
One of the scientific developments in 
the past decade has been the emergent 
synergy between historically disparate 
fields in physics: atomic, molecular and 
optical (AMO) physics; condensed matter; 
general relativity; and high-​energy physics. 
Quantum entanglement connects these 
different disciplines (Fig. 1), opening 
new perspectives on understanding and 
describing complex quantum many-​
body systems. A major advance is the 
understanding that entangled states are not 
only a fundamental resource for quantum 
information processing, but also play a 
crucial role in black hole thermodynamics, 
including the description of a black hole’s 
horizon1–4 and emergent space-​time5–7. 
Entangled states also appear in the non-​
equilibrium dynamics of isolated quantum 
many-​body systems8,9. Moreover, 
quantum chaos is now believed to be 
intrinsically related to how entanglement is 
distributed in a system10,11; this connection 
has opened up a new way to define quantum 
chaos and tie it to complexity theory and 
even quantum gravity7,12.

Studying the dynamics of entanglement is 
thus important for different areas. However, 
it is a challenging task because entangled 
many-​body systems are hard to create and 

by first reviewing measurements based on 
quantum interference18, and then discuss 
new in situ techniques accessible in state-​
of-the-​art quantum gas microscopes19–26 
and trapped ions27. These latter techniques 
have allowed direct measurements of 
entanglement between different parts of a 
quantum system27,28, and to study the role of 
entanglement in the emergence of statistical 
mechanics27,29. Applying these techniques 
to systems that fail to thermalize — known 
as many-​body localized (MBL) systems 
— has led to new perspectives through 
studies of entanglement dynamics27,30,31, 
building on pioneering work with single-​
particle probes32–34. Finally, we discuss the 
intimately related topic of scrambling of 
quantum information, which is a concept first 
developed in attempts to understand the black 
hole information paradox, and fundamentally 
linked to how information dynamics leads 
to thermalization1–3,7,35. We also discuss its 
characterization through out-​of-time-​order 
correlations (OTOCs). We conclude with a 
brief outlook, discussing some of the open 
questions that future work might address.

General overview
Theoretical developments. In quantum 
mechanics, interactions between particles 
can lead to the build-​up of entanglement. 
A central question is how entanglement 
is distributed and how fast it spreads in 
non-​equilibrium interacting quantum 
many-​body systems. Answering this 
question can impact quantum technologies, 
help in designing optimal structures of 
quantum computer circuits and unveil the 
emergence of thermodynamics in isolated 
quantum systems8,9.

The key to understanding the dynamics 
of quantum information is that it is stored 
in local degrees of freedom of the initial 
state of the system and can spread across 
the global degrees of freedom of the 
system. This process is dubbed information 
scrambling35. Scrambling is generically 
accompanied by a build-​up of many-​body 
entanglement, causing the reduced density 
matrix of smaller subsystems to attain 
a steady state that can be described by a 
statistical ensemble and thus thermalize. 
The entanglement build-​up is therefore the 
underlying reason why at the microscopic 
scale quantum mechanics can still lead to 

characterize experimentally and model 
theoretically. Although we often understand 
the individual quantum building blocks 
well, systems involving even a few tens of 
quantum particles interacting with each other 
exhibit complex and new behaviours that are 
typically inaccessible to classical computer 
simulations. However, thanks to experimental 
advances in controlling and manipulating 
atomic systems such as quantum gas 
microscopes, optical tweezers and arrays 
of trapped ions (Fig. 1), it is now possible 
to probe entanglement and many-body 
correlations stored in a quantum state.

In this Perspective, we take a top-​down 
route in terms of characterizing quantum 
information. First, we revisit the maximum 
speed at which quantum information 
propagates in a many-​body system after a 
quench. How rapidly information propagates 
is intrinsically determined by the character 
of the interparticle interactions and can be 
directly observable in the dynamics of two-​
body correlations13–17. However, accessing 
higher-​order correlations is fundamental 
for gaining a full picture of the dynamics of 
quantum information in many-​body systems. 
We thus proceed to discuss experimental 
developments on how to extract information 
about many-​body correlations. We do that 
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the emergence of behaviour consistent with 
statistical mechanics typically expected at 
the macroscopic scale.

One associated question then is how fast 
a system can thermalize. This is directly 
connected to the speed at which quantum 
information can propagate in a quantum 
system. For systems with only short-range 
interactions, Elliott Lieb and Derek William 
Robinson13 derived a constant-velocity bound  
(now known as the Lieb–Robinson 
bound) that limits correlations to within 
a linear effective ‘light-cone’, similar to 
the linear spreading of information in 
relativistic theories due to the finite speed 
of light. However, little is known about 
the propagation speed in systems with 
long-​range interactions36–40, partly because 
analytic solutions rarely exist and long-range 
interacting systems are very hard to tackle 
with current numerical methods. New 
theoretical bounds have been derived from 
the study of black holes10. They have led  
to the conjecture that fundamental bounds 
on quantum information spreading do 
exist for systems with generic interactions 
(for example, interactions that decay as a 
power law with distance, such as dipolar or 

Coulomb interactions). However, it remains 
unclear whether more familiar quantum 
many-body systems (such as those created  
in the cold atom laboratories) saturate  
those bounds.

Although most of the systems found in 
nature thermalize, there are special types 
of systems that defy thermalization and can 
retain retrievable quantum correlations and 
avoid the spreading of quantum information 
to arbitrarily long times9,41. Such MBL 
systems typically require the interplay 
of strong disorder and interactions42,43.

Experimental platforms. The development 
of new experimental capabilities and 
methodologies has been fundamental 
not only to understanding bounds of 
propagation of information in many-​body 
systems but also thermalization, scrambling 
and many-​body localization. In particular, 
synthetic quantum many-​body AMO 
systems — including ultracold neutral 
atoms25 and arrays of trapped ions44 — are 
playing an essential role in this effort.  
In these platforms, experiments are starting 
to achieve full microscopic control over 
single qubits encoded in hyperfine states 

of neutral ground-​state atoms19–26,45, 
trapped ions27,46,47 and Rydberg states48–52, 
combined with tunable interactions 
between qubits.These interactions can be 
categorized in terms of their spatial range. 
Contact interactions, such as those due to 
atomic collisions, are the dominant type 
of interactions in ultracold gases and are 
controllable by tuning the scattering length 
as via, for example, Feshbach resonances53. 
Various other interactions that decay as a 
power-​law between particles separated by a 
distance r are also accessible. For instance, 
van der Waals interactions proportional 
to 1/r6 can be realized in Rydberg atoms. 
Dipolar interactions proportional to 1/r3 
(ref.54), which additionally depend on the 
relative orientation of the interacting dipoles, 
are experienced by magnetic atoms, polar 
molecules and Rydberg atoms. They are 
controllable by external electromagnetic 
fields. It is also possible to entirely engineer 
interactions by coupling internal degrees 
of freedom (spin) of the particles to shared 
bosonic modes55–57. For instance, when 
trapped ions are illuminated by laser beams, 
a spin-​dependent force can be created and 
used to virtually excite phonons in the ion 
crystal. The phonons in turn mediate spin–
spin couplings that inherit the non-​local 
structure of the collective modes. The diverse 
nature of these interactions enables the 
exploration of a broad parameter space and 
allows researchers to take advantage of the 
complementary experimental capabilities 
offered by different platforms.

Measuring correlation functions
Lieb–Robinson bounds and the spatially 
resolved propagation of quantum correlations  
were first observed and verified in a 
neutral atom quantum simulator of the 
1D Bose–Hubbard model14. A Bose gas of  
87Rb trapped in an optical lattice was prepared 
in the Mott phase with one atom per site 
and subsequently rapidly quenched to the 
superfluid phase, creating a non-​equilibrium 
state that was then allowed to evolve. 
Non-trivial correlations built up in spatially 
distinct regions of the lattice, driven by the 
creation of local doublon/holon quasiparticle 
pairs. These quasiparticles propagated 
through the system with fixed opposite 
momenta and at a constant characteristic 
velocity, consistent with and supporting the 
validity of the Lieb–Robinson theory for 
short-​range interacting systems (Fig. 2a).

The investigation of similar bounds 
for long-​range interacting systems, for 
which generic linear light-​cone behaviour 
is not necessarily satisfied or expected36–40, 
was pursued by experiments in chains of 
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Fig. 1 | Tools to control single atoms and ions enable us to probe, almost in real time, the dynamics 
of quantum information. Understanding the propagation of information and entanglement in com-
plex systems is relevant for a broad range of disciplines with important fundamental and practical 
implications.



trapped ions15,16,58. Specifically, for two 
spins, i and j, located at positions ri and rj, 
respectively, the investigated dynamics were 
set by 1D XY and Ising spin models with 
spin couplings decaying with interparticle 
distance, |ri − rj|, as a power-​law with 
exponent α: Jij ∝ 1/|ri − rj|α. Although the 
experiments reported in refs15,16,58 explored 
similar spin models, they differed in the 
quench protocol used. Refs15,58 reported 
on the dynamics of a single excitation by 
flipping the spin of an individual ion in a 
polarized chain (Fig. 2b) and measured the 
propagation of information at later time via 
spatially resolved two-​particle correlations 

⟨ ̂ ̂ ⟩ ⟨ ̂ ⟩⟨ ̂ ⟩C t σ σ σ σ( ) = −ij i
z

j
z

i
z

j
z . Here, ̂σj

z are 
Pauli matrices acting on spin j. Although 
dynamics approximately consistent with a 
linear light-​cone was observed for α > 1.41, 

strong deviations from a linear wavefront 
were seen for smaller α, signalling the 
breakdown of the simpler Lieb–Robinson 
type bound. Similar results were reported in 
ref.16 but using a global quench in which the 
dynamics of correlations must be thought 
of as the interference of many propagating 
quasiparticles, rather than a single excitation. 
These experimental results have later 
motivated theoretical progress in improving 
bounds for long-​range interactions39.

Propagation of correlations has also been 
studied in the context of the dynamics of 
a 1D Bose gas in ref.17. In this study, the 
focus was to demonstrate that relaxation of 
a many-​body quantum system first develops 
at local scales, owing to the finite speed at 
which correlations can emerge between 
spatially separated points.

In parallel, the experiment also provided 
insights on how many-​body quantum 
systems relax to steady states with local 
properties described within the framework of 
statistical mechanics. Leveraging the control 
and precision of their atom-​chip set-up, 
an initial equilibrium quasi-​condensate 
was split into two copies to form a highly 
non-​equilibrium state. Using matter-​wave 
interference (Fig. 2c), the group was able  
to probe the relaxation of the system  
towards a steady state by the measurement  
of two-point phase-​correlation functions. 
The steady state was observed to emerge  
at short length scales, zc ~ 2ct (where t is the 
time), bounded by the finite characteristic 
speed c at which correlations propagate 
through the system. This steady state 
is consistent with the predictions of a 
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Fig. 2 | Propagation and build-​up of quantum correlations in non-​
equilibrium dynamics. a | The propagation of correlations was investigated 
by using neutral atoms in an optical lattice to emulate the Bose–Hubbard 
model. The atoms were initially prepared in a Mott state with commensurate 
filling. The trapping potential was quenched and led to non-​equilibrium 
dynamics described by the creation of doublon (a site populated with two 
atoms here represented by a red circle) and holon (an empty site here repre-
sented by a blue circle) quasiparticles, which created spatial correlations at 
a finite characteristic velocity. b | Similar correlation dynamics were explored 
in a 1D chain of trapped ions (false colour image)15,16, which emulated a spin-​
model with variable long-​range interactions. In particular, in ref.15, non-​trivial 
spin–spin correlations between spatially distinct regions of the ion chain 
were measured after the creation of a local excitation. The lowest part of the 
figure shows the underlying spin–spin interaction that sets possible direct 
hopping paths (examples shown as arrows). c | Studying high-​order correla-
tions with tunnel-​coupled 1D Bose gases18. Correlations between the phase 
profiles of two coupled 1D Bose gases were probed by matter-​wave interfer-
ence. An example fourth-​order two-​point phase-​correlation G(4)(z1,z2) is 
shown, where z1 and z2 are two different locations in the tube. The function 

G(4)(z1,z2) can be decomposed into lower-​order correlators, typically referred 
to as the disconnected part, and non-​factorizable terms, typically referred to 
as the connected contributions, which are a measure of the complexity of a 
quantum state. Atomic interactions, with a magnitude set by the mean den-
sity , n1D and the temperature T of the 1D gases, and coupling of the 1D gases, 
set by the tunneling energy J, lead to non-​trivial build-​up of correlations that 
cannot be factorized, which manifested in a non-​vanishing connected con-
tribution. d | Correlation dynamics in Rydberg arrays. Optical tweezers were 
used to trap individual Rydberg atoms in a controllable array (left)51. Effective 
spin–spin interactions were engineered via an atomic van der Waals interac-
tion. Non-equilibrium dynamics were probed by spatially and time-​resolved 
density–density correlations = ∑ −⟨ ̂ ̂ ⟩ ⟨ ̂ ⟩⟨ ̂ ⟩g k l n n n n( , ) ( )

N i j i j i j
(2) 1

,
k l,

. Here, ̂ni is a 
projector on the Rydberg state for atom i, the sum runs over atom pairs (i, j) 
whose separation is ri − rj = (ka, la), a is the lattice spacing and Nk ,l is the number 
of such atom pairs in the array (right). Panel a is reproduced from ref.14, 
Springer Nature Limited. Panel b is reproduced courtesy of Rainer Blatt, 
Universität Innsbruck, Austria, and ref.15, Springer Nature Limited. Panel c is 
adapted with permission from ref.18, Springer Nature Limited, and ref.59, 
AAAS. Panel d is adapted from ref.51, CC-​BY-4.0.



generalized Gibbs statistical ensemble, which 
accounted for the conserved quantities in the 
implemented model.

Subsequent advances in the atom-chip 
platform have led to the ability to 
characterize the experimental system in 
increasing detail, including up to 10-point 
correlation functions and full distribution 
functions. This ability was first used to 
further investigate the relaxation to a  
Gibbs ensemble59, before experiments studied 
quantum simulation of the sine-​Gordon 
model with a pair of tunnel-​coupled 1D Bose 
gases18. The latter has opened a path to the 
characterization of the complexity of many-​
body states, by determining the degree of 
non-​factorizability of high-​order correlations 
into lower-​order correlations (Fig. 2c).

Arrays of optically trapped Rydberg 
atoms are now enabling the probing of the 
dynamics of correlations with single-​atom 
resolution. By encoding an effective spin 
degree of freedom in the ground and excited 
Rydberg states, spin–spin interactions have 
been generated through strong van der 
Waals interactions between Rydberg 
atoms49–52,60 and through optical dressing in 
a lattice48, leading to the emulation of spin 
models in a new platform. In the former, the 
atoms are trapped in individual microtraps 
(tweezers) and excited to Rydberg states.  

The microtraps can be arranged such that the  
blockade radius Rb, that is, the distance 
over which interatomic interactions 
prevent the simultaneous excitation of two 
atoms, is comparable to the separation 
between tweezers. This has allowed the 
study of rich non-​equilibrium dynamics 
following quenches50,52 and slow sweeps49,60 
in spin models with relatively short-​range 
interactions. A quantum system of a nearest-​
neighbour Ising antiferromagnet was 
implemented in 1D and 2D neutral atom 
arrays51,52, allowing the study of dynamics as 
experimental parameters were dynamically 
tuned (Fig. 2d). Observations of non-​trivial 
spatially resolved spin–spin correlations 
exhibited a characteristic delay, which was 
used as an experimental signature of the 
bounds on the propagation of correlations.

Probing entanglement entropy
So far, we have discussed how interactions 
can induce measurable correlations in 
a many-​body system, and how these 
correlations can be subsequently measured 
in a variety of AMO platforms. However, 
these correlations alone do not always certify 
the presence of entanglement. Although,  
in spin systems, correlations in several 
bases of spin operators can quantify 
entanglement via full-​state tomography, this 

approach scales poorly with size, limiting 
its applicability to many-​body systems. 
Nevertheless, capitalizing on recent advances 
in microscopic control of large AMO 
systems, a variety of new protocols with more 
flexible properties have allowed for direct 
measurement of entanglement dynamics.

These measurement protocols are 
built on the concept that entanglement 
fundamentally involves non-​classical 
correlations between the different 
subsystems of a quantum many-​body state.  
A subsystem might be delineated spatially, 
with respect to the momentum space, 
or through other desirable partitions 
of the system. To connect with recent 
experimental studies, we focus on the case 
of entanglement between two spatially 
separated regions of a quantum state. 
Consider an initial non-​entangled product 
state, ∣ ⟩ ∣ ⟩ ⊗ ∣ ⟩ψ ψ ψ(0) = A B, where A and B 
refer to spatial subsystems of the full system, 
evolving under the interacting quantum 
many-​body Hamiltonian. Although the 
initial combined state of the quantum 
system may be written as a product of the 
state of pure subsystems, the Hamiltonian 
evolution may generate entanglement 
(Fig. 3a). As a result, one will no longer be 
able to describe the state of each subsystem 
as a pure state; instead, each is described by 
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a mixed state due to the entropy induced by 
entanglement. The degree of mixedness can 
be quantified in terms of the von Neumann 
entanglement entropy SυN = Tr[ρA log(ρA)] 
or the nth-order Rényi entropy 
S ρ= log[Tr[ ]]n n A

n1
1 −

, where ρA is the reduced 
density matrix of the subsystem A. The 
growth of local entropy, Sn or SυN, in a closed, 
pure quantum system certifies the presence 
and quantifies the degree of entanglement 
between the subsystems.

The role that entanglement entropy plays 
in the thermalization of closed quantum 
systems8,61,62 is particularly relevant.  
At first glance, quantum thermalization 
may be a confusing concept: a unitarily 
evolving quantum system remains pure in 
time, which would seem to preclude the 
system’s observables approaching those of 
an entropic thermal ensemble. However, as 
the isolated system evolves, the subsystems 
become more entropic because they become 
entangled with each other. In particular, 
when a quantum system thermalizes, the 
entanglement entropy scales extensively 
with the size of the subsystem, as expected 
from basic expectations of how thermal 
entropy should scale in statistical mechanics. 
In this scenario, a thermal ensemble and 
the subsystems of a highly entangled pure 
state can become identical with respect to 
all local measurement observables. Hence, 
the entanglement entropy fulfils the role 
of the thermal entropy from statistical 
mechanics, so that subsystems are faithfully 
described by maximum entropy ensembles. 
This crucial role of entanglement entropy 
has led to its use in differentiating phases of 
matter in non-​equilibrium physics43,63, such 
as thermalizing and many-​body localizing 

phases. It also plays a role outside quantum 
statistical mechanics in topological states 
of matter, in which topological properties 
can induce entanglement entropy invariants 
from highly non-​local correlations64,65.

To study these concepts experimentally, 
quantum gas microscopes have been used to 
generate pure quantum states that observably 
undergo this process of thermalization. 
In ref.29, using six bosons on six sites, the 
global purity and subsystem mixedness 
were measured using the proposed66 and 
subsequently demonstrated technique 
of many-​body interference28,29, which 
yields the second-​order Rényi entropy 
S ρ= −log[Tr( )]A2

2  (see Box 1 for details). 
It was observed that the entanglement 
entropy grew from a vanishing value 
consistent with the initial product state 
prepared, and subsequently saturated  
(with residual finite-​size fluctuations) to  
a value near the expected thermal entropy 
of the subsystem (Fig. 3b). At the same 
time, the full-​system entropy was observed 
to be static and near unity as a function 
of time, although more traditional local 
observables, such as the on-​site number 
distribution, converged on the predictions 
stipulated by a thermal ensemble in the 
full-​system eigenstates (Fig. 3b). The scaling 
of the entanglement entropy at long times 
was contrasted with that of the ground 
state for the same lattice parameters, 
illustrating the expected differences in the 
behaviour of the entanglement entropy in 
the two regimes8,61,62.

An alternate protocol for measurement 
of the Rényi entropy, involving randomized 
measurements combined with single-​
particle resolution, was implemented for 

a trapped-​ion quantum simulator27. The 
protocol allowed measurements of Rényi 
entropy for partitions up to 10 out of 20 ions. 
Similar to the quantum gas microscopes, 
the system can be initialized into a pure 
state with high fidelity. Furthermore, the 
sources of decoherence present in trapped 
ion systems are typically well understood, 
allowing local and global entropy to 
be distinguished and thus allowing 
entanglement dynamics to be properly 
characterized. This protocol requires only 
a single copy of a system and can be readily 
implemented in any experimental system 
in which single-​particle addressability and 
detection are available.

The MBL regime, in which a sufficiently 
strong disorder prevents many-​body 
interacting systems from thermalizing and 
suppresses the growth of entanglement 
entropy, has also been explored with 
quantum gas microscopes and ion traps. 
The primary signature of the MBL phase 
is the logarithmic growth of the subsystem 
entanglement entropy, S ~t t( ) log( ) in a 
model with nearest-​neighbour couplings. 
However, a direct measurement of 
entanglement entropy is challenging, 
limiting experiments to systems of no more 
than about 10−20 particles, and to short 
times in which the system remains coherent. 
Thus, in the pioneering experiments done 
first in 1D quasi-​random optical lattices32,33 
with interacting fermions and later in a 
2D array of interacting bosons34, a single 
body observable, imbalance I(t), was used to 
characterize the MBL phase. In the 1D case, 
the system was prepared in a charge density 
wave state with the odd lattice sites occupied, 
Nodd = N, and Neven = 0. For this state, the 
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Box 1 | Protocol for measuring the Rényi entropy

In a quantum gas microscope, the Rényi entropy is measured as follows. a | A low-​entropy Mott insulator is prepared. b | Two copies of a quantum state 
of interest are isolated. c | The two states each undergo an identical quench in the Hubbard parameters, by suddenly reducing the lattice depth from a 
value of 45 Er to 6 Er, where Er is the recoil energy of the lattice photons. d | The two copies are then interfered using a double-​well beam-​splitter interaction, 
and number-​resolving measurements yield Tr(ρ2), with ρ being the density matrix, for all subsystems and the full system simultaneously. In ref.29, this 
protocol was applied to a six-​site unity-​filled Bose–Hubbard chain after a lattice quench from a Mott insulator into the superfluid region of the 
ground-state phase diagram. This quench is meant to allow study of perturbing the system from equilibrium and observation of its subsequent relaxation. 
Figure is adapted with permission from ref.29, AAAS.
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dynamics of I(t) = (Nodd − Neven)/N was found 
to be very different in the MBL phase, in 
which the imbalance approached a constant 
non-​zero value, versus the thermal phase,  
in which it rapidly decayed to zero, signalling 
that all signatures of the initial order had 
vanished. Corresponding measurements of 
imbalance, adapted to the 2D case in which 
theory is substantially more challenging, 
were performed in an interacting bosonic 
system via quantum gas microscopy34, in 
which studies of two-​point correlators were 
also possible. A similar approach was taken 
in the trapped-​ion experiment in ref.30, in  
which a chain of 10 trapped ions was 
initialized in the Neél state and subject to the 
transverse Ising Hamiltonian with power-​
law interactions, and with tunable quench 
disorder. The MBL phase was characterized 
by measuring the Hamming distance, which 
quantifies how many spin flips a state is 
different from the initial Neél state. This 
observable is closely related to the quantum 
Fisher information, an entanglement 
witness, which has been shown to grow 
logarithmically in the MBL phase43.

A clear experimental observation of  
the logarithmic growth of entanglement  
in the MBL phase was reported in ref.31, in  
which the addition of site-​resolved 
potential offset to the system in ref.29 
allowed for the realization of the interacting 
Aubry–André model. In this system, the 

interaction strength, tunnelling rate and 
the disorder strength were varied to move 
between thermalizing and MBL phases. 
Two theoretically motivated quantities, 
namely the correlations between the 
spatial configuration of particles and the 
correlations between the number of particles 
in the two subsystems, were used as proxies 
for entanglement entropy. Furthermore, 
in ref.27, a direct measurement of the half-​
chain entanglement entropy dynamics 
showed marked difference between the 
thermalizing and the MBL phases. The large 
number of theoretical investigations in the 
past few years and subsequent experimental 
studies highlight the continued critical 
role that entanglement plays in classifying 
many-body dynamics.

Scrambling of quantum information
Although time-​ordered correlations display 
signatures of the apparent thermalization 
in closed quantum systems, they do not 
capture the details of how information is 
‘scrambled’, or spread over the many-​body 
degrees of freedom, becoming inaccessible 
to solely local probes. The simplest measures 
of scrambling are the expectation values 
associated with products of operators 
at different times, the lowest order of 
that have been called OTOCs. They are 
defined as ⟨ ̂ ̂ ̂ ̂ ⟩

† †
C t W t V W t V( ) = ( ) (0) ( ) (0) , 

where V̂ (0) and Ŵ(0) are two commuting 

operators and ̂ ̂Ĥ ĤW t W( ) = e (0)ei t i t−  the 
time-​evolved version of Ŵ(0) under the 
many-​body Hamiltonian Ĥ . The OTOC 
C(t) can be interpreted as quantifying 
the non-​commutativity of two initially 
commuting operators, a point which can 
be made explicit by noting the connection 

⟨ ̂ ̂ ̂ ̂ ⟩∕
†

C t W t V W t VRe[ ( )] = 1− [ ( ), (0)] [ ( ), (0)] 2. 
OTOCs are closely connected with the spin-​
echo protocol introduced more than 50 years 
ago67 and were first formally used in the 
context of superconductivity68. Lately, they 
have gained renewed attention given their 
key role in characterizing chaos, operator 
spreading and the scrambling of quantum 
information in many-​body systems35,69–71. 
Their study has opened a parallel new front 
for the understanding of the dynamics of 
quantum information.

The generic tunability of AMO and 
nuclear magnetic resonance systems 
have enabled pioneering experimental 
measurements of OTOCs using spin-​echo 
protocols. Here, by switching the sign of the 
Hamiltonian halfway through, the dynamics 
can effectively be reversed, essentially 
allowing the measurement of observables 
at different times, that is, OTOCs. This 
has recently been achieved in macroscopic 
2D arrays of trapped ions72, in a four-​spin 
nuclear magnetic resonance system (to 
see chaotic dynamics)73, in larger nuclear 
magnetic resonance chains (to see evidence 
of localization)74, in momentum states of 
a Bose–Einstein condensate75 and using a 
family of three-​qubit scrambling unitaries  
in an ion chain76.

In these experiments, the broad 
applicability and potential of OTOCs 
beyond just measuring scrambling was 
demonstrated. For example, single-​qubit 
control73 allowed the proof-​of-principle 
reconstruction of entanglement entropy 
from measured OTOCs according to a 
proposal connecting these concepts11,69. 
Complementary to this, the trapped-​ion 
experiment demonstrated that the analysis 
of the Fourier decomposition of a set of 
OTOCs can be used to infer the build-​up 
of m-​body correlations between m of the 
spins and to characterize the growth of 
many-​body coherences (Fig. 4). Work on a 
seven-​qubit ion trap implemented a protocol 
to rigorously distinguish the effects of 
decoherence from scrambling76.

These preliminary experiments have 
given just a taste of the possible physics that 
AMO platforms could unveil through the 
study of OTOCs. Perhaps the most exciting 
prospect is to use engineered interactions 
in AMO systems to realize ‘fast scrambling’ 
models that might have connections to 

632 | OCTOBER 2019 | volume 1	 www.nature.com/natrevphys

P e r s p e c t i v e s

10

8

6

4

2

0

0 0.2
t (ms)

0.4 0.6 0.8 1.0 1.2 0

0

0.2

0.2

0.4

0.6

0.8

1

t (ms)
0.4 0.6 0.8 1.0 1.2

Prepare

 |A
m

|

Experiment

N=124

Theory

Evolve Perturb Reverse

a

b

ψ
f
| |ψ

f

Ĥ → e–iĤt –Ĥ → eiĤtŴ

C(t) = ψ
0
|eiĤtŴ†e–iĤtV†eiĤtŴe–iĤtV|ψ

0

V|ψ
0

∝ |ψ
0

Detect

ψ
f
|V†|ψ

f

Fig. 4 | Measurement and analysis of out-​of-time-​order correlations. a | In atomic, molecular and 
optics platforms, out-​of-time-​order correlations (OTOCs) have been measured with ̂V  chosen to be an 
operator such that the initially prepared (pure) state is an eigenstate, ψ ψ∝̂∣ ⟩ ∣ ⟩V

0 0
. Control of the sign of 

the Hamiltonian → −Ĥ Ĥ allows the effective reversal of time, and thus the OTOC C(t) is reduced to meas-
urement of 

†̂V  for the time-​evolved state ψ∣ ⟩
f . b | In a 2D trapped-​ion array (inset)72, the Fourier decom-

position of an OTOC, = ∑ϕ ϕ ϕ
ϕ† †

⟨ ̂ ̂ ̂ ̂ ⟩ ≡C t W t V W t V A t( ) ( ) (0) ( ) (0) ( )em m
im , was studied, where =ϕ
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high-​energy physics, such as the Sachdev–
Ye–Kitaev model77. Links to classical chaos 
have indicated that for some quantum 
systems, an OTOC can grow exponentially, 
C(t) ~ eλt, but it has also been shown10 
that generically this growth rate should 
be bounded in quantum systems by the 
temperature λ ≤ 2πT. The study of OTOCs in 
high-​energy physics has led to the intriguing 
insight that the scrambling rate in black 
holes saturates this bound, λ = 2πT, giving 
rise to the conjecture that any quantum 
system that similarly saturates the bound 
might be a holographic dual to a black 
hole1–4. Exploring such connections using 
engineered analogue models in tabletop 
AMO experiments might lead to valuable 
insight in different areas.

Outlook
Despite the progress in understanding 
the role of quantum entanglement and 
correlations in the dynamics of many-​body 
systems different directions remain to be 
explored. For example, measurements 
of entanglement between subsystems in 
quantum gas microscopes, microtraps and 
trapped-​ion systems have been limited to a 
handful of particles, owing to the increasing 
complexity of preparation, control and 
detection with system size. The detailed 
characterization of the dynamics of quantum 
information via entanglement measurements 
in larger systems containing many tens to 
hundreds of particles, which are intractable 
to current theoretical methods, remains an 
open challenge, and will require the design 
of new efficient and scalable alternative 
protocols for creating or measuring 
entanglement.

In parallel to the analogue quantum 
simulators discussed here, the development 
of digital quantum simulators will enable 
the investigation of increasingly tunable 
and versatile physical systems78. These 
will open a path for the study of more 
complex problems that saturate the bound 
of information scrambling or even violate 
it under some specific conditions79. These 
include the realization of models relevant 
for high-​energy physics80, investigation of 
fast scrambling76 and future demonstrations 
of quantum supremacy via random 
unitary operations81–84.

Finally, our discussion has been 
restricted to systems governed by time-​
independent Hamiltonians. However, 
there are various many-​body phenomena 
that are being investigated in driven and 
dissipative regimes. They include Floquet 
dynamics85, the emerging topic of time 
crystals86,87, quantum synchronization57,88–90, 

self-​organization91–94 and dynamical phase 
transitions86,95,96. These could provide 
a new understanding of the dynamics 
information in regimes beyond the unitary 
and time-independent Hamiltonians and 
thus be potentially useful for the design 
of optimal and robust protocols to store 
and transmit quantum information in 
many-body systems.
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