide a reliable solu-

Figure 1: Hand detection in the wild. We propose Hand-

CNN, a novel network for detecting hand masks and esti-

mating hand orientations in unconstrained conditions.

tion by itself, especially when several human body parts are

not visible in the image (e.g., in TV shows, the lower body

is frequently not contained in the image frame).

In this paper, we propose Hand-CNN, a novel CNN ar-

chitecture to detect hand masks and predict hand orienta-

tions. Hand-CNN is founded on the MaskRCNN [12], with

a novel attention module to incorporate contextual cues dur-

ing the detection process. The proposed attention module is

designed for two types of non-local contextual pooling: one

based on feature similarity and the other based on spatial re-

lationship between semantically related entities. Intuitively,

a region is more likely to be a hand if there are other re-

gions with similar skin tones, and the location of a hand

can be inferred by the presence of other semantically re-

lated body parts such as wrist and elbow. The contextual

attention module encapsulates these two types of non-local

contextual pooling operations. These operations can be per-

formed efficiently with a few matrix multiplications and ad-

ditions, and the parameters of the attention module can be

learned together with other parameters of the detector end-

to-end. The attention module as a whole can be inserted

in already existing detection networks. This illustrates the

generality and flexibility of the proposed attention module.

Finally, we address the lack of training data by collecting

and annotating a large-scale hand dataset. Annotating hands
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in unconstrained images is a challenging task and can be la-

borious if not properly addressed. We manually annotate

a portion of the data, and come up with a method to semi-

automatically annotate the rest and to verify the annotations.

Our dataset has around 54K hand annotations across more

than 35K images and can be used for developing and evalu-

ating hand detectors.

2. Related Work

There exist a number of algorithms for hand detection.

Early works mostly used skin color to detect hands [6, 32,

33], or boosted classifiers based on shape features [18, 23].

Later on, context information from human pictorial struc-

tures was also used for hand detection [4, 17, 19]. Mittal et

al. [22] proposed to combine shape, skin, and context cues

to build a multi-stage detector. Saliency maps have also

been used for hand detection [24]. However, the perfor-

mance of these methods on unconstrained images is quite

poor, possibly due to the lack of access to deep learning and

powerful feature representation.

Recent works are based on CNN’s. Le et al. [14] pro-

posed a multi-scale FasterRCNN method to avoid missing

small hands. Roy et al. [26] proposed to combine Faster-

RCNN and skin segmentation. Deng et al. [7] proposed a

CNN-based method to detect hands and estimate the orien-

tations jointly. However, the performance of these methods

is still poor, possibly due to the lack of training data and

a mechanism for resolving ambiguity. We introduce here

a large dataset and propose a novel method to combine an

appearance-based detector and an attention method to cap-

ture non-local context to advance the state-of-the-art.

We propose contextual attention module for hand detec-

tion, and our work shares some similarity with some re-

cently proposed attention mechanisms, such as Non-local

Neural Networks [30], Double Attention Networks [5],

Squeeze-and-Excitation Networks [15]. These attention

mechanisms, however, are designed for image and video

classification instead of object detection. They do not con-

sider spatial locality, but locality is essential for object de-

tection. Furthermore, most of them are defined based on

similarity instead of semantics, ignoring the contextual cues

obtained by reasoning about spatial relationship between

semantically related entities.

3. Hand-CNN

In this section, we describe Hand-CNN, a novel network

for detecting hands in unconstrained images. Hand-CNN

is developed from MaskRCNN [12], with an extension to

predict the hand orientation. Hand-CNN also incorporates

a novel attention mechanism to capture the non-local con-

textual dependencies between hands and other body parts.

The pipeline of Hand-CNN is depicted in Fig. 2a.

3.1. Hand Mask and Orientation Prediction

Our detection network is founded on MaskRCNN [12].

MaskRCNN is a robust state-of-the-art object detection

framework with multiple stages and branches. It has a Re-

gion Proposal Network (RPN) branch to identify the can-

didate object bounding boxes, a Box Regression Network

(BRN) branch to pull features inside each proposal region

for classification and bounding box regression, and a branch

for predicting the binary segmentation of the detected ob-

ject. The binary mask is better than the bounding box at

delineating the boundary of the object, but neither the mask

or the bounding box encodes the orientation of the object.

We extend MaskRCNN to include an additional network

branch to predict hand orientation. Here, we define the

orientation of the hand as the angle between the horizon-

tal axis and the vector connecting the wrist and the cen-

ter of the hand mask (see Fig. 2b). The orientation branch

shares weights with MaskRCNN branch, so it does not in-

cur significant computational expenses. Furthermore, the

shared weights slightly improve the performance in our ex-

periments.

The entire hand detection network with mask detection

and orientation prediction can be jointly optimized by min-

imizing the combined loss function L = LRPN +LBRN +
Lmask + λLori. Here, LRPN , LBRN , Lmask are the loss

functions for the region proposal network, the bounding box

regression network, and the mask prediction network, re-

spectively. Details about these loss functions can be found

in [12, 25]. In our experiments, we use the default weights

for these loss terms, as specified in [12]. Lori is the loss for

the orientation branch, defined as:

Lori(θ, θ
∗) = |arctan2(sin(θ − θ∗), cos(θ − θ∗))|, (1)

where θ and θ∗ are the predicted and ground truth hand ori-

entations (the angle between the x-axis and the vector con-

necting the wrist and the center of the hand, see Fig. 2b).

We use the above loss function instead of the simple abso-

lute difference between θ and θ∗ to avoid the modular arith-

metic problem of the angle space (i.e., 359◦ is close to 1◦ in

the angle space, but the absolute difference is big). Weight λ
is a tunable parameter for the orientation loss, which was set

to 0.1 in our experiments.

3.2. Contextual Attention Module

The Hand-CNN has a novel attention mechanism to in-

corporate contextual cues for detection. Consider a three

dimensional feature map X ∈ R
h×w×m, where h,w,m are

the height, width, and the number of channels. For a spatial

location i of the feature map X, we will use xi to denote the

m dimensional feature vector at that location. Our attention

module computes a contextual feature map Y ∈ R
h×w×m

of the same size as X. The contextual feature vector yi for
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Figure 2: Processing pipeline of Hand-CNN, and Hand Orientation illustration. (a): An input image is fed into a network

for bounding box detection, segmentation, and orientation estimation. The Hand-CNN extends the MaskRCNN to predict

the orientation of hand by adding an additional network branch. The Hand-CNN also has a novel attention mechanism. This

attention mechanism is implemented as a modular block and is inserted before the RoIAlign layer. (b): The green arrows

denote vectors connecting the wrist and the center of the hand. The cyan dotted lines are parallel to x-axis, θ1 and θ2 denote

orientation angles for the right hand and left hand of the person, respectively.

location i is computed as:

yi =

hw
∑

j=1

[

f(xi,xj)

C(xi)
+

K
∑

k=1

αk pk(xj) hk(dij)

]

g(xj).

This contextual vector is the sum of contextual information

from all locations j’s of the feature map. The contextual

contribution from location j toward location i is determined

by several factors as explained below.

Similarity Context. One type of contextual pooling is

based on non-local similarity. In the above formula,

f(xi,xj) ∈ R is a measure for the similarity between fea-

ture vectors xj and xi. C(xi) ∈ R is a normalizing factor:

C(xi) =
∑

j f(xi,xj). Thus xj provides more contex-

tual support to xi if xj is more similar to xi. Intuitively,

a region is more likely to be a hand if there are other re-

gions with similar skin tone, and a region is less likely to

be a hand if there are non-hand areas with similar texture.

Therefore, similarity pooling can provide contextual infor-

mation to increase or decrease the probability that a region

is a hand.

Semantics Context. Similarity pooling, however, does not

take into account semantics and spatial relationship between

semantically related entities. The second type of contex-

tual pooling is based on the intuition that the location of a

hand can be inferred by the presence and locations of other

body parts such as wrist and elbow. We consider having

K (body) part detectors, and pk(xj) denotes the probabil-

ity that xj belongs to part category k (for 1 ≤ k ≤ K).

The variable dij denotes the L2 distance between positions

i and j, and hk(dij) encodes the probability that the dis-

tance between a hand and a body part of category k is

dij . We model this probability using a Gaussian distri-

bution with mean µk and variance σ2
k. Specifically, we

set: hk(dij) = exp
(

−
(dij−µk)

2

σ2

k

)

. Some part categories

provide more informative contextual cues for hand detec-

tions than other categories, so we use the scalar variable αk

(0 ≤ αk ≤ 1/K) to indicate the contextual importance of

category k. The variables αk’s, µk’s, and σk’s are automat-

ically learned.

The functions f , g, and pk’s are also learnable. We pa-

rameterize them as follows.

f(xi,xj) = exp
(

(Wθxi)
T
(Wφxj)

)

, (2)

g(xj) = Wgxj , (3)

p(xj) = softmax(Wpxj), (4)

where Wθ,Wφ,Wg ∈ R
m×m and Wp ∈ R

K×m. We

set pk(xj) as kth element of p(xj). The above matrix op-

erations involving Wθ, Wφ, Wg , and Wp can be imple-

mented efficiently using 1×1 convolutions. Together with,

µk’s, σk’s, and αk’s, these matrices are the learnable pa-

rameters of our attention module. This contextual attention

module has low memory and computational overhead, and

can be inserted in existing networks and the entire network

can be trained end-to-end.

4. Datasets

Our goal is to train a hand detector that can detect all

occurrences of hands in images, regardless of their shapes,

sizes, orientations, and skin tones. Unfortunately, there

was no existing training dataset that was large and diverse

enough for this purpose. As such, we collected a dataset and

annotated some data ourselves. Our dataset has two parts.

Part I contains image frames that were extracted from video

clips of the ActionThread dataset [13]. Part II is a subset

of the Microsoft COCO dataset [21]. Images from Part I

were manually annotated by us, while the annotations for

Part II were automatically derived based on the existing an-

notations of the COCO dataset. We refer to Part I as the

TV-Hand dataset and Part II as the COCO-Hand dataset.



4.1. TV­Hand Data

4.1.1 Data source

The TV-Hand dataset contains 9498 image frames extracted

from the ActionThread dataset [13]. Of these images, 4853

are used as training data, 1618 as validation data, and 3027

as test data. The ActionThread dataset consists of video

clips for human actions from various TV series. We chose

ActionThread as the data source because of several rea-

sons. Firstly, we want images with multiple hand occur-

rences, as is likely with video frames from human action

samples. Secondly, TV series are filmed from multiple cam-

era perspectives, allowing for hands in various orientations,

shapes, sizes, and relative scales (i.e., hand size compared

to the size of other body parts such as the face and arm).

Thirdly, we are interested in detecting hands with motion

blur, and video frames contain better training examples than

static photographs in this regard. Fourthly, hands are not

usually the main focus of attention in TV series, so they

appear naturally with various levels of occlusion and trun-

cation (in comparison to other types of videos such as sign

language or egocentric videos). Lastly, a video-frame hand

dataset will complement COCO and other datasets that were

compiled from static photographs.

4.1.2 Video frame extraction

Video frames were extracted from videos of the Action-

Thread dataset [13]. This dataset contains a total of 4757

videos. Of these videos, 1521 and 1514 are training and

test data respectively for the task of action recognition; the

remaining videos are ignored. For the TV-Hand dataset, we

extracted frames from all videos. Given a video from the

ActionThread dataset, we first divided it into multiple shots

using a shot boundary detector. Among the video shots that

were longer than one second, we randomly sampled one or

two shots. For each selected shot, the middle frame of the

shot was extracted and subsequently included in the TV-

Hand dataset. Thus, the TV-Hand dataset includes one to

two frames from each video.

We divided the TV-Hand dataset into train, validation,

and test subsets. To minimize the dependency between the

data subsets, we ensured that images from a given video

belonged to the same subset.

The training data contains images from 2433 videos, the

validation data from 810 videos, and the test set from 1514

videos. All test images are extracted from the test videos

of the ActionThread dataset. This is to ensure that the train

and test data come from disjoint TV series, furthering the

independence between these two subsets. Altogether, the

TV-Hand dataset contains 9498 images.

Notably, all videos from the ActionThread dataset are

normalized to have a height of 360 pixels and a frame rate

of 25fps. As a result, the images in TV-Hand dataset all

have a height of 360 pixels. The widths of the images vary

to keep their original aspect ratios.

4.1.3 Annotation collection

This dataset was annotated by three annotators. Two were

asked to label two different parts of the dataset, and the

third annotator was asked to verify and correct any anno-

tation mistake. The annotators were instructed to localize

every hand that occupies more than 100 pixels. We used the

threshold of 100 pixels so that the dataset would be consis-

tent with the Oxford Hand dataset [22]. Because it is diffi-

cult to visually determine if a hand region is larger than 100

pixels in practice, this served as an approximate guideline:

our dataset contains several hands that are smaller than 100

pixels. Truncation, occlusion, self-occlusion were not taken

into account; the annotators were asked to identify truncated

and occluded hands as long as the visible hand areas were

more than 100 pixels. To identify the hands, the annotators

were asked to draw a quadrilateral box for each hand, aim-

ing for a tight bounding box that contained as many hand

pixels as possible. This was not a precise instruction, and

led to subjective decisions in many cases. However, there

was no better alternative. One option is to provide a pixel-

level mask, but this would require enormous amounts of hu-

man effort. Another option is to annotate the axis-parallel

bounding box for the hand area. But this type of annotation

provides poor localization for hands due to their extremely

articulate nature. In the end, we found that a quadrilateral

box had the highest annotation quality given the annota-

tion effort. In addition to the hand bounding box, we also

asked the annotators to identify the side of the quadrilateral

that corresponds to the direction of the wrist/arm. Figure 3

shows some examples of annotated hands and unannotated

hands in the TV-Hand dataset.

The total number of annotated hands in the dataset is

8646. The number of hands in train, validation, and test

sets are 4085, 1362, and 3199, respectively. Half of the

data contains no hands, and a large proportion contains one

or two hands. The largest number of hands in one image

is 9. Roughly fifty percent of the hands occupy an area of

1000 square pixels or fewer. 1000 pixels corresponds to a

33×33 square, and it is relatively small compared to the im-

age size (recall that the images have the normalized height

of 360 pixels). See the supplementary material for a plot

that shows the cumulative distribution of hands with respect

to the sizes of the hands.

4.2. COCO­Hand Data

In addition to TV-Hand, we propose to use data from

the Microsoft’s COCO dataset [21]. This is a large-scale

dataset that contains common objects with various types of

annotations including segmentations and keypoints. Most

useful for us are the many images that contain people along



Figure 3: Some sample images with annotated and unannotated hands from the TV-Hand dataset. Annotators were

asked to draw a quadrilateral for any visible hand region that is larger than 100 pixels, regardless of the amount of truncation

and occlusion. Annotators also identified the side of the quadrilateral that connects to the arm (yellow sides in this figure).

This is a challenging dataset where hands appear at multiple locations, having different shapes, sizes, and orientations.

Severely occluded and blurry hands are also present. The blue boxes are some instances that were not annotated.

with annotated joint locations. However, the COCO dataset

does not contain bounding box or segmentation annotations

for hands, so we propose an automatic method to infer them

for a subset of the images where we can confidently do so.

Our objective here is to automatically generate non-axis

aligned rectangles for hands in the COCO dataset so that

they can subsequently be used as annotated examples to

train a hand detection network. This process requires run-

ning a hand keypoint detection algorithm (to detect wrist

and finger joints) and uses a conservative heuristic to de-

termine if the detection is reliable. Specifically, we used

the hand keypoint detection algorithm of Simon et al. [28],

which was trained on a multiview dataset of hands and an-

notated finger joints. This algorithm worked well for many

cases, but it also produced many bad detections. We used

the following heuristics to determine the validity of a detec-

tion as follows (see also Figure 4).

1. Identify the predicted wrist location, called wpred

2. Calculate the average of the predicted hand keypoints,

called havg .

3. Considering havg−wpred as the direction of the hand,

determine the minimum bounding rectangle that is

aligned with this direction and contains the predicted

wrist and all hand keypoints.

4. Calculate length L of the rectangle side that is parallel

to the hand direction.

5. Compute the error between the predicted wrist location

wpred and the closest annotated wrist location wgt,

E = ||wpred −wgt||2.

6. Discard a detected hand if the error (relative to the size

of the hand) is greater than 0.2 (chosen empirically) –

i.e., discard a detection if E/L > 0.2.

We ran the detection algorithm on 82783 COCO images and

detected 161815 hands. The average area of the bounding

rectangles are 977 pixels. Of these detections, our conser-

vative heuristics determined 113727 detections unreliable.

A total of 48008 detections survived to the next step.

The above heuristics can reject false positives, but it can-

not retrieve missed detections (false negatives). Unfortu-

nately, using images with missed detections can have an ad-

verse effect on the training of the hand detector because a

hand area might be deemed as a negative training example.

Meanwhile, hand annotation is precious, so an image with

at least one true positive detection should not be discarded.

We therefore propose to keep images with true positives, but

mask out the undetected hands using the following heuris-

tics (see also Figure 5).

1. For each undetected hand, we add a circular mask of

radius r = ||wgt − egt||2 centered at wgt, where wgt

and egt denote the wrist and elbow keypoint locations,

respectively, as provided by the COCO dataset. We set

the pixel intensities inside the masks to 0.

2. Discard an image if there is any overlap between any

mask and any correctly detected hands (true positives).

Applying the above procedures and heuristics, we obtained

the COCO-Hand dataset that has 26499 images with a total

of 45671 hands. Additionally, we perform a final verifica-

tion step to identify images with good and complete anno-

tations. This subset has 4534 images with a total of 10845

hands, and we refer to it as COCO-Hand-S or COCO-S for

short. The bigger COCO dataset is referred to as COCO-

Hand or simply COCO.

4.3. Comparison with other datasets

There exist a number of hand datasets, but most existing

datasets were collected in the lab environments, captured by

a specific type of cameras, or developed for specific scenar-

ios, as shown in Table 1. We are, however, interested in de-

veloping a hand detection algorithm for unconstrained im-

ages and environments. To this end, only the Oxford Hand

dataset is similar to ours. This dataset, however, is much

smaller than the datasets being collected here.



(a) (b)

Figure 4: Heuristics for discarding bad detection on

COCO. (a): the hand keypoint algorithm is run to detect

hands. The left hand of the man on the left is shown in (b).

(b): black dot: predicted wrist wpred; cyan dot: closest an­

notated wrist wgt; yellow dots: predicted keypoints; green

dot: center of the predicted keypoints havg; blue­magenta

box: smallest bounding rectangle for the hand keypoints;

magenta side is the side of the rectangle that is parallel to

the predicted hand direction, its length is L. We consider

a detection unreliable if the distance between the predicted

wrist and the closest annotated wrist is more than 20% of L.

(a) (b)

Figure 5: Heuristics for masking missed detections on

COCO. (a): the hand keypoint algorithm failed to detect the

left hand of the man. (b): A black circular mask centered

at the wrist is added. The radius is determined based on the

distance between the wrist and the elbow keypoints.

5. Experiments

In this section we describe experiments on hand detec­

tion and orientation prediction. We evaluate the perfor­

mance of Hand­CNN on test sets of the TV­Hand dataset

and the Oxford Hand dataset. We do not evaluate the per­

formance on the COCO­Hand dataset due to the absence of

ground truth annotations. For a better cross­dataset evalua­

tion, we do not train or fine­tune our detectors on the train

data of the Oxford­Hand dataset. We only use the test data

for evaluation. The Oxford­Hand test data contains 821 im­

ages with a total of 2031 hands.

5.1. Details about the training procedure

We trained Hand­CNN and MaskRCNN starting from

the GitHub code of Abdulla [1]. To train a MaskRCNN de­

Name Scope # images Label

EgoHands [2] Google glasses 4,800 Manual

Handseg [3] Color gloves 210,000 Auto

NYUHands [29] Only 3 subjects 6,736 Auto

BusyHands [27] Only 3 subjects 7,905 Man.+Syn.

ColorHandPose [34] Specific poses 43,986 Synthetic

HandNet [31] Only 10 subjects 212,928 Auto

GTEA [20] Only 4 subjects 663 Manual

Oxford­Hand [22] Unconstrained 2686 Manual

TV­Hand Unconstrained 9498 Manual

COCO­Hand­S Unconstrained 4534 Semiauto

COCO­Hand Unconstrained 26499 Semiauto

Table 1: Comparison with other hand datasets.

tector, we initialized it with a publicly available ResNet101­

based MaskRCNN model trained on Microsoft COCO data.

This was also the initialization method for MaskRCNN

component of Hand­CNN. The contextual attention module

was inserted right before the last residual block in the final

stage (conv5 3) of ResNet101 and the weights were initial­

ized with the Xavier­normal initializer. Additional details

about training are provided in the supplementary material.

5.2. Hand Detection Performance

Comparison to state­of­the­art. We used the TV­Hand

dataset and COCO­Hand to train a Hand­CNN. Table 2

compares the performance of Hand­CNN with the previous

state­of­the­art methods on the test set of publicly available

Oxford­Hand data. We measure performance using Average

Precision (AP), which is an accepted standard for object de­

tection [8]. To be compatible with the previously published

results, we use the exact evaluation protocol and evaluate

the performance based on the intersection over the union of

the axis­aligned predicted and annotated bounding boxes.

As can be seen, Hand­CNN outperforms the best previous

method by a wide margin of 10% in absolute scale. This

impressive result can be attributed to: 1) the novel contex­

tual attention mechanism, and 2) the use of a large­scale

training dataset. Next we will perform ablation studies to

analyze the benefits of these two factors.

Benefits of contextual attention. Table 3 compares the per­

formance of Hand­CNN with its own variants. All models

were trained using the train set of the TV­Hand data and

the COCO­Hand­S data. We did not use the full COCO­

Hand dataset for training here, because we wanted to rule

out the possible interference of the black circular masks in

our analysis about non­local contextual pooling benefits.

On the Oxford­Hand test set, Hand­CNN significantly

outperforms MaskRCNN, and this clearly indicates the ben­

efits of the contextual attention module. MaskRCNN is es­

sentially Hand­CNN without a contextual attention module.

We also train a Hand­CNN detector without the semantics



Method AP

DPM [11] 36.8%

ST­CNN [16] 40.6%

RCNN [10] 42.3%

Context + Skin [22] 48.2%

RCNN + Skin [26] 49.5%

FasterRCNN [25] 55.7%

Rotation Network [7] 58.1%

Hand Keypoint [28] 68.6%

Hand­CNN (proposed) 78.8%

Table 2: Comparison of the state­of­the­art hand detec­

tion algorithms on the Oxford­Hand dataset.

Method Oxford­Hand TV­Hand

MaskRCNN 69.9% 59.9%

Hand­CNN 73.0% 60.3%

Hand­CNN w/o semantic context 71.4% 59.4%

Hand­CNN w/o similarity context 70.8% 59.6%

Table 3: The benefits of context for hand detection. The

performance metric is AP. All models were trained using the

train set of the TV­Hand and COCO­Hand­S. MaskRCNN

is essentially Hand­CNN without using any type of context.

It performs worse than Hand­CNN and other variants.

context component and another detector without the sim­

ilarity context component. As can be seen from Table 3,

both types of contextual cues are useful for hand detection.

The benefit of the contextual module is not as clear on

the TV­Hand dataset. This is possibly due to images from

TV series containing only the closeup upper bodies of the

characters, and hands can appear out of proportion with the

other body parts. Thus contextual information is less mean­

ingful on this dataset. For reference, the Hand Keypoint

method [28] also performs poorly on this dataset (38.9%

AP); this method also relies on context information heavily.

Benefits of additional training data. One contribution of

our paper is the collection of a large­scale hand dataset. Un­

doubtedly, the availability of this large­scale dataset is one

reason for the impressive performance of our hand detec­

tor. Table 4 further analyzes the benefits of using more and

more data. We train MaskRCNN using three datasets: TV

Hand, COCO­Hand­S, COCO­Hand. The TV­Hand dataset

has 4853 training images, the COCO­Hand­S has 4534 im­

ages, whereas COCO­Hand has 26499 images.

A detector trained with the training set of TV­Hand data

already performs well, including on the cross­data: Oxford­

Hand dataset. This proves the generalization ability of our

hand detector and the usefulness of the collected data. Ta­

ble 4 also suggests the importance of having extra train­

ing data from Microsoft COCO. We see that using COCO­

Hand data instead of COCO­Hand­S improves AP by 6.8%

Test Data

Train Data Oxford­Hand TV­Hand

TV­Hand 62.5% 55.4%

TV­Hand + COCO­Hand­S 69.9% 59.9%

TV­Hand + COCO­Hand 76.7% 63.5%

Table 4: Benefits of data. This shows the performance of

MaskRCNN trained with different amount of training data.

Figure 6: Precision­recall curves of Hand­CNN, trained

on TV­Hand + COCO­Hand, tested on test sets of the

Oxford­Hand and the TV­Hand data.

the Oxford­Hand and 3.6% on the challenging TV­Hand

data. As explained in Section 4.2, COCO­Hand­S data

was obtained from the COCO­Hand data by discarding im­

ages with even one unannotated hand without caring about

the good hand annotations the image possibly contains.

Whereas in COCO­Hand data, we preserved images with

good annotations by masking unannotated hands. The re­

sults of the experiments clearly show the worth of doing so.

Precision­Recall curves. Figure 6 shows precision­recall

curves of the Hand­CNN on test sets of the Oxford­Hand

data and the TV­Hand data. The Hand­CNN was trained

on the train set of the TV­Hand data and COCO­Hand data.

The Hand­CNN has high precision values. For example, at

0.75 recall, the precision of Hand­CNN is 0.81.

5.3. Orientation Performance of the Hand­CNN

Table 5 shows the accuracy values of the predicted hand

orientations of the Hand­CNN. For the orientation perfor­

mance, we measure the difference in angle between the pre­

dicted orientation and the annotated orientation. We con­

sider three different error thresholds of 10, 20, and 30 de­

grees, and we calculate the percentage of predictions within

the error thresholds. As can be seen, the prediction accu­

racy is over ∼ 75% for the error threshold of 30 degrees.

Note that we only consider the performance of the orienta­

tion prediction for correctly detected hands.

5.4. Qualitative Results and Failure Cases

Fig. 7 shows some detection results of the Hand­

CNN trained on both the TV­Hand data and COCO­Hand,



Prediction error in angle

Test Data ≤ 10◦ ≤ 20◦ ≤ 30◦

Oxford-Hand 41.26% 64.49% 75.97%

TV-Hand 37.65% 60.09% 73.50%

Table 5: Accuracy of hand orientation prediction of

the Hand-CNN on testsets of the Oxford-Hand and TV-

Hand data. This table shows the percentage of correct ori-

entation predictions for the three error thresholds of 10, 20,

and 30 degrees. The error is calculated as the angle dif-

ference between the predicted orientation and the annotated

orientation. Note that we only consider the performance of

the orientation prediction for correctly detected hands.

Figure 7: Some detection results of Hand-CNN. Hands

with various shapes, sizes, and orientations are detected.

Fig. 8 compares the results of MaskRCNN and Hand-CNN.

MaskRCNN mistakes skin areas as hands in many cases.

Hand-CNN uses contextual cues provided by the contextual

attention for disambiguation to avoid such mistakes. Hand-

CNN also predicts hand orientations, while MaskRCNN

does not. Fig. 9 shows some failure cases of Hand-CNN.

False detections are often due to other skin areas. Contex-

tual cues help to reduce this type of mistakes, but errors still

occur due to skin area at plausible locations. Missed detec-

tions are often due to extreme sizes or occlusions.

6. Conclusions

We have described Hand-CNN, a novel convolutional ar-

chitecture for detecting hand masks and predicting hand ori-

entations in unconstrained images. Our network is founded

on MaskRCNN, but has a novel contextual attention module

MaskRCNN Hand-CNN

Figure 8: Comparing the results of MaskRCNN (left)

and Hand-CNN (right). MaskRCNN mistakes skin areas

as hands in many cases. Hand-CNN avoids such mistakes

using contextual attention. Hand-CNN also predicts hand

orientations, while Mask RCNN does not.

Figure 9: Some failure cases of Hand-CNN.

to incorporate contextual cues in the detection process. The

contextual attention module can be implemented as a mod-

ular layer and is inserted at different stages of the object

detection network. We have also collected and annotated a

large-scale dataset of hands. This dataset can be used for

training and evaluating the hand detectors. Hand-CNN out-

performs MaskRCNN and other hand detection algorithms

by a wide margin on two datasets. For hand orientation

prediction, more than 75% of the predictions are within 30

degrees of the corresponding ground truth orientations.
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[18] M. Kölsch and M. Turk. Robust hand detection. In FGR,

pages 614–619, 2004.

[19] M. P. Kumar, A. Zisserman, and P. H. Torr. Efficient discrim-

inative learning of parts-based models. In International Con-

ference on Computer Vision, pages 552–559. IEEE, 2009.

[20] Y. Li, Z. Ye, and J. M. Rehg. Delving into egocentric actions.

In Proc. CVPR, 2015.

[21] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,

J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár.

Microsoft COCO: Common objects in context. In Proc.

ECCV, 2014.

[22] A. Mittal, A. Zisserman, and P. H. S. Torr. Hand detection

using multiple proposals. In Proc. BMVC., 2011.

[23] E.-J. Ong and R. Bowden. A boosted classifier tree for hand

shape detection. In Proc. Int. Conf. Autom. Face and Gesture

Recog., 2004.

[24] P. K. Pisharady, P. Vadakkepat, and A. P. Loh. Attention

based detection and recognition of hand postures against

complex backgrounds. IJCV, 101(3):403–419, 2013.

[25] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS. 2015.

[26] K. Roy, A. Mohanty, and R. R. Sahay. Deep learning based

hand detection in cluttered environment using skin segmen-

tation. In ICCV Workshops, 2017.

[27] R. Shilkrot, Z. Chai, and M. Hoai. Busyhands: A hand-tool

interaction database for assembly tasks semantic segmenta-

tion, 2019.

[28] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint

detection in single images using multiview bootstrapping. In

Proc. CVPR, 2017.

[29] J. Tompson, M. Stein, Y. Lecun, and K. Perlin. Real-time

continuous pose recovery of human hands using convolu-

tional networks. ACM Transactions on Graphics, 2014.

[30] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

networks. CVPR, 2018.

[31] A. Wetzler, R. Slossberg, and R. Kimmel. Rule of thumb:

Deep derotation for improved fingertip detection. In Proc.

BMVC., 2015.

[32] Y. Wu, Q. Liu, and T. S. Huang. An adaptive self-organizing

color segmentation algorithm with application to robust real-

time human hand localization. In Proc. ACCV, 2000.

[33] X. Zhu, J. Yang, and A. Waibel. Segmenting hands of ar-

bitrary color. In Proc. Int. Conf. Autom. Face and Gesture

Recog., 2000.

[34] C. Zimmermann and T. Brox. Learning to estimate 3d hand

pose from single rgb images. In Proc. ICCV, 2017.

View publication statsView publication stats

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://www.researchgate.net/publication/332342562

