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We investigate the effects of stimulated scattering of optical lattice photons on atomic coherence times in
a state-of-the art 8’Sr optical lattice clock. Such scattering processes are found to limit the achievable
coherence times to less than 12 s (corresponding to a quality factor of 1 x 10'¢), significantly shorter than
the predicted 145(40) s lifetime of 8’Sr’s excited clock state. We suggest that shallow, state-independent
optical lattices with increased lattice constants can give rise to sufficiently small lattice photon scattering
and motional dephasing rates as to enable coherence times on the order of the clock transition’s natural
lifetime. Not only should this scheme be compatible with the relatively high atomic density associated with
Fermi-degenerate gases in three-dimensional optical lattices, but we anticipate that certain properties of
various quantum states of matter—such as the localization of atoms in a Mott insulator—can be used to

suppress dephasing due to tunneling.
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Owing to dramatic improvements in both the precision
and accuracy of atomic spectroscopy over the last decade
[1-3], there is growing interest in the use of atomic clocks as
quantum sensors in tests of fundamental physics [4-8].
Recent demonstrations of spectroscopic techniques, which
are immune to local oscillator noise, promise to dramatically
improve the precision of such tests [9—12]. In the absence
of local oscillator noise, frequency measurements of a single
atom follow a binomial distribution and, for Ramsey
spectroscopy [13], are spread about its true transition
frequency @, by an amount (w,T)~', given in fractional
frequency units with 7 being the coherent evolution time.
In the absence of entanglement, interrogation of a sample of
N atoms with an experimental cycle time 7'y, results in a
quantum projection noise (QPN) limit [14],
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That is, one wants to increase the interrogation time and use a
larger number of atoms in order to reduce the measurement
noise.

To date, the lowest reported QPN limit (copny =
1.5 x 1017 /\/Hz) was achieved using a Fermi-degenerate
gas of N~ 10* ¥Sr (w, ~ 27z x 429 THz) atoms loaded
into the Mott-insulating regime of a three-dimensional (3D)
optical lattice [12,15]. In these experiments, coherence
times were found to be less than 12 s and presumed to be
limited by Raman scattering of photons from the deep
optical lattice [16,17]. While these scattering processes
may be reduced by operating in a shallower optical
potential, one then introduces site-to-site tunneling as an
additional dephasing mechanism [18-20].
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In this Letter, we discuss a solution that simultaneously
addresses both the lattice photon scattering and tunneling
induced dephasing problems in 3D optical lattice clocks:
shallow optical lattices with increased lattice constants, a.
We find that not only should the decreased kinetic energies
in the ground band of such a lattice be sufficient to suppress
motional dephasing in a single atom picture, but addition-
ally, for a nuclear-spin polarized Fermi gas at half-filling,
inter-electronic-orbital interactions should provide an addi-
tional mechanism for reducing motional dephasing rates.
In such a system, atom numbers on the order of N = 107
and coherent interrogation times up to 7 = 140 s seem
readily achievable and correspond to a QPN limit of
O'QPN < 10_19/\/15.

Before describing the details of our proposal, we build
upon previous work which investigated trap depth depen-
dent depopulation of the 555p 3P, excited clock state (|e))
in 8’Sr one-dimensional optical lattices as a signature of
the Raman scattering problem [16,17]. By leveraging the
improved control over motional degrees of freedom [15] and
imaging techniques [12] available in a Fermi-degenerate 3D
optical lattice clock, we additionally investigate the corre-
sponding loss of Ramsey fringe contrast.

A spin-polarized degenerate fermi gas is created by
evaporatively cooling atoms in an equal mixture of the
mp =—5/2,...,9/2 magnetic sublevels of the 5s°'5,
electronic ground state (|g)) before a focused laser beam,
detuned from the 5s5p 3P, intercombination line, provides
a state-dependent potential, removing nearly all but the
mp = 9/2 atoms from the trap. Approximately 2 x 103
atoms with a temperature of 20% of the Fermi temperature
are then loaded from the running wave optical dipole trap
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into a cubic optical lattice. Each arm (i = x, y, z) of the
lattice is formed by a retroreflected laser at the magic
wavelength (Apagic) [21], and is characterized by a variable
depth V; and a lattice constant ay = Apggic/2 = 407 nm.
The i = z lattice arm is oriented along both gravity and
an applied 0.5 mT magnetic bias field. We perform an
additional step of spin purification by coherently driving
lg,mp =9/2) - |e,mp = 9/2) with 4y, = 698 nm clock
light, propagating along the i = x lattice axis, then remov-
ing all remaining |g) atoms by cycling on the 55% 'S, <>
5s56p P, transition with resonant 461 nm light.

For the excited state lifetime measurement, we insert a
variable hold time before a series of 5 us pulses of 461 nm
light form an absorption image of the |g) atoms on a CCD
camera, providing a count of the |g) atoms, N, while also
removing the imaged atoms from the trap. We obtain a
count of the remaining atoms, N;, by optically pumping
5s5p 3Py, 3P, — 5s5p3P, with light resonant on the
5s5p3Py,3P, <> 556535, transitions at 679 nm and
707 nm. Atoms then rapidly decay to the ground state,
via the 21 us lived 5s5p 3P, [22], where they are sub-
sequently imaged with 461 nm light. We note that this
readout method counts not only atoms in |e, mp = 9/2),
but all atoms in the metastable 5s5p P, *P, manifold in
the quantity N;. The decay of the excited population p;; =
N3z/(Ng+ N;) is then fit to extract a 1/e lifetime.

These lifetimes are measured for various lattice depths,
V., ranging from 5E, to 310E,, while fixing V, = 59(2)E,
and V, = 70(2)E,, where E, = h*/8maj ~ h x 3.5 kHz
is the lattice photon recoil energy, & the Planck constant,
and m the atomic mass. Figure 1(a) shows the trap depth
dependence of the extracted lifetimes. We find the mea-
sured lifetimes to be significantly shorter than the predicted
7o = 145(40) s natural lifetime [23], yet largely consistent
with numerical simulations with no free parameters (shaded
red region) in which two-photon Raman transitions, stimu-
lated by the lattice light, distribute atoms amongst the
555p 3P, manifold where the atoms can then spontaneously
decay to the ground state from 5s5p3P,. The vacuum
limited lifetime of atoms prepared in |g) is independently
measured to be > 100 s. An energy level diagram depicting
the Raman scattering processes, and the master equation
used in the simulation can be found in Ref. [24].

Such scattering events are detrimental to clock operation
as they destroy the coherence p,, between the two clock
states [32]. Using imaging spectroscopy [12,15], we
observe this loss in coherence as a reduction in the
Ramsey fringe contrast for increasing dark time, 7. The
contrast decay at a given lattice depth is then fit to extract a
1/e coherence time. The results of such measurements are
shown in Fig. 1(b) for the same lattice conditions as in
Fig. 1(a). The observed coherence times are found to scale
proportionally to Vgl (Vo = >.;V;) for V, > 20E,, yet
they fall significantly below the predicted decoherence rate
due to Raman scattering (shaded red region) [24].
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FIG. 1. Measured (a) lifetimes and (b) coherence times.
Experimental data are shown in black points along with 1¢ error
bars. Results of the master equation simulation are shown as
shaded red regions. The solid red line in (a) represents the fitted
decay rate from Ref. [17].

This suggests that other, lattice depth dependent,
decoherence mechanisms are present in the system.
Rayleigh scattering is not expected to directly contribute
as a dephasing mechanism since the scattering amplitudes
are identical for both clock states in a magic wavelength
trap [16,25]. However, both Raman and Rayleigh scattering
processes can heat atoms out of the ground band of the
lattice [33] at which point, we suspect, they are able to
tunnel around and dephase through contact interactions.

For V, < 20E,, coherence times are seen deviate from
the Vi scaling and instead rapidly decay. This decay is
accompanied by a loss in atom number which we attribute
to significant tunneling rates along the i = z lattice and
inelastic collisions [34]. This demonstrates the difficulty in
overcoming the Raman scattering problem in conventional
optical lattice clocks. One would like to operate in an
optical trap shallow enough to make scattering induced
decoherence rates comparable to the natural lifetime—one
requires V; <4E, for 8’Sr—but then one finds additional,
tunneling enabled dephasing mechanisms due to the
increased kinetic energy scale.
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FIG. 2. (a) Motional dephasing in a conventional, a/A. ~ 0.6
lattice. An atom in an equal superposition of |g) and |e) is
depicted as the face of a clock where the position of the hand
reflects the relative phase between the atomic superposition and
the local oscillator. Upon tunneling to an adjacent lattice site, the
relative phase changes by an amount ¢ =~ 1.2z. (b) Motional
dephasing can be eliminated by matching the lattice constant to
the probe wavelength. An atom then sees the same local oscillator
phase at each lattice site. (c) Calculated motional dephasing rates
(7,), kinetic energies (1* = 12¢), and interaction energies (U) as a
function of lattice spacing, a, in a V = 4F, lattice. The horizontal
grey line represents the inverse lifetime (7 1Y of the strontium
clock transition. Single particle motional effects are suppressed
below the natural decay rate for @ = 2 ym.

We address this issue in the following proposal.
Hereafter, we assume a uniform lattice, V; = V, and for
the time being, a noninteracting gas. For a Ramsey type
experiment in an inertial reference frame, tunneling at a
rate ¢ along the direction of the probe laser results in a loss
in contrast of the spectroscopic signal according to p,, =
| T o[4tT sin(¢p/2)]|, Jo being the zeroth order Bessel
function of the first kind [20], and ¢ = 27a /Ay, the site-
to-site phase shift of the clock light where we now allow
for a variable lattice constant, a, as depicted in Figs. 2(a)
and 2(b). For the purpose of comparing different energy
scales of the system, we define the argument of the Bessel
function,

v = 41|sin(¢/2)], (2)

as the “motional dephasing rate.” As a practical example,
such a variable spacing lattice can be engineered, while
restricting the wavelength of the trapping light to be magic
by interfering the lattice beams at an arbitrary angle, 0,

giving a spacing a = Apyeic/|2 sin(0/2)| [35-37], or with
an optical tweezer array [38].

Under the harmonic approximation, the tunneling rate
for fixed V scales exponentially with a as [39]

Sl o

One can think of this intuitively as a change in the lattice
constant rescaling the lattice recoil energy, E, — (a¢/a)*E,,
such that the lattice depth in units of the new recoil energy
can be made quite large for modest increases in a/ay.
Numerical values of y, and the total kinetic energy,
t* =12t, for a V =4E, lattice are shown in Fig. 2(c).
For a sufficiently large lattice constant, the atomic limit
(t — 0) is achieved where tunneling related effects can be
neglected. We find that both y, and ¢* are suppressed below
7, ! for lattice spacings a =2 um.

Additionally, y, is found to sharply drop to zero upon
matching the condition a/Ay mod 1 = 0. These resonan-
ces can be understood in a momentum space picture where
the clock photon recoil is matched to a reciprocal lattice
vector and thus absorption or emission of a clock photon
leaves each atom’s motional state unchanged. In this case,
for a nuclear-spin polarized gas at half filling, the system
behaves as a band insulator throughout clock spectroscopy
as the indistinguishability of all atoms is preserved. This
scheme, however, requires an accuracy in 6 beyond the
2x 107>, and 2 x 1072 levels for the a/Ay = 1, 2 con-
figurations, respectively. Throughout this range of param-
eters (1 < a/ay < 5) the lattice band gap is greater than
h x 2 kHz, and the effective Rabi coupling is suppressed
by no more than 60% of the bare Rabi coupling such that
carrier resolved spectroscopy is easily achievable; line-
pulling effects from off-resonant excitation of motional
sidebands can be suppressed below the 107! level for Rabi
frequencies below 10 Hz, as shown in Fig. S4 [24].

Many-body effects arise through an on-site interaction
energy U parametrized by the anti-symmetric inter-elec-
tronic-orbital s-wave scattering length, a,,- = 69.1(0.9)ap
[40], where ap is the Bohr radius. This energy scale
decreases algebraically with an increasing lattice constant,

sy~ ()" @

such that for sufficiently large lattice spacings, the system
enters the Mott-insulating regime (*/U < 1) [41,42].
Here, for a sufficiently cold gas at half-filling, the only
available excitations below the energy gap U are of the
order of the superexchange energy J = 4¢>/U. Thus we
expect, for a sufficiently weak probe pulse, the motional
dephasing rates to be suppressed by a factor of /U as
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compared to the noninteracting case. Numerical values for
U in a V = 4E, lattice are shown in Fig. 2(c).

We investigate these effects with a “toy model” consist-
ing of a double well potential. We assign the following
Hamiltonian in the rotating wave approximation,

A U
H/h = Z (Z (nx,e - nx,g) + Enx,gnx,e

X
Q et i
—I—Ee “CreCryg | = IZCL’(;CR’G—FH.C. (5)

to such a system. Here c;{; (c,,) creates (destroys) a
fermion with internal state 6 € {g, ¢} in well x € {L, R},
Ny, = cjwcx,a, A = w — wy is the difference between the
frequency of the driving field @ from the atomic resonance,
@y, Q is the Rabi coupling strength, and ¢, =
2r(a/Aqx)d, R is the site-dependent phase shift of the clock
light, with §; ; being the Kronecker delta function. The two
atom spectrum of this Hamiltonian with Q = 0 is shown in
Fig. 3(a).

We simulate Ramsey spectroscopy of one and two atoms
in the double well by numerically integrating the Schrodinger
equation. A resonant (A = 0) /2 pulse with Q > 1 places
each atom in an equal superposition of ground and excited
electronic states. For a/Ag mod 1 # 0, this pulse also
changes the system’s motional state. During field-free
evolution (Q = 0), the different motional states beat against
each other causing a dephasing of the spectroscopic feature.
We quantify this effect with the following relation,

y =/ (H?) = (H)%. (6)

For a single atom, this quantity approximates the
dephasing rate in an infinite-sized lattice, y,, falling off
with an envelope proportional to ¢ as shown in Fig. 3(b)
(red dashed line). For two atoms, we observe that as one
begins to resolve the interaction energy (Q < U) the
dephasing rate becomes proportional to the superexchange
energy, falling off with an envelope proportional to /U
as shown in Fig. 3(b) (solid blue line). While the exact
numerical prefactor differs slightly from what one would
get for an infinite lattice [43], the general conclusion is
the same: the minimum lattice spacing such that yz, < 1 is
significantly relaxed as compared to the noninteracting
case.

We have identified scattering of lattice photons as a
dominant decoherence mechanism in a state-of-the-art 3D
optical lattice clock and proposed a number of ways in
which quantum materials may be engineered to overcome
such limits. The improved clock stability associated with
longer coherence times will directly enable new searches
for time variation of fundamental constants and tests of
general relativity on sub-mm length scales. Additionally,
the shallow optical potentials described in this Letter will
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FIG. 3. (a) Energy spectrum of Eq. (5) at half-filling. States
with zero, one, and two atoms in |e) are shown as blue, red, and
green lines, respectively. The |gg) and |ee) states are non-
interacting due to the Pauli exclusion principle. The |eg) +
|ge) states are spread by twice the Bloch band width at U = 0.
Whereas in the Mott-insulating regime (U/t > 1), an energy gap
U opens up and a pair of weakly interacting states become
spectroscopically resolvable. (b) Dephasing rates, as given by
Eq. (6), for one (red dashed line) and two (solid blue line) atoms
in a double well potential. The tunneling rates and interaction
strengths as a function of lattice spacing are taken from Fig. 2(c)
and inserted into the double well Hamiltonian with Q/27 =
0.5 Hz. The curves are not plotted for 4 > Q where the analogy
between the double well system and an infinite lattice breaks
down as the discrete levels of the finite sized system become
resolved.

help reduce systematic clock shifts related to the traps
themselves, especially terms that are nonlinear in trap depth
[44,45]. Future work will investigate the use of atomic
collisions to create metrologically useful entanglement [46]
and study collective radiative effects [47,48] for various
lattice constants including the resonance condition in
Fig. 2(b).
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