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Abstract

Capturing document images with hand-held devices in
unstructured environments is a common practice nowadays.
However, “casual” photos of documents are usually unsuit-
able for automatic information extraction, mainly due to
physical distortion of the document paper, as well as var-
ious camera positions and illumination conditions. In this
work, we propose DewarpNet, a deep-learning approach
for document image unwarping from a single image. Our
insight is that the 3D geometry of the document not only
determines the warping of its texture but also causes the il-
lumination effects. Therefore, our novelty resides on the ex-
plicit modeling of 3D shape for document paper in an end-
to-end pipeline. Also, we contribute the largest and most
comprehensive dataset for document image unwarping to
date — Doc3D. This dataset features multiple ground-truth
annotations, including 3D shape, surface normals, UV map,
albedo image, etc. Training with Doc3D, we demonstrate
state-of-the-art performance for DewarpNet with extensive
qualitative and quantitative evaluations. Our network also
significantly improves OCR performance on captured doc-
ument images, decreasing character error rate by 42% on
average. Both the code and the dataset are released '.

1. Introduction

Paper documents carry valuable information and serve
an essential role in our daily work and life. Digitized doc-
uments can be archived, retrieved, and shared in a conve-
nient, safe, and efficient manner. With the increasing popu-
larity of portable cameras and smartphones, document dig-
itization becomes more accessible to users through picture
taking. Once captured, the document images can be con-
verted into electronic formats, for example, a PDF file, for
further processing, exchange, information extraction, and
content analysis. While capturing images, it is desirable to
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Figure 1. Document image unwarping. Top row: input images.
Middle row: predicted 3D coordinate maps. Bottom row: pre-
dicted unwarped images. Columns from left to right: 1) curled,
2) one-fold, 3) two-fold, 4) multiple-fold with OCR confidence
highlights in Red (low) to Blue (high).

preserve the information on the document with the best pos-
sible accuracy — with a minimal difference from a flatbed-
scanned version. However, casual photos captured with mo-
bile devices often suffer from different levels of distortions
due to uncontrollable factors such as physical deformation
of the paper, varying camera positions, and unconstrained
illumination conditions. As a result, these raw images are
often unsuitable for automatic information extraction and
content analysis.

Previous literature has studied the document-unwarping
problem using various approaches. Traditional approaches
[26, 46] usually rely on the geometric properties of the pa-
per to recover the unwarping. These methods first estimate
the 3D shape of the paper, represented by either some para-
metric shape representations [9, 47] or some non-parametric
shape representations [35, 45]. After that, they compute the
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Figure 2. Comparison of different datasets. (a) shows the im-
ages from our Doc3D dataset. We show 6 images rendered from
2 meshes here. Each mesh can be rendered with various textures
and illumination conditions. (b) are the synthetic training images
copied from [23]. (c) are the real world test images in [45] .

flattened image from the warped image and the estimated
shape using optimization techniques. A common drawback
of these methods is that they are usually computationally
expensive and slow due to the optimization process. Re-
cent work by Ma et al. [23] proposed a deep learning sys-
tem that directly regresses the unwarping operation from the
deformed document image. Their method significantly im-
proved the speed of document unwarping system. However,
their method did not follow the 3D geometric properties of
the paper warping — training data was created with a set of
2D deformations — and therefore often generate unrealistic
results in testing.

Paper folds happen in 3D: papers with different textures
but the same 3D shape can be unwarped with the same
deformation field. Hence, 3D shape is arguably the most
critical cue for recovering the unwarped paper. Based on
this idea, we propose DewarpNet, a novel data-driven un-
warping framework that utilizes an explicit 3D shape repre-
sentation for learning the unwarping operation. DewarpNet
works in two-stages with two sub-networks: i) The “shape
network” consumes an image of a deformed document and
outputs a 3D-coordinate map which has shown to be suffi-
cient for the unwarping task[45]. ii) The “texture mapping
network” backward maps the deformed document image to
a flattened document image. We train both sub-networks
jointly with regression losses on the intermediate 3D shape
and final unwarping result (Fig. 1). After that, we provide a

“refinement network” that removes the shading effect from
the rectified image, further improving the perceptual quality
of the result.

To enable the training of this unwarping network with
explicit intermediate 3D representation, we create the
Doc3D dataset — the largest and most comprehensive
dataset for document image unwarping to date. We col-
lect Doc3D in a hybrid manner, combining (1) captured 3D
shapes (meshes) from naturally warped papers with (2) pho-
torealistic rendering of an extensive collection of document
content. Each data point comes with rich annotations, in-
cluding 3D coordinate maps, surface normals, UV texture
maps, and albedo maps. In total, Doc3D contains approxi-
mately 100,000 richly annotated photorealistic images.

We summarize our contributions as follows:

First, we contribute the Doc3D dataset. To the best of
our knowledge, this is the first and largest document image
dataset with multiple ground-truth annotations in both 3D
and 2D domain.

Second, we propose DewarpNet, a novel end-to-end
deep learning architecture for document unwarping. This
network enables high-quality document image unwarping
in real-time.

Third, trained with the rich annotations in the Doc3D
dataset, DewarpNet shows superior performance compared
to recent state-of-the-art [23]. Evaluating with perceptual
similarity to real document scans, we improve the Multi-
Scale Structural Similarity (MS-SSIM) by 15% and reduce
the Local Distortion by 36%. Furthermore, we demonstrate
the practical significance of our method by a 42% decrease
in OCR character error rate.

2. Previous Work

Based on how deformation is modeled, the two groups of
prior work on document unwarping are: parametric shape-
based models and non-parametric shape-based models:

Parametric shape-based methods assume that docu-
ment deformation is represented by low dimensional para-
metric models and the parameters of these models can be
inferred using visual cues. Cylindrical surfaces are the
most prevalent parametric models [8, 16, 19, 26, 41, 46].
Other models include Non-Uniform Rational B-Splines
(NURBS) [10, ], piece-wise Natural Cubic Splines
(NCS) [36], Coon patches [9], etc. Visual cues used for esti-
mating model parameters include text lines [25], document
boundaries [5], or laser beams from an external device [27].
Shafait and Breuel [33] reported several parametric shape
based methods on a small dataset with only perspective and
curl distortions. However, it is difficult for such low dimen-
sional models to model complex surface deformations.

Non-parametric shape-based methods, in contrast, do
not rely on low-dimensional parametric models. Such
methods usually assume a mesh representation for the de-
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Figure 3. Data collection pipeline. I. Workstation. A leveled depth camera mounted on a gantry captures the deformed document. A pin
relief system precisely controls the warping. II. Data processing. We turned the depth map into a point cloud to reconstructed a mesh. With
multiple rendering configurations, we rendered (a) images, (b) albedo maps, (c) UV maps, (d) 3D coordinate maps, (e) Surface normals,

(f) depth maps

formed document paper, and directly estimate the posi-
tion of each vertex on the mesh. Approaches used to es-
timate the vertex positions, include reference images [29],
text lines [21, 35, 39], and Convolutional Neural Networks
(CNNs) [30]. Many approaches reconstruct the mesh from
estimated or captured 3D paper shape information. Notable
examples are point clouds estimated from stereo vision [38],
multi-view images [45], structured light [4], laser range
scanners [47], etc. There is also work on directly using
texture information for this task [11, 24, 43]. Howeyver, re-
sorting to external devices or multi-view images makes the
methods less practical. Local text line features cannot han-
dle documents that mix text with figures. Moreover, these
methods often involve complicated and time-consuming op-
timization. Recently, Ma et al. [23] proposed “DocUNet”,
which is the first data-driven method to tackle document un-
warping with deep learning. Compared to prior approaches,
DocUNet is faster during inference but does not always per-
form well on real-world images, mainly because the syn-
thetic training dataset only used 2D deformations.

3. The Doc3D Dataset

We created the Doc3D dataset in a hybrid manner, using
both real document data and rendering software. We first
captured the 3D shape (mesh) of naturally deformed real
document paper. After that, we rendered the images with
real document texture in Blender [ 1] using path tracing [40].
We used diverse camera positions and varying illumination
conditions in rendering.

A significant benefit of our approach is that the dataset is
created in large scale with photorealistic rendering. Mean-
while, our method generates multiple types of pixel-wise
document image ground truth, including 3D coordinate
maps, albedo maps, normals, depth maps, and UV maps.
Such image formation variations are useful for our task, but
usually harder to obtain in real-world acquisition scenarios.

Compared with the dataset in [23] where 3D deformation
was modeled in 2D only [28], our dataset simulates docu-
ment deformation in a physically-grounded manner. Thus,

it is reasonable to expect that deep-learning models trained
on our dataset will generalize better when testing on real-
world images, compared to models trained on the dataset
of [23]. We visually compare dataset samples in Fig. 2.

3.1. Capturing Deformed Document 3D Shape

3D point cloud capture. Our workstation (Fig. 3 (I)) for
deformed document shape capture consists of a tabletop, a
gantry, a depth camera, and a relief stand. The gantry holds
the depth camera level, facing towards the tabletop, at the
height of 58 cm. At this height, the depth camera captures
the whole document while still preserving deformation de-
tails. The relief stand has 64 individually controlled pins,
raising the height of the document to isolate it from the
tabletop. The height differences make it easier to extract
the document from the background in the depth map. The
stand simulates complex resting surfaces for the document
and also supports the deformed document to maintain curls
or creases.

We used a calibrated Intel RealSense D415 depth cam-
era to capture the depth map. Assuming no occlusion, the
point cloud of the document was obtained via X (3P) =
K~i, j,d;j]", where d;; is the depth value at the pixel
position %, j in the depth map. The intrinsic matrix K was
read from the camera. We averaged 6 frames to reduce zero-
mean noise, and applied Moving Least Squares (MLS) [32]
with a Gaussian kernel to smooth the point cloud.

Mesh creation. We extracted a mesh from the captured
point cloud using the ball pivoting algorithm [3]. The mesh
has ~130,000 vertices and 270,000 faces covering all ver-
tices. We then subsampled each mesh to a 100 x 100 uni-
form mesh grid to facilitate mesh augmentation, alignment,
and rendering. Due to the accuracy limits of our inexpen-
sive sensor, even a higher resolution mesh grid cannot pro-
vide finer details like subtle creases. Each vertex has a
UV position, to indicate texture coordinates, used for tex-
ture mapping in the rendering step. Assigning (u,v) =
{(0,0),(0,1),(1,0),(1,1)} to the 4 corner vertices of the

133



Shape Network

Texture Mapping
Network

43

Refinement

Bilinear Sampling

Figure 4. DewarpNet Framework. I is the input deformed document image. I€ is the I in checkerboard pattern texture. Training Flow is
in black lines. The two black dashed lines refer to the predicted (D) and ground-truth (D) unwarped reconstruction patterns. Testing flow
is in red dashed lines. Triangles denote the losses (see Sec. 4.2 for details). C and B are the ground-truth for the 3D coordinates and the

backward mapping respectively.

mesh, we interpolated UV values for all vertices [37].

Mesh augmentation and alignment. To further exploit
each mesh, we first flipped the mesh along the z,y, 2
axes respectively resulting in 8 meshes, as well as ran-
domly cropped out 4 small meshes ranging from 65 x 65 to
95 x 95 vertices in different aspect ratios. We interpolated
all meshes to the same resolution of 100 x 100. These ad-
ditional meshes significantly increased the diversity of the
dataset. All meshes were aligned to a template mesh by
solving an absolute orientation problem [13] to unify scale,
rotation, and translation. This step ensured that one unique
deformation had one unique 3D coordinate representation.
In total, we generated 40,000 different meshes.

3.2. Document Image Rendering

Configuration. To increase the diversity of the dataset, we
altered the configurations of camera, lighting, and texture
in the rendering process. For each image, the camera was
randomly placed on a spherical cap, with an “up” direc-
tion in [—30°, 30°] range. The camera direction was con-
strained within a small area around the virtual world ori-
gin. We rendered 70% of the images using lighting en-
vironments randomly sampled from the 2100 environment
maps in the Laval Indoor HDR dataset [12]. We also ren-
dered 30% of the images under simple lighting conditions
using a randomly sampled point light. The textures on
the mesh were obtained from real-world document images.
We collected 7,200 images of academic papers, magazines,
posters, books, etc., containing a mix of text and figures in
multiple layouts.

Rich annotations. For each image, we generated the 3D
coordinate map, depth map, normals, UV map, and albedo
map. In Sec. 4, we show how we incorporate these ground
truth images into our network.

4. DewarpNet
4.1. Network Architecture

DewarpNet, as shown in Fig. 4, consists of two sub-
networks for learning unwarping: the shape network and
the texture mapping network. Additionally, we propose a
post-processing refinement module for illumination effect
adjustment that visually improves the unwarped images.

DewarpNet takes as input an image of a deformed docu-
ment I € R?*%*3 and predicts a backward mapping B €
RP>*wx2 (b, and w are height and width). The mapping B is
a flow field representing an image deformation: each pixel
(x,y) in B represents a pixel position in the input image I.
We use bilinear sampling to sample the pixel value in I to
generate the final unwarped document image D € R"*w*3,

Shape Network. DewarpNet first regresses the 3D shape
of the input document image. We formulate this regres-
sion task as an image-to-image translation problem: given
an input image I, the shape network translates each pixel of
I into the 3D coordinate map, C € R"*%*3 where each
pixel value (X, Y, Z) corresponds to 3D coordinates of the
document shape, as shown in Fig. 4. We use a U-Net [31]
style encoder-decoder architecture with skip connections in
the shape network.

Texture Mapping Network. The texture mapping net-
work takes the 3D coordinate map C as input and out-
puts the backward mapping B. In the texture mapping net-
work, we use an encoder-decoder architecture with multiple
DenseNet [14] blocks. This task is a coordinate transforma-
tion from 3D coordinates in C to texture coordinates in B.
We apply Coordinate Convolution (CoordConv) in the tex-
ture mapping network since it was shown to improve the
generalization ability of the network for coordinate trans-
formation tasks [18, 22]. Our experiment shows the effec-
tiveness of this technique in Sec. 5.5.
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Figure 5. Proposed Refinement Network. B is the predicted
backward mapping. NE is the normal estimation network and N
are the predicted normals. I¢ and N are unwarped I and N based
on B. SE is the shading estimation network and S is the predicted
shading map. I" is the concatenation (X)) of I? and N¢. A is the
final shading free output and “/” represents element-wise division
operator. Red dashed arrows signify the inference path.

Refinement Network. The refinement network serves as
a post-processing component of our system to adjust for
illumination effects in the rectified image. This network
not only enhances perceptual quality of the results, but also
improves OCR performance (Sec. 5.4). We leverage addi-
tional ground-truth information (i.e., surface normals and
albedo maps) in the Doc3D dataset to train the refinement
network. The refinement network has two U-Net [3 1] style
encoder-decoders as shown in Fig. 5: one is used to predict
the surface normals N € R"*®“*3 gjven the input image
I; the other takes I and the corresponding N as input and
estimates a shading map S € R"*w*3_ S describes shad-
ing intensity and color. Then we recover the shading free
image A based on an intrinsic image decomposition [2]:
I =A0®S, where ® is the Hadamard product operator.
More details are discussed in the supplementary material.

4.2. Training Loss Functions

The training process has two phases. In the first phase,
the shape network and the texture mapping network are
trained separately for initialization. In the second phase, the
two sub-networks are trained jointly to improve the unwarp-
ing result. For convenience, we denote a predicted variable
as X, and its ground-truth as X. The shape network opti-
mizes the loss function (L¢) in Eq. 1 on the 3D coordinate
map C defined in Sec. 4.1:

Lo=[C-Clhi+A|VE-VC|: (D

where VC = ||(V,C,V,C)|l2, VC and V,C are the
horizontal and vertical image gradients of C, and A\ con-
trols the gradient term’s influence. The image gradient helps
learn high-frequency details such as ridges and valleys of C.

The texture mapping network is trained to minimize L
in Eq. 2. This loss is defined as a linear combination of the

loss term £ on the predicted backward mapping B and the
loss term L on the predicted unwarped image D:

Lr=7|B—B|1+6|D - D @
N——— N———
Lp Lp

where v and § are weights associated to L and Lp.

Lp is the reconstruction loss for the unwarped image.
Lp is the regression loss of the absolute pixel coordinates.
We optimize both L5 and £p to improve unwarping results
(see Sec. 5.5 for ablations).

During training, for each input image I, we apply the cor-
responding ground truth deformation to a regular checker-
board pattern image D, obtaining a checkerboard image I°€.
We use the predicted backward mapping B to unwarp I¢,
obtaining the unwarped checkerboard image D to calculate
Lp. The goal of checkerboard texture is to encourage the
consistency of L£p across various input images regardless
of the document texture. In other words, two images with
identical deformations should unwarp in the same way irre-
spective of their content, which implies the same L£p. Note
that I is only used in training.

In the second phase, the shape and texture mapping net-
works are trained simultaneously in an end-to-end manner.
Such joint optimization enables the backward mapping loss
to compensate for imperfections in the shape network. The
objective function £ for end-to-end training (Eq. 3) is a
weighted linear combination of L& (3D coordinates) and
L (texture map).

L=alc+BLr 3)

For the shading removal refinement task we use £1 loss on
SandS: Ls =||S — S|1.

4.3. Training Details

We train our models on the Doc3D dataset of 100,000
images, splitting into training and validation sets such that
they have no meshes in common. In the first phase of ini-
tilization training, the texture mapping network takes the
ground truth 3D coordinate map C as input. Later, in the
second phase of joint training, each sub-network is initial-
ized with the best separately trained models. The input to
the texture mapping network is the predicted 3D coordi-
nate map C from the shape network. B ranges in [-1,1]
whereas C ranges in [0, 1].

We apply multiple ways of data augmentation: We re-
place the background of our training data with images from
the Describable Texture Dataset (DTD) [7] and the KTH2b-
tips dataset [0] actively during training. The intensity and
color of each training image are also randomly jittered.

Hyperparameters. Initially, we set A = 0.2 (Eq. 1)
then increase by 0.2 after every 50 epochs up to 1.0. We
found that v = 10.0 and 6 = 0.5 (Eq. 2) provide adequate

135



Class Deformation Type

(a) Perspective
(b) Curled

Flat, with perspective warping.
Curved, without creases.

(c) One-Fold One significant crease is visible.
(d) Multi-Fold Multiple creases on the page.

(e) Random-Easy Random folds and some crumples.
(f) Random-Hard  Hard crumples, irregular folding.

Table 1. Classification of samples in Doc3D.

reconstruction quality. For joint training we used o = 3 =
0.5 (Eq. 3). We use the Adam solver [15] with a batch size
of 40, and weight decay of 5 x 10~%4. The learning rate is
initially set at 1 x 10~4, and reduced by a factor of 0.5 if
the loss does not reduce for 5 epochs.

5. Experiments

We evaluate our method with multiple experiments on
the 130-image benchmark from [23], and also show qualita-
tive results on real images from [45]. As a baseline, we train
the DocUNet [23] unwarping method on our new Doc3D
dataset. Furthermore, we evaluate OCR performance of our
method from a document analysis perspective. Finally, we
provide a detailed ablation study to show how the use of the
Coordinate Convolutions [22], and the loss Lp affect un-
warping performance. Qualitative evaluations are shown in
Fig. 7.

5.1. Experimental Setup

Benchmark. For quantitative evaluation, we classify the
130-image benchmark [23] into six classes indicating six
different levels of deformation complexity (see Table 1).
The benchmark dataset contains various kinds of docu-
ments, including images, graphics, and multi-lingual text.

Evaluation Metrics. We use two different evaluation
schemes based on (a) Image similarity and (b) Optical Char-
acter Recognition (OCR) performance.

We use two image similarity metrics: Multi-Scale Struc-
tural Similarity (MS-SSIM) [42] and Local Distortion (LD)
[45], as quantitative evaluation criteria, following [23].
SSIM computes the similarity of the mean pixel value and
variance within each image patch and averages over all the
patches in an image. MS-SSIM applies SSIM at multiple
scales using a Gaussian pyramid, better suited for the eval-
uation of global similarity between the result and ground-
truth. LD computes a dense SIFT flow [20] from the un-
warped document to the corresponding document scan, thus
focusing on the rectification of local details. The parame-
ters of LD are set to the default values of the implementation
provided by [23]. For a fair comparison, all the unwarped
output and target flatbed-scanned images are resized to a
598400 pixel area, as recommended in [23].

OCR accuracy is calculated in terms of Character Error
Rate (CER). CER is evaluated by calculating the Edit Dis-
tance (ED) [17] between the reference and recognized text.
ED is the total number of substitutions (s), insertions (%)
and deletions (d) to obtain the reference text, given the rec-
ognized text. CER = (s+i+d)/N, where N is the number
of characters in the reference text, which is obtained from
the flatbed scanned document images.

5.2. DocUNet on Doc3D

We present a baseline validation of the proposed
Doc3D dataset by training the network architecture in Do-
cUNet [23] on our dataset — Doc3D. DocUNet is a 3D-
agnostic model. The architecture consists of two stacked
UNets. DocUNet takes a 2D image as input and outputs a
forward mapping (each pixel represents the coordinates in
the texture image). The supervisory signal is solely based
on the ground truth forward mapping. Unlike the proposed
DewarpNet which can directly output the unwarped image,
DocUNet needs several post-processing steps to convert the
forward mapping to the backward mapping (each pixel rep-
resents the coordinates in the warped input image) and
then sample the input image to get the unwarped result.

Results in Table 2 show significant improvement when
we train DocUNet on Doc3D instead of the 2D syn-
thetic dataset from [23]. The significant reduction of LD
(14.08 to 10.85) signals a better local detail rectification.
This improvement is the result of both (1) the Dewarp-
Net architecture and (2) training with a more physically
grounded Doc3D dataset, compared to the 2D synthetic
dataset in [23].

5.3. Test DewarpNet on the DocUNet Benchmark

We evaluate both DewarpNet and DewarpNet(ref) (i.e.,
DewarpNet augmented with the post-processing refinement
network) on the DocUNet Benchmark dataset. We provide
comparisons on both (1) the overall benchmark dataset (Ta-
ble 2) and (2) each class in the benchmark (Fig. 6). The
latter provides detailed insight into the improvements of
our approach over previous methods. From class (a) to (e),
our model consistently improves MM-SSIM and LD over
the previous state-of-the-art. In the most challenging class
(f), where the images usually exhibit multiple crumples and
random deformations, our method achieves comparable and
slightly better results.

Time Efficiency of DewarpNet. Our model takes 32ms
on average to process a 4K resolution image. Compared to
DocUNet [23] this represents a 125x speed up. Dewarp-
Net directly outputs the unwarped image whereas DocUNet
requires an expensive separate post-processing step.
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Figure 6. Comparison of different methods on deformation classes. We evaluate the results on: i) MS-SSIM (higher is better) and ii)
LD (lower is better); Labels on x-axis correspond to the deformation classes (a)-(f) (as defined in Sec. 5.1).

Method | MS-SSIM+ LD |
DocUNet 0.41 14.08

DocUNet on Doc3D 0.4389 10.90
DewarpNet 0.4692 8.98
DewarpNet (ref) 0.4735 8.95

Table 2. Comparison of DewarpNet and DocUNet variants on the
DocUNet benchmark, DewarpNet (ref) is DewarpNet combined
with the refinement network.

Method | ED| CER (std) |
Original Warped Image | 2558.36 0.6178 (0.295)
DocUNet 1975.86  0.4656 (0.263)
DocUNet on Doc3D 1684.34  0.3955 (0.272)
DewarpNet 1288.60 0.3136 (0.248)
DewarpNet (ref) 1114.40 0.2692 (0.234)

Table 3. OCR comparison between all methods.

Texture Mapping Net. ‘ 2onB SSIM on D
w/o CoordConv 4.73 x 1075 0.9260
CoordConv 3.99 x 1075 0.9281
Lp 1.40 x 10~4 0.8539
Lg+Lp 3.99 x 107° 0.9281

Table 4. Effects of CoordConv and using the £p in the Texture
Mapping Net

5.4. OCR Evaluation

We use PyTesseract (v0.2.6) [34] as the OCR engine to
evaluate the utility of our work on text recognition from im-
ages. The text ground-truth (reference) is generated from
25 images from DocUNet [23]. In all these images, more
than 90% of the content is text. The supplementary mate-
rial contains some samples from our OCR test-set. OCR
performance comparison, presented in Table 3, shows our

method outperforms [23] with a large margin in all metrics.
In particular, DewarpNet reduces C E R by 33% compared
to DocUNet, and the refinement network gives a reduction
of 42%.

5.5. Ablation Studies

Coordinate Convolution (CoordConv). We investigate
the effects of CoordConv on texture mapping network per-
formance. The experiment (Table 4) on Doc3D validation
set demonstrates that using CoordConv leads to a 16% ¢2-
error reduction on B and a slight improvement of SSIM on
D from 0.9260 to 0.9281.

Loss L£p. The texture mapping network benefits greatly
from using £p (unwarped visual quality loss). As shown
in Table 4 compared to using the absolute pixel coordinate
loss Lp only, using L + Lp significantly reduces the £2
error on B by 71% and improve the SSIM on D by 9%.

5.6. Qualitative Evaluation

For qualitative evaluation, we compare DewarpNet with
DocUNet in Fig. 7 and You et al. [45] in Fig. 8. The method
by [45] utilizes multi-view images to unwarp a deformed
document. Even with a single image, DewarpNet shows
competitive unwarping results.

Additionally, we show that the proposed method is ro-
bust to illumination variation and camera viewpoint changes
in Fig. 9. To evaluate the illumination robustness, we test on
multiple images with a fixed camera viewpoint but different
directional lighting from front, back, left, right of the doc-
ument, and environment lighting. We also test DewarpNet
robustness to multiple camera viewpoints, on a sequence
of multi-view images provided by [45]. Results show that
DewarpNet yields almost the same unwarped image in all
cases.

6. Conclusions and Future Work

In this work, we present DewarpNet, a novel deep
learning architecture for document paper unwarping. Our
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Figure 7. Qualitative comparison of DewarpNet results on Do-
cUNet [23]. Row 1: Original warped images, Row 2: Results of
[23], Row 3: Results of DewarpNet, Row 4: Results of Dewarp-
Net after Shading Removal, Row 5: Flatbed scanned images. Red
overlay markings show structural deformation.

method is robust to document content, lighting, shading,
or background. Through the explicit modeling of 3D
shape, DewarpNet shows superior performance over previ-
ous state-of-the-art. Additionally, we contribute the Doc3D
dataset — the largest and most comprehensive dataset for
document image unwarping, which comes with multiple 2D
and 3D ground truth annotations.

Some limitations exist in our work: First, the inexpen-
sive depth sensor cannot capture fine details of deforma-
tion like subtle creases on a paper crumple. Thus our data
lacks samples with highly complex paper crumple. In fu-
ture work, we plan to construct a dataset with better details
and more complex structures. Second, DewarpNet is rela-

Ay

AT AMATIGLY
ACCURATE QUANTUM ACCURATE QUANTIM
ONPUTING iy

Figure 8. Comparison with You et. al. [45]. Columns from left
to right: 1) Original warped images, 2) Results from [45], 3) De-
warpNet, 4) DewarpNet results after shading removal, 5) Flatbed
scanned images.

Figure 9. DewarpNet robustness. Top two rows : Robustness to
lighting (results shown are after refinement step): Columns 1-4:
Directional light on different sides of the document, i.e. right, left,
top, bottom. Column 5: Environment light. Although the refine-
ment network handles shading quite well, it is unable to remove
the hard shadows. Bottom two rows: Robustness to camera view-
point.

tively sensitive to occlusion: results degrade when parts of
the imaged document are occluded. In future work, we plan
to address this difficulty via data augmentation and adver-
sarial training.
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