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Abstract—Best arm identification (or, pure exploration) in
multi-armed bandits is a fundamental problem in machine
learning. In this paper we study the distributed version of this
problem where we have multiple agents, and they want to learn
the best arm collaboratively. We want to quantify the power
of collaboration under limited interaction (or, communication
steps), as interaction is expensive in many settings. We measure
the running time of a distributed algorithm as the speedup over
the best centralized algorithm where there is only one agent.
We give almost tight round-speedup tradeoffs for this problem,
along which we develop several new techniques for proving lower
bounds on the number of communication steps under time or
confidence constraints.

Index Terms—communication complexity, foundations of ma-
chine learning, lower bounds, parallel computation

I. INTRODUCTION

One of the biggest challenges in machine learning is to
make learning scalable. A natural way to speed up the learning
process is to introduce multiple learners/agents, and let them
learn the target function collaboratively. A fundamental ques-
tion in this direction is to quantify the power of collaboration
under limited interaction, as interaction is expensive in many
settings. In this paper we approach this general question via
the study of a central problem in online learning – best arm
identification (or, pure exploration) in multi-armed bandits.
We present efficient collaborative learning algorithms and
complement them with almost tight lower bounds.

Best Arm Identification. In multi-armed bandits (MAB) we
have n alternative arms, where the i-th arm is associated with
an unknown reward distribution Di with mean θi. Without loss
of generality we assume that each Di has support on [0, 1];
this can always be satisfied with proper rescaling. We also
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assume that θi ∈ [ι, 1− ι] for any positive constant ι > 0.1 We
are interested in the best arm identification problem in MAB,
in which we want to identify the arm with the largest mean.
In the standard setting we only have one agent, who tries to
identify the best arm by a sequence of arm pulls. Upon each
pull of the i-th arm the agent observes an i.i.d. sample/reward
from Di. At any time step, the index of the next pull (or, the
final output at the end of the game) is decided by the indices
and outcomes of all previous pulls and the randomness of
the algorithm (if any). Our goal is to identify the best arm
using the minimum amount of arm pulls, which is equivalent
to minimizing the running time of the algorithm; we can just
assume that each arm pull takes a unit time.

MAB has been studied for more than half a century [2],
[3], due to its wide practical applications in clinical trials [4],
adaptive routings [5], financial portfolio design [6], model
selection [7], computer game play [8], stories/ads display on
website [9], just to name a few. In many of these scenarios
we are interested in finding out the best arm (strategy, choice,
etc.) as soon as possible and committing to it. For example,
in the Monte Carlo Tree Search used by computer game play
engines, we want to find out the best move among a huge
number of possible moves. In the task of high-quality website
design, we hope to find out the best design among a set of
alternatives for display. In almost all such applications the
arm pull is the most expensive component: in the real-time
decision making of computer game play, it is time-expensive
to perform a single Monte Carlo simulation; in website design
tasks, having a user to test each alternative is both time and
capital expensive (often a fixed monetary reward is paid for
each trial a tester carries out).

1This assumption is due to minor technical reasons, and is also made in
many existing bandit lower bounds (e.g. [1]). It does not affect our claims by
much, since the most interesting and the hardest instances remain covered by
the assumption.



In the literature of best arm identification in MAB, two
variants have been considered:

1) Fixed-time best arm: Given a time budget T , identify
the best arm with the smallest error probability.2

2) Fixed-confidence best arm: Given an error probability
δ, identify the best arm with error probability at most δ
using the smallest amount of time.

We will study both variants in this paper.

Collaborative Best Arm Identification. In this paper we
study best arm identification in the collaborative learning
model, where we have K agents who try to learn the best
arm together. The learning proceeds in rounds. In each round
each agent pull a (multi)set of arms without communication.
For each agent at any time step, based on the indices and
outcomes of all previous pulls, all the messages received,
and the randomness of the algorithm (if any), the agent, if
not in the wait mode, takes one of the following actions: (1)
makes the next pull; (2) requests for a communication step and
enters the wait mode; (3) terminates and outputs the answer. A
communication step starts if all non-terminated agents are in
the wait mode. After a communication step all non-terminated
agents exit the wait mode and start a new round. During each
communication step each agent can broadcast a message to
every other agent. While we do not restrict the size of the
message, in practice it will not be too large – the information
of all pull outcomes of an agent can be described by an array of
size at most n, with each coordinate storing a pair (ci, sumi),
where ci is the number of pulls on the i-th arm, and sumi is
sum of the rewards of the ci pulls. Once terminated, the agent
will not make any further actions. The algorithm terminates
if all agents terminate. When the algorithm terminates, each
agent should agree on the same best arm; otherwise we say the
algorithm fails. The number of rounds of computation, denoted
by R, is the number of communication steps plus one.

Our goal in the collaborative learning model is to minimize
the number of rounds R, and the running time T =

∑
r∈[R] tr,

where tr is the maximum number of pulls made among the
K agents in round r. The motivation for minimizing R is that
initiating a communication step always comes with a big time
overhead (due to network bandwidth, latency, protocol hand-
shaking), and energy consumption (e.g., think about robots ex-
ploring in the deep sea and on Mars). Round-efficiency is one
of the major concerns in all parallel/distributed computational
models such as the BSP model [10] and MapReduce [11].
The total cost of the algorithm is a weighted sum of R and
T , where the coefficients depend on the concrete applications.
We are thus interested in the best round-time tradeoffs for
collaborative best arm identification.

Speedup in Collaborative Learning. As the time complexity
of the best arm identification in the centralized setting is

2In the literature this is often called fixed-budget best arm. Here we use
time instead of budget in order to be consistent with the collaborative learning
setting, where it is easier to measure the performance of the algorithm by its
running time.

already well-understood (see, e.g. [1], [12]–[18]), we would
like to interpret the running time of a collaborative learning
algorithm as the speedup over that of the best centralized
algorithm, which also expresses the power of collaboration.
Intuitively speaking, if the running time of the best centralized
algorithm is TO, and that of a proposed collaborative learning
algorithm A is TA, then we say the speedup of A is βA =
TO/TA. However, due to the parameters in the definition of the
best arm identification and the instance-dependent bounds for
the best centralized algorithms, the definition of the speedup
of a collaborative learning algorithm needs to be a bit more
involved.

Recall that an MAB instance is a set of random variables
{X1, . . . , Xn} each of which has support on [0, 1]. Since we
are interested in the instance-dependent bounds, we assume
that a random permutation is “built-in” to the input, that is,
the X1, . . . , Xn are randomly permuted before being fed to the
algorithm. This is a standard assumption in the literature of
MAB, since otherwise no conceivable algorithm can achieve
instance-optimality – the foolish algorithm that always outputs
the first arm will work perfectly in the instance in which the
first arm has the largest mean.

For any fixed-time algorithm A and an input instance I , we
let δA(I, T ) be the error probability of A on I given time
budget T . For any fixed-confidence algorithm A and an input
instance I , we let TA(I, δ) be the expected time used by A on
I given the confidence parameter (1− δ). In both definitions,
the randomness is taken over both A and I . We also extend the
definition TA(I, δ) to any fixed-time algorithm A by letting it
be the smallest T such that δA(I, T ) ≤ δ.

We now define the key notion of speedup for a collaborative
algorithm. We say that an instance I is T -solvable by an
algorithm O (for both fixed-budget and fixed-time and fixed-
confidence settings), if TO(I, 1/3) ≤ T . For any T , the
speedup of a collaborative learning algorithm A (which can
be either fixed-budget or fixed-time) for instances T -solvable
by a centralized algorithm is defined as follows.

βA(T ) = inf
centralized O

inf
instance I

inf
δ∈(0,1/3]:TO(I,δ)≤T

TO(I, δ)

TA(I, δ)
. (1)

Here the most inner inf returns +∞ if the set of candidate δ is
empty. Note that the most natural definition for speedup would
be for all instances. However, since our upper bound result
logarithmically degrades as T grows, we have to introduce
the T parameter in the definition, that is, we only consider
those instances I for which the centralized algorithm can finish
within time T under error δ.

Finally, we let βK,R(T ) = supA βA(T ) where the sup
is taken over all R-round algorithms A for the collaborative
learning model with K agents.3

Clearly there is a tradeoff between R and βK,R: When
R = 1 (i.e., there is no communication step), each agent needs
to solve the problem by itself, and thus βK,1 ≤ 1. When R

3A similar concept of speedup was introduce in the previous work [19].
However, no formal definition was given in [19].



increases, βK,R may increase. On the other hand we always
have βK,R ≤ K. Our goal is to find the best round-speedup
tradeoffs, which is essentially equivalent to the round-time
tradeoffs that we mentioned earlier.

As one of our goals is to understand the scalability of
the learning process, we are particularly interested in one
end of the tradeoff curve: What is the smallest R such
that βK,R = Ω(K)? In other words, how many rounds are
needed to make best arm identification fully scalable in the
collaborative learning model? In this paper we will address
this question by giving almost tight round-speedup tradeoffs.

Our Contributions. Our results are shown in Table I. For
convenience we use the ‘ ˜ ’ notation on O,Ω,Θ to hide
logarithmic factors, which will be made explicit in the actual
theorems. Our contributions include:

1) Almost tight round-speedup tradeoffs for fixed-time. In
particular, we show that any algorithm for the fixed-
time best arm identification problem in the collab-
orative learning model with K agents that achieves
(K/ lnO(1)K)-speedup needs at least Ω(lnK/ ln lnK)
rounds (for T ≥ KΩ(1)). We complement this lower
bound with an algorithm that runs in lnK rounds and
achieves Ω̃(K)-speedup.

2) Almost tight round-speedup tradeoffs for fixed-
confidence. In particular, we show that any algorithm
for the fixed confidence best arm identification
problem in the collaborative learning model with K
agents that achieves (K/ lnO(1)K)-speedup needs at
least Ω

(
ln 1

∆min
/(ln lnK + ln ln 1

∆min
)
)

rounds (for

T ≥ ∆
−Ω(1)
min ), which almost matches an algorithm

in [19] that runs in ln 1
∆min

rounds and achieves
Ω̃(K)-speedup. Here ∆min is the difference between
the mean of the best arm and that of the second best
arm in the input.

3) A separation for two problems. The two results above
give a separation on the round complexity of fully
scalable algorithms between the fixed-time case and the
fixed-confidence case. In particular, the fixed-time case
has smaller round complexity for input instances with
∆min < 1/K (and when T ≥ ∆

−Ω(1)
min ), which indicates

that knowing the “right” time budget is useful to reduce
the number of rounds of the computation.

4) A generalization of the round-elimination technique.
In the lower bound proof for the fixed-time case, we
develop a new technique which can be seen as a gen-
eralization of the standard round-elimination technique:
we perform the round reduction on classes of input
distributions. We believe that this new technique will
be useful for proving round-speedup tradeoffs for other
problems in collaborative learning.

5) A new technique for instance-dependent round complex-
ity. In the lower bound proof for the fixed-confidence

4We note again that the number of rounds equals to the number of
communication steps plus one.

case, we develop a new technique for proving instance-
dependent lower bound for round complexity. The dis-
tribution exchange lemma we introduce for handling
different input distributions at different rounds may be
of independent interest.

Related Works. There are two main research directions in lit-
erature for MAB in the centralized setting, regret minimization
and pure exploration. In the regret minimization setting (see
e.g. [20]–[22]), the player aims at maximizing the total reward
gained within the time horizon, which is equivalent to mini-
mizing the regret which is defined to be the difference between
the total reward achieved by the offline optimal strategy (where
all information about the input instance is known beforehand)
and the total reward by the player. In the pure exploration
setting (see, e.g. [1], [12], [14], [15], [18], [23]), the goal is to
maximize the probability to successfully identify the best arm,
while minimizing the number of sequential samples used by
the player. Motivated by various applications, other exploration
goals were also studied, e.g., to identify the top-k best arms
[24]–[26], and to identify the set of arms with means above a
given threshold [27].

The collaborative learning model for MAB studied in this
paper was first proposed by [19], and has proved to be
practically useful – authors of [28] and [29] applied the model
to distributed wireless network monitoring and collective
sensemaking.

Agarwal et al. [30] studied the problem of minimum adap-
tivity needed in pure exploration. Their model can be viewed
as a restricted collaborative learning model, where the agents
are not fully adaptive and have to determine their strategy at
the beginning of each round. Some solid bounds on the round
complexity are proved in [30], including a lower bound using
the round elimination technique. As we shall discuss shortly,
we develop a generalized round elimination framework and
prove a much better round complexity lower bound for a more
sophisticated hard instance.

There are other works studying the regret minimization
problem under various distributed computing settings. For
example, motivated by the applications in cognitive radio
network, a line of research (e.g., [31]–[33]) studied the regret
minimization problem where the radio channels are modeled
by the arms and the rewards represent the utilization rates of
radio channels which could be deeply discounted if an arm
is simultaneously played by multiple agents and a collision
occurs. Regret minimization algorithms were also designed
for the distributed settings with an underlying communication
network for the peer-to-peer environments (e.g., [34]–[36]). In
[37], [38], the authors studied distributed regret minimization
in the adversarial case. Authors of [39] studied the regret
minimization problem in the batched setting.

Blum et al. [40] studied PAC learning of a general function
in the collaborative setting, and their results were further
strengthened by [41], [42]. However, in the collaborative
learning model they studied, each agent can only sample from



problem number of rounds4 βK,R(T ) UB/LB ref.
fixed-time 1 1 – trivial

2 Ω̃(
√
K) UB [19]

2 Õ(
√
K) LB [19]

R Ω̃(K
R−1
R ) UB new

Ω

(
ln K̃

ln ln K̃+ln K
β

)
when β ∈ [K/K̃0.1, K] β LB new

fixed-confidence R Ω̃
(

(∆min)
2

R−1K
)

UB [19]

Ω

(
min

{
ln 1

∆̃min

ln
(

1+
K(lnK)2

β

)
+ln ln 1

∆̃min

,
√

β
(lnK)3

})
β LB new

TABLE I: Our results for collaborative best arm identification in multi-armed bandits. K is the number of agents. ∆min is the
difference between the mean of the best arm and that of the second best arm in the input. In the lower bound for the fixed-time
setting, we set K̃ = min{K,

√
T}; in the lower bound for the fixed-confidence setting, we set ∆̃min

−1
= min{∆−1

min, T}.

one particular distribution, and is thus different from the model
this paper focuses on.

II. TECHNIQUES OVERVIEW

In this section we summarize the high level ideas of our
algorithms and lower bounds. For convenience, the parameters
used in this overview are only for illustration purposes.

Lower bound for fixed-time algorithms. A standard
technique for proving round lower bounds in communica-
tion/sample complexity is the round elimination [43]. Roughly
speaking, we show that if there exists an r-round algorithm
with error probability δr and sample complexity f(nr) on an
input distribution σr, then there also exists an (r − 1)-round
algorithm with error probability δr−1 and sample complexity
f(nr−1) on an input distribution σr−1. Finally, we show that
there is no 0-round algorithm with error probability δ0 � 1
on a nontrivial input distribution σ0.

In [30] the authors used the round elimination technique to
prove an Ω(ln∗ n) round lower bound for the best arm iden-
tification problem under the total pull budget Õ(n/∆2

min).5

In their hard input there is a single best arm with mean 1
2 ,

and (n − 1) arms with means ( 1
2 −∆min). This “one-spike”

structure makes it relatively easy to perform the standard
round elimination. The basic arguments in [30] go as follows:
Suppose the best arm is chosen from the nr = n arms
uniformly at random. If the agents do not make enough pulls
in the first round, then conditioned on the pull outcomes
of the first round, the posterior distribution of the index of
the best arm can be written as a convex combination of a
set of distributions, each of which has support size at least
nr−1 ≈ log n and is close (in terms of the total variation
distance) to the uniform distribution on its support, and is thus
again hard for a (r − 1)-round algorithm.

5ln∗ n is the number of times the logarithm function must be iteratively
applied before the result is less than or equal to 1.

However, since our goal is to prove a much higher log-
arithmic round lower bound, we have to restrict the total
pull budget within the instance dependent parameter Õ(H) =
Õ
(∑n

i=2 1/∆2
i

)
(∆i is the difference between the mean of the

best arm and that of the i-th best arm in the input), and create
a hard input distribution with logarithmic levels of arms in
terms of their means.6 Roughly speaking, we take n

2 random
arms and assign them with mean ( 1

2 −
1
4 ), n

4 random arms
with mean ( 1

2 −
1
8 ), and so on. With such a “pyramid-like”

structure, it seems difficult to take the same path of arguments
as that for the one-spike structure in [30]. In particular, it is not
clear how to decompose the posterior distribution of the means
of arms into a convex combination of a set of distributions,
each of which is close to the same pyramid-like distribution.
We note that such a decomposition is non-trivial even for
the one-spike structure. Now with a pyramid-like structure we
have to guarantee that arms of the (`+ 1)-th level are chosen
randomly from the arms in the union of the (`+1)-th level and
the `-th level for each level `, which looks to be technically
challenging.

We take a different approach. We perform the round
elimination on classes of input distributions. More precisely,
we show that if there is no (r − 1)-round algorithm with
error probability δr−1 and pull complexity f(nr−1) on any
distribution in distribution class Σr−1, then there is no r-round
algorithm with error probability δr and pull complexity f(nr)
on any distribution in distribution class Σr. When working
with a class of distributions, we do not need to show that the
posterior distribution ν′ of some input distribution ν ∈ Σr is
close to a particular distribution, but only that ν′ ∈ Σr−1.

Although we now have more flexibility on selecting hard
input distribution, we still want to find classes of distributions
that are easy to work with. To this end we introduce two
more ideas. First, at the beginning we sample the mean of

6H = O(
∑n
i=2 1/∆2

i ) is a standard parameter for describing the pull
complexity of algorithms in the multi-armed bandits literature (see, e.g., [21]).



each arm independently from the same distribution, in which
the pyramid-like structure is encoded. We found that making
the means of arms independent of each other at any time (con-
ditioned on the observations obtained so far) can dramatically
simplify the analysis. Second, we choose to publish some arms
after each round r to make the posterior distribution of the set
of unpublished arms stay within the distribution class Σr−1.
By publishing an arm we mean to exploit the arm and learn its
mean exactly. With the ability of publishing arms we can keep
the classes of distributions Σr,Σr−1, . . . relatively simple for
the round elimination process.

Further different from [30] in which the set of arms pulled
by each agent in each round is pre-determined at the beginning
(i.e., the pulls are oblivious in each round), we allow the
agents to act adaptively in each round. Allowing adaptivity
inside each round adds another layer of technical challenge to
our lower bound proof. Using a coupling-like argument, we
manage to show that when the number of arms n is smaller
than the number of agents K, adaptive pulls do not have much
advantage against oblivious pulls in each round. We note that
such an argument does not hold when n� K, and this is why
we can only prove a round lower bound of Ω(lnK/ ln lnK)
in the adaptive case compared with a round lower bound
of Ω(lnn/ ln lnn) in the oblivious case when the speedup
β = Ω̃(K). Surprisingly, this is almost the best that we can
achieve – our next result shows that there is an Ω̃(K)-speedup
adaptive algorithm using lnK rounds of computation.

Upper bound for fixed-time algorithms. Our algorithm is
conceptually simple, and goes by two phases. The goal of
the first phase is to eliminate most of the suboptimal arms
and make sure that the number of the remaining arms is at
most K, which is the number of agents. This is achieved by
assigning each arm to a random agent, and each agent uses
T/2 time budget to identify the best arm among its assigned
arms using the start-of-the-art centralized algorithm. Note that
no communication is needed in this phase, and there are still
R rounds left for the second phase. We allow each of the R
rounds to use T/(2R) time budget. The goal of the r-th round
in the second phase is to reduce the number of arms to at most
K

R−r
R , so that after the R-th round, only the optimal arm

survives. To achieve this, we uniformly spend the time budget
on each remaining arm. We are able to prove that this simple
strategy works, and our analysis crucially relies on the the
guarantee that there are at most K

R−r+1
R arms at the beginning

of the r-th round.
We note that when R = 2, the speedup of our algorithm

is Ω̃(
√
K), matching that of the 2-round algorithm presented

in [19]. Our algorithm also provides the optimal speedup
guarantee for R > 2, matching our lower bound result
mentioned above.

The algorithm mentioned above only guarantees to identify
the best arm with constant error probability. When the input
time horizon T is larger, one would expect an algorithm with
an error probability that diminishes exponentially in T . To this
end, we strengthen our basic algorithm to a meta-algorithm

that invokes the basic algorithm several times in parallel and
returns the plurality vote. One technical difficulty here is that
the optimal error probability depends on the input instance and
is not known beforehand. One has to guess the right problem
complexity and make sure that the basic algorithm does not
consistently return the same suboptimal arm when the given
time horizon is less than the problem complexity (otherwise
the meta algorithm would recognize the suboptimal arm as the
best arm with high confidence).

We manage to resolve this issue via novel algorithmic
ideas that may be applied to strengthen fixed-time bandit
algorithms in general. In particular, in the first phase of our
basic algorithm, we assign a random time budget (instead of
the fixed T/2 as described above) to the centralized algorithm
invoked by each agent, and this proves to be useful to
prevent the algorithm from identifying a suboptimal arm with
overwhelmingly high probability. We note that in [19], the
authors got around this problem by allowing the algorithm
to have access to both the time horizon and the confidence
parameters, which does not fall into the standard fixed-time
category.

Lower bound for fixed-confidence algorithms. We first
reduce the lower bound for best arm identification algorithms
to the task of showing round lower bound for a closely related
problem, SIGNID, which has proved to be a useful proxy
in studying the lower bounds for bandit exploration in the
centralized setting [15], [18], [44]. The goal of SIGNID is
to identify (with fixed confidence) whether the mean reward
of the only input arm is greater or less than 1/2. The
difference between 1/2 and the mean of the arm, denoted by
∆, corresponds to ∆min in the best arm identification problem,
and our new task becomes to show a round lower bound for
the SIGNID problem that increases as ∆ approaches 0.

While our lower bound proof for fixed-time setting can
be viewed as a generalization of the round elimination tech-
nique, our lower bound for the SIGNID problem in the fixed-
confidence setting uses a completely different approach due
to the following reasons. First, the online learning algorithm
that our lower bound is against aims at achieving an instance
dependent optimal time complexity as it gradually learns the
underlying distribution. In other words, the hardness stems
from the fact that the algorithm does not know the underlying
distribution beforehand, while traditional round elimination
proofs do not utilize this property. Second, our lower bound
proof introduces a sequence of arm distributions and induc-
tively shows that any algorithm needs at least r rounds on
the r-th input distribution. While traditional round elimination
manages to conduct this induction via embedding the (r−1)-
st input distribution into the r-th input distribution, it is not
clear how to perform such an embedding in our proof, as our
distributions are very different.

Intuitively, in our inductive proof we set the r-th input
distribution to be the Bernoulli arm with ∆ = ∆r = 1/ζr

and ζ > 1 depends on K (the number of agents) and β (the
speedup of the algorithm). We hope to show that any algorithm



needs r rounds on the r-th input distribution. Suppose we have
shown the lower bound for the r-th input distribution. Since
the algorithm has β-speedup, it performs at most O(∆−2

r K/β)
pulls for the r-th instance. We will show via a distribution
exchange lemma (which will be explained in details shortly)
that this amount of pulls is not sufficient to tell ∆ = ∆r

from ∆ = ∆r+1. Hence the algorithm also uses at most
O(∆−2

r K/β) pulls during the first r rounds on the (r + 1)-
st instance, which is not sufficient to decide the sign of the
(r + 1)-st instance. Therefore the algorithm needs at least
(r + 1) rounds on the (r + 1)-st instance, completing the
induction for the (r + 1)-st instance.

To make the intuition rigorous, we need to strengthen our
inductive hypothesis as follows. The goal of the r-th inductive
step is to show that for ∆ = ∆r, any algorithm needs at least
r rounds and makes at most o(∆−2

r ) pulls across the K agents
during the first r rounds. While the 0-th inductive step holds
straightforwardly as the induction basis, we go from the r-th
inductive step to the (r + 1)-st inductive step via a progress
lemma and the distribution exchange lemma mentioned above.

Given the hypothesis for the r-th inductive step, the progress
lemma guarantees that the algorithm has to proceed to the
(r + 1)-st round and perform more pulls. Thanks to the
strengthened hypothesis, the total number of pulls performed
in the first r rounds is o(∆−2

r ). Hence the statistical difference
between the pulls drawn from the r-th input distribution and its
negated distribution (where the outcomes 0 and 1 are flipped)
is at most o(1) due to Pinsker’s inequality, and this is not
enough for the algorithm to correctly decide the sign of the
arm.

The distribution exchange lemma guarantees that the algo-
rithm performs no more than O(∆−2

r K/β) pulls across the
agents during the first (r + 1) rounds on the (r + 1)-st input
distribution. By setting ζ = ω(K/β), one can verify that
O(∆−2

r K/β) = o(∆−2
r+1), and the hypothesis for the (r+1)-st

inductive step is proved. The intuition behind the distribution
exchange lemma is as follows. While the algorithm needs
(r + 1) rounds on the r-th input distribution (by the progress
lemma), we know that the algorithm cannot use more than
Ω(∆−2

r K/β) pulls by the β-speedup constraint. These many
pulls are not enough to tell the difference between the r-th
and the (r + 1)-st distribution, and hence we can change the
underlying distribution and show that the same happens for
the (r + 1)-st input distribution.

However, this intuition is not easy to be formalized. If we
simply use the statistical difference between the distributions
induced by ∆r and ∆r+1 to upper bound the probability dif-
ference between each agent’s behavior for the two input arms,
we will face a probability error of Θ(

√
1/β) for each agent.

In total, this becomes a probability error of Θ(K
√

1/β)� 1
throughout all K agents, which is too much. To overcome
this difficulty, we need to prove a more refined probabilistic
upper bound on the behavior discrepancy of each agent for
different arms. This is achieved via a technical lemma that
provides a much better upper bound on the difference between
the probabilities that two product distributions assign to the

same event, given that the event does not happen very often.
This technical lemma may be of independent interest.

III. LOWER BOUNDS FOR FIXED-TIME DISTRIBUTED
ALGORITHMS

In this section we prove a lower bound for the fixed-time
collaborative learning algorithms. We start by considering the
non-adaptive case, where in each round each agent fixes the
(multi-)set of arms to pull as well as the order of the pulls
at the very beginning. We will then extend the proof to the
adaptive case.

When we write c = a ± b we mean c is in the range of
[a− b, a+ b].

A. Lower Bound for Non-Adaptive Algorithms

We prove the following theorem in this section.

Theorem 1. For any time budget T > 0, any α ∈ [1, n0.2], any
(K/α)-speedup randomized non-adaptive algorithm for the
fixed-time best arm identification problem in the collaborative
learning model with K agents and n ≤

√
T arms needs

Ω(lnn/(ln lnn+ lnα)) rounds in expectation.

Parameters. We list a few parameters to be used in the
proof. Let α ∈ [1, n0.2] be the parameter in the statement
of Theorem 1. Set B = α(lnn)100 (thus (lnn)100 ≤ B ≤
(lnn)100n0.2), γ = α(lnn)100, ρ = (lnn)3, and κ = (lnn)2.

1) The Class of Hard Distributions
We first define a class of distributions which is hard for the

best arm identification problem.
Let L be a parameter to be chosen later (in (8)). Define
Dj(η) to be the class of distributions π with support

{B−1, . . . , B−(j−1), B−j , . . . , B−L},

such that if X ∼ π, then
1) Pr

[
(X = B−1) ∨ · · · ∨ (X = B−(j−1))

]
≤ n−9, (only

defined for j ≥ 2)
2) For any ` = j, . . . , L, Pr[X = B−`] = λj · B−2` ·(

1± ρ−`η
)
, where λj is a normalization factor (to make∑L

`=1 Pr[X = B−`] = 1).
Note that when η = 0, D1(0) only contains a single dis-
tribution; slightly abusing the notation, define D1 , D1(0)
to denote that particular distribution. For j ≥ 2, define
Dj , Dj(ρj−1). That is, we set η = ρj−1 by default, and
consequently λj =

(
1± 2

ρ

)
B2j .

We introduce a few threshold parameters: ζ1 =(
1
2 −B

−(j+1)
)
γB2j −

√
10γ lnnBj , ζ2 = γB2j

2 − Bj+0.6,
ζ3 = γB2j

2 +Bj+0.6. It is easy to see that ζ2 < ζ1 < ζ3.
The following lemma gives some basic properties of pulling

from an arm with mean
(

1
2 −B

−`). We leave the proof to
Appendix A.

Lemma 2. Consider an arm with mean
(

1
2 −X

)
. We pull

the arm γB2j times. Let Θ = (Θ1,Θ2, . . . ,ΘγB2j ) be the
pull outcomes, and let |Θ| =

∑
i∈[γB2j ] Θi. We have the

followings.



1) If X = B−` for ` > j, then |Θ| ∈ [ζ2, ζ3] with
probability at least 1− n−10.

2) If X = B−` for ` ≤ j, then |Θ| < ζ1 with probability
at least 1− n−10.

3) If X = B−` for ` > j, then |Θ| ≥ ζ1 with probability
at least 1− n−10.

The next lemma states important properties of distributions
in classes Dj . Intuitively, if the mean of an arm is distributed
according to some distribution in class Dj , then after pulling
it γB2j times, we can learn by Lemma 2 that at least one of
the followings hold: (1) the sequence of pull outcomes is very
rare; (2) very likely the mean of the arm is at most ( 1

2−B
−j);

(3) very likely the mean of the arm is more than ( 1
2 −B

−j).
In the first two cases we publish the arm, that is, we fully
exploit the arm and learn its mean exactly. We will show that
if the arm is not published, then the posterior distribution of
the mean of the arm (given the outcomes of the γB2j pulls)
belongs to class Dj+1.

Lemma 3. Consider an arm with mean
(

1
2 −X

)
where X ∼

µ ∈ Dj for some j ∈ [L − 1]. We pull the arm γB2j times.
Let Θ = (Θ1,Θ2, . . . ,ΘγB2j ) be the pull outcomes, and let
|Θ| =

∑
i∈[γB2j ] Θi. If |Θ| 6∈ [ζ1, ζ3], then we publish the

arm. Let ν be the posterior distribution of X after observing
Θ. If the arm is not published, then we must have ν ∈ Dj+1.

Proof. We analyze the posterior distribution of X after ob-
serving Θ = θ for any θ with |θ| ∈ [ζ1, ζ3].

Let χ≤j denote the event that (X = B−1) ∨ · · · ∨ (X =
B−j), and let χ>j denote the event that (X = B−(j+1)) ∨
· · · ∨ (X = B−L). Since X ∼ µ ∈ Dj , we have

Pr[χ>j ]

≥ Pr[X = B−(j+1)]

=

(
1± 2

ρ

)
B2j ·B−2(j+1) ·

(
1± ρ−(j+1)ρj−1

)
≥ 1/(2B2). (2)

For the convenience of writing, let m = γB2j . Thus ζ1 =

m · ( 1
2 − z) where z = B−j

(
B−1 +

√
10 lnn
γ

)
. Let ε = B−j ,

and ε′ = B−(j+1).
For any θ with |θ| ≥ ζ1, we have

Pr[χ≤j | Θ = θ]

=
Pr[Θ = θ | χ≤j ] · Pr[χ≤j ]

Pr[Θ = θ]

=
Pr[Θ = θ | χ≤j ] · Pr[χ≤j ]

Pr[Θ = θ | χ≤j ] · Pr[χ≤j ] + Pr[Θ = θ | χ>j ] · Pr[χ>j ]

≤ Pr[Θ = θ | X = ε] · 1
0 + Pr[Θ = θ | X = ε′] · 1/(2B2)

(by (2) and monotonicity)

= 2B2 · (1/2− ε)|θ|(1/2 + ε)m−|θ|

(1/2− ε′)|θ|(1/2 + ε′)m−|θ|

≤ 2B2 · (1/2− ε)ζ1(1/2 + ε)m−ζ1

(1/2− ε′)ζ1(1/2 + ε′)m−ζ1
(by monotonicity)

= 2B2 ·Am, (3)

where

A =
(1− 2ε)1/2−z(1 + 2ε)1/2+z

(1− 2ε′)1/2−z(1 + 2ε′)1/2+z
. (4)

We next analyze A. For small enough ε > 0, we have ε− ε2

2 ≤
ln(1+ε) ≤ ε− ε2

2 +ε3, and −ε− ε2

2 −ε
3 ≤ ln(1−ε) ≤ −ε− ε2

2 .
Taking the natural logarithm on both sides of (4) and using
two inequalities for ln(1 + ε) and ln(1− ε) above, we have

lnA ≤ (1/2− z)
(
−2ε− 2ε2 + 2(ε′) + 2(ε′)2 + 8(ε′)3

)
+(1/2 + z)

(
2ε− 2ε2 + 8ε3 − 2(ε′) + 2(ε′)2

)
= 1/2 ·

(
−4ε2 + 8ε3 + 4(ε′)2 + 8(ε′)3

)
+z(4ε+ 8ε3 − 4(ε′)− 8(ε′)3)

≤ −2B−2j +B−j

(
B−1 +

√
10 lnn

γ

)
4B−j

+O(B−2j−1)

≤ −B−2j . (5)

Plugging (5) back to (3), we have

Pr[χ≤j | Θ = θ] ≤ 2B2 · e−B
−2j ·γB2j

≤ n−9. (6)

where the last inequality holds since B ≤ (lnn)100n0.2 and
γ ≥ (lnn)100. Therefore ν satisfies the first condition of the
distribution class Dj+1.

For any θ with |θ| ∈ [ζ1, ζ3] and ` = j + 1, . . . , L, we have

Pr[X = B−` | Θ = θ]

=
Pr[Θ = θ | X = B−`] · Pr[X = B−`]

Pr[Θ = θ]

=
1

Pr[Θ = θ]
·
(

Pr
[
Θ = E[Θ]

∣∣ X = B−`
]

·(1±B−`)B
j+0.61

)
· λjB−2`

(
1± ρ−`η

)
=

1

Pr[Θ = θ]
·

(
1

2
√

2πγB2j
· 1√

1− 4B−2`

·(1±B−`)B
j+0.7

)
· λjB−2`

(
1± ρ−`η

)
=

(
1

Pr[Θ = θ]
· 1

2
√

2πγB2j
· λj

)
· 1√

1− 4B−2`

·(1±B−`)B
j+0.7

·B−2`
(
1± ρ−`η

)
= λ

′

j · (1± 3B−2`) · (1±B−`+j+0.8) ·B−2`
(
1± ρ−`η

)
= λ

′

j ·B−2`
(
1± ρ−`η′

)
, (7)

where
• λ′j is a normalization factor.
• The second equality holds since we have |θ| ∈ [ζ1, ζ3],

and thus
∣∣θ − E[Θ | X = B−`]

∣∣ ≤ Bj+0.61.
• In the third equality, we have used the Stirling’s approxi-

mation for factorials (i.e., n! =
√

2πn
(
n
e

)n (
1 + Θ( 1

n )
)
)

when calculating Pr
[
Θ = E[Θ]

∣∣ X = B−`
]
.



• The fifth inequality holds since 1√
1−4B−2`

= 1±3B−2`.

• In the last equality, since B ≥ (lnn)100, ρ = (lnn)3,
η = ρj−1 and ` ≥ j + 1, we can set η′ = ρj .

Therefore ν satisfies the second condition of the distribution
class Dj+1.

By (6) and (7), we have ν ∈ Dj+1.

2) The Hard Input Distribution

Input Distribution σ: We pick the hard input distribution for
the best arm identification problem as follows: the mean of
each of the n arms is

(
1
2 −X

)
, where X ∼ D1.

Set n = B2L/λ1, where λ1 = Θ(B2) is the normalization
factor of the distribution D1. This implies

L = ln(nλ1)/(2 lnB) = Θ(lnn/(ln lnn+ lnα)). (8)

We will use the running time of a good deterministic
sequential algorithm as an upper bound for that of any
collaborative learning algorithm that has a good speedup.

Let E0 be the event that there is one and only one best arm
with mean ( 1

2 −B
−L) when I ∼ σ.

Lemma 4. Given budget W = n ln3 n ·B2, the deterministic
sequential algorithm in [1] has expected error o(1) on input
distribution σ conditioned on E0.

Proof. Given budget W , the error of the algorithm in [1]
(denoted by AABM) on an input instance I is bounded by

err(I) ≤ n2 · exp

(
− W

2 lnn ·H(I)

)
, (9)

where

H(I) =

n∑
i=2

1

∆2
i

, (10)

where ∆i is the difference between the mean of the best arm
and that of the i-th best arm in I . We try to upper bound H(I)
when I ∼ σ = (D1)n conditioned on E0.

Recall that in the distribution D1, Pr[X = B−`] = λ1B
−2`

for ` = 1, . . . , L where λ1 = Θ(B2) is a normalization factor.
Let k` be the number of arms with mean ( 1

2 − B−`). By
Chernoff-Hoeffding bound and union bound, we have that with
probability (1− e−B), for all ` = 1, . . . , L− 1,

k` = Θ(λ1B
−2`n) = Θ(B2L−2`).

Thus for a large enough universal constant cH , with probability
(1− e−B),

H(I) =
L−1∑
`=1

k` ·
1

(B−` −B−L)
2 ≤ cHLB

2L. (11)

Plugging-in (11) to (9), we get

err(I) ≤ n2 · exp

(
− n ln3 n ·B2

2 lnn · cHLB2L

)
= o(1), (12)

where the equality holds since n = Θ(B2L/B2) and L =
O(lnn/ ln lnn). Therefore, conditioned on E0 and under time

budget W , the expected error of AABM on input distribution
σ is at most o(1) + e−B = o(1).

3) Proof of Theorem 1
We say a collaborative learning algorithm is z-cost if

the total number of pulls made by K agents is z. Since
n ≤

√
T , we have W = n ln3 n · B2 ≤ T . By Lemma 4

and the definition of speedup (Eq. (1)), if there is a (K/α)-
speedup collaborative learning algorithm, then there must be
a
(

W
K/α ·K

)
= (αW )-cost collaborative learning algorithm

that has expected error o(1) on input distribution σ conditioned
on E0. By this observation, Theorem 1 follows immediately
from the following lemma and Yao’s Minimax Lemma [45].

Lemma 5. Any deterministic (αW )-cost non-adaptive algo-
rithm that solves the best arm identification problem in the
collaborative learning model with K agents and n arms with
error probability 0.99 on input distribution σ conditioned on
E0 needs Ω(lnn/(ln lnn+ lnα)) rounds.

Let Ij =
((

1± 1
L

)
B−2

)j−1
n. In the rest of this section

we prove Lemma 5 by induction.

The Induction Step. The following lemma intuitively states
that if there is no good (r−1)-round (αW )-cost non-adaptive
algorithm, then there is no good r-round (αW )-cost non-
adaptive algorithm.

Lemma 6. For any j ≤ L
2 − 1, if there is no (r − 1)-round

(αW )-cost deterministic non-adaptive algorithm with error
probability δ+O

(
1
κ

)
on any input distribution in (Dj+1)nj+1

for any nj+1 ∈ Ij+1, then there is no r-round (αW )-cost
deterministic non-adaptive algorithm with error probability δ
on any input distribution in (Dj)nj for any nj ∈ Ij .

Proof. Consider any r-round (αW )-cost deterministic non-
adaptive algorithm A that succeeds with probability δ′ on any
input distribution in µ ∈ (Dj)nj for any nj ∈ Ij . Since we are
considering a non-adaptive algorithm, at the beginning of the
first round, the total number of pulls by the K agents on each
of the nj arms in the first round are fixed. Let (t1, . . . , tnj ) be
such a pull configuration, where tz denotes the number of pulls
on the z-th arm. For an (αW )-cost algorithm, by a simple
counting argument, at least (1 − 1

κ ) fraction of tz satisfies
tz ≤ ακWnj . Let S be the set of arms z with tz > γB2j . Since

ακ
W

nj
≤ ακ n ln3 nB2((

1− 1
L

)
B−2

)j−1
n
≤ γB2j ,

we have |S| ≤ 1
κ · nj .

We augment the first round of Algorithm A as follows.
Algorithm Augmentation.

1) We publish all arms in S.
2) For the rest of the arms z ∈ [nj ]\S, we keep

pulling them until the total number of pulls
reaches γB2j . Let Θz = (Θz,1, . . . ,Θz,γB2j )
be the γB2j pull outcomes. If |Θz| 6∈ [ζ1, ζ3],
we publish the arm.



3) If the number of unpublished arms is not in the
range of Ij+1, or there is a published arm with
mean

(
1
2 −B

−L), then we return “error”.

We note that the first two steps will only help the algorithm,
and thus will only lead to a stronger lower bound. We will
show that the extra error introduced by the last step is small,
which will be counted in the error probability increase in the
induction.

The following claim bounds the number of arms that are
not published after the first round.

Claim 7. For any j ≤ L
2 − 1, with probability at least 1 −

O
(

1
κ

)
, the number of unpublished arms after the first round

is in the range Ij+1.

Proof. For each arm z ∈ [nj ]\S, let
(

1
2 −X

)
be its mean

where X ∼ π ∈ Dj . Let Yz be the indicator variable of the
event that arm z is not published. By Lemma 2,

Pr[Yz = 1] =
∑
`>j

Pr[X = B−`]± n−9

=

(
1± 1

B

)
·
(

1± 2

ρ

)
B2j

·B−2(j+1)
(

1± ρ−(j+1) · ρj−1
)
± n−9

=

(
1± 1

L2

)
·B−2,

where the second inequality holds since Pr[X = B−`]
decreases at a rate of approximately B−2 when ` increments,
and the last inequality holds since ρ = (lnn)3 and L < lnn.

By Chernoff-Hoeffding bound, and the fact that we publish
all arms in S, we have∑

z∈[nj ]

Yz =

(
1± 2

L2

)
B−2(nj − |S|)

with probability 1−e−Ω(nj(BL)−4) ≥ 1−O
(

1
κ

)
. Plugging the

fact that |S| ≤ 1
κ ·nj , we have that with probability 1−O

(
1
κ

)
over distribution µ,∑
z∈[nj ]

Yz =

(
1± 2

L2

)(
1± 1

κ

)
B−2nj =

(
1± 1

L

)
B−2nj .

Therefore, if nj ∈ Ij , then with probability 1 − O
(

1
κ

)
,∑

z∈[nj ]
Yz ∈ Ij+1.

The following claim shows that the best arm is not likely
to be published in the first round.

Claim 8. For any j ≤ L
2 − 1, the probability that there is a

published arm with mean ( 1
2 −B

−L) is at most O
(

1
κ

)
.

Proof. Since the input distribution to A belongs to the class
(Dj)nj , the probability that S contains an arm with mean

( 1
2−B

−L), conditioned on |S| ≤ 1
κ ·nj , can be upper bounded

by

1−
(
1− λjB−2L · (1 + ρ−L+j)

)nj
κ

≤ 1−
(
1− λjB−2L · (1 + ρ−L+j)

)((1+ 1
L )B−2)

j−1·nκ

= 1−
(

1− λj
B2L

· (1 + ρ−L+j)

)((1+ 1
L )B−2)

j−1·B2L

λ1

1
κ

= O

(
1

κ

)
.

For each arm z ∈ [n]\S arms, by Lemma 2 we have that if
arm z has mean ( 1

2 − B−L), then with probability at least
(1 − n−9) we have |Θz| ∈ [ζ1, ζ3]. The lemma follows by a
union bound.

By Claim 7, Claim 8 and Lemma 3 (which states that if an
arm is not published, then its posterior distribution belongs to
Dj+1), for j ≤ L

2 − 1, if there is no (r− 1)-round (αW )-cost
algorithm with error probability δ′ on any input distribution
in (Dj+1)nj+1 for any nj+1 ∈ Ij+1, then there is no r-round
(αW )-cost algorithm with error probability

(
δ′ −O

(
1
κ

))
on

any input distribution in (Dj)nj for any nj ∈ Ij , which proves
Lemma 6.

The Base Case. Recall that in our collaborative learning
model, if an algorithm uses 0 round then it needs to output the
answer immediately (without any further arm pull). We have
the following lemma.

Lemma 9. Any 0-round deterministic algorithm must have
error probability at least (1 − o(1)) on any distribution in
(DL

2
)
nL

2 (for any nL
2
∈ IL

2
) conditioned on E0.

Proof. First we have

nL
2

=

((
1± 1

L

)
B−2

)L
2 −1

n

=

((
1± 1

L

)
B−2

)L
2 −1

B2L

B2

= Θ(BL). (13)

Thus the probability that there exists at least one arm with
mean

(
1
2 −B

−L) is

1−
(

1−
(

1± 1

B

)
B−L ·

(
1± ρ−L · ρL2

))nL
2

= Θ(1).

For each arm i in the nL
2

arms, the probability that i and
only i has mean

(
1
2 −B

−L) is

λL
2
B−2L(1± ρ−L2 )

(
1− λL

2
B−2L(1± ρ−L2 )

)nL
2
−1

= Θ
(

1/nL
2

)
.

Therefore any 0-round deterministic algorithm computes the
best arm on any distribution in (DL

2
)
nL

2 conditioned on E0
with probability at most O

(
1/nL

2

)
= o(1).



Lemma 5 follows from Lemma 6 and Lemma 9. Note that
the extra error accumulated during the induction process is
bounded by L · O

(
1
κ

)
= o(1) since L = Θ(lnn/(ln lnn +

lnα)).

B. Lower Bound for Adaptive Algorithms

In this section we consider general adaptive algorithms. We
prove the following theorem.

Theorem 10. Let K̃ = min{K,
√
T}. For any α ∈ [1, K̃0.1],

any (K/α)-speedup randomized algorithm for the fixed-time
best arm identification problem in the collaborative learning
model with K agents needs Ω(ln K̃/(ln ln K̃ + lnα)) rounds
in expectation.

The high level idea for proving Theorem 10 is the follow-
ing: We show that adaptivity cannot give much advantage
to the algorithm under the input distribution σ (defined in
Section III-A2) when the number of arms n is smaller than
the number of agents K. For this purpose we choose n such
that

nB2 = K̃, (14)

where K̃ = min{K,
√
T}, and B = α(lnn)100 is the

parameter defined at the beginning of Section III-A. We thus
have n ≤

√
T , and if α ≤ K̃0.1 then we have α ≤ n0.2; both

conditions are needed if we are going to “call” Theorem 1
(for the non-adaptive case) later in the proof, that is, we will
use the proof for the non-adaptive case as a subroutine in the
proof for the adaptive case.

We will focus on the case when
√
T ≥ K; the proof for

the other case is essentially the same.
We make use of the same induction (including notations

and the algorithm augmentation) as that for the non-adaptive
case in Section III-A. Clearly, the base case (i.e., Lemma 9)
still holds in the adaptive case since no pull is allowed.

Lemma 11. Any 0-round deterministic algorithm must have
error probability 1−o(1) on any distribution in (DL

2
)
nL

2 (for
any nL

2
∈ IL

2
) conditioned on E0.

Our task is to show the following induction step.

Lemma 12. For any j ≤ L
2 − 1, if there is no (r − 1)-round

(K/α)-speedup deterministic adaptive algorithm with error
probability δ+O

(
1
κ

)
on any input distribution in (Dj+1)nj+1

for any nj+1 ∈ Ij+1, then there is no r-round (K/α)-speedup
deterministic adaptive algorithm with error probability δ on
any input distribution in (Dj)nj for any nj ∈ Ij .

We comment that Lemma 12 does not hold when n � K
(e.g., n ≥ K2), and this is why we can only prove a lower
bound of Ω(lnK/(ln lnK + lnα)) (Theorem 10) instead of
Ω(lnn/(ln lnn+lnα)) (Theorem 1). In the rest of this section
we prove Lemma 12.

Proof. Let E1 denote the event that all the nj arms have means
( 1

2 − B−`) for ` ≥ j. Since the input is sampled from a
distribution in (Dj)nj , we have

Pr[E1] ≥ (1− n−9)nj ≥ 1− n−7. (15)

Let (Θ1, . . . ,Θt) be the outcomes of t pulls when running
the adaptive algorithm A on an input distributed according to
µ ∈ (Dj)nj . We have the following simple fact.

Fact 13. For any t ≥ 1, for any possible set of outcomes
(θ1, . . . , θt) ∈ {0, 1}t, we have

Pr[(Θ1, . . . ,Θt) = (θ1, . . . , θt) | E1] =

(
1

2
±B−j

)t
.

Let us conduct a thought experiment. During the run of the
adaptive algorithm A, whenever A pulls an arm, we sample
instead an unbiased coin and let the result be the pull outcome.
Let (Θ′1, . . . ,Θ

′
t) be the outcomes of t pulls. It is easy to see

that for any (θ1, . . . , θt) ∈ {0, 1}t, we have

q(θ1, . . . , θt) = Pr[(Θ′1, . . . ,Θ
′
t) = (θ1, . . . , θt) | E1]

=

(
1

2

)t
. (16)

In a (K/α)-speedup deterministic algorithm A, each agent
can make at most t = αW/K pulls. By Claim 13, (16), and
the fact that we have set n = K/B2, for any possible pull
outcomes (θ1, . . . , θt) ∈ {0, 1}t, conditioned on E1, it holds
that

p(θ1, . . . , θt)

q(θ1, . . . , θt)
=

(
1
2 ±B

−j)t(
1
2

)t = (1± 2B−j)
αW
K

= (1± 2B−j)α ln3 n =

[
1

2
, 2

]
. (17)

Let Xi,z be the expected number of pulls to arm z by agent
i when running A on input distribution µ. Let Yi,z be the
expected number of pulls to arm z by agent i when we we
simply feed random 0/1 outcome to A at each pull step. By
(17) we have that conditioned on E1.

∀i ∈ [K], ∀z ∈ [nj ],
Yi,z
2
≤ Xi,z ≤ 2Yi,z. (18)

Since
∑
i∈[K]

∑
z∈[nj ]

Xi,z ≤ αW , conditioned on E1 we
have ∑

i∈[K]

∑
z∈[nj ]

Yi,z ≤ 2αW. (19)

The key observation is that running A with random 0/1
pull outcomes is more like running a non-adaptive algorithm.
Indeed, we can sample a random bit string of length equal to
the number of pulls at the beginning of the algorithm, and then
the sequence of indices of arms that will be pulled are fully
determined by the random bit string and the decision tree of
the deterministic algorithm A. In other words, all Yi,z’s can
be computed before the run of the algorithm A.

By (19) and a simple counting argument, conditioned on
E1, we have that for at most 1/κ fraction of arms z ∈ [nj ], it
holds that ∑

i∈[K]

Yi,z ≥
2ακW

nj
. (20)

Denote the set of such z’s by Q; we thus have |Q| ≤ 1/κ ·nj .
Note that Q can again be computed before the run of the



algorithm A. By (18) and (20), we have that conditioned on
E1, for any z ∈ [nj ]\Q,∑

i∈[K]

Xi,z ≤
4ακW

nj
≤ γB2j . (21)

Inequality (21) tells that for any arms z ∈ [nj ]\Q, the total
number of pulls on z over the K agents is at most γB2j , which
is the same as that in the proof for the non-adaptive case in
Lemma 6 (Q corresponds to S in the proof of Lemma 6).
We also have Pr[¬E1] ≤ n−7 ≤ 1/κ which will contribute to
the extra error in the induction. The rest of the proof simply
follows from that for Lemma 6.

IV. FIXED-TIME DISTRIBUTED ALGORITHMS

In this section we present our fixed-time collaborative
learning algorithm for the best arm identification problem. The
algorithm takes a set S = [n] of n arms, a time horizon T , and
a round parameter R as input, and is guaranteed to terminate
by the T -th time step and uses at most R rounds. We assume
without loss of generality that 1 ∈ S is the best arm. We state
the following theorem as our main algorithmic result.

Theorem 14. Let H = H(I) be the complexity parameter of
the input instance I defined in (10). There exists a collabora-
tive learning algorithm with time budget T and round budget
R that returns the best arm with probability at least

1− n · exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

We now show that the algorithm in Theorem 14 has
Ω̃(K

R−1
R ) speedup.

Theorem 15. For any R ≥ 1, there exists a fixed-time
algorithm A such that βA(T ) = Ω(K

R−1
R ln(nTK)−4) for

sufficiently large T . When R = Θ(lnK), the speedup of the
algorithm is Ω̃(K).

Proof. It is know [1] that for every instance I , it holds that

inf
centralized O

δO(I, T ) ≥ 1

2
· exp(−O(T/H)).

Therefore, for every δ ≤ 1/3, we have that

inf
centralized O

TO(I, δ) ≥ Ω(H ln(1/δ)). (22)

On the other hand, let A be the algorithm in Theorem 14, for
δ ≤ 1/3, we have that

TA(I, δ) ≤ O
(
HK−

R−1
R ln(nHK/δ)4

)
. (23)

Combining (22) and (23), we have

inf
centralized O

inf
δ∈(0,1/3]:TO(I,δ)≤T

TO(I, δ)

TA(I, δ)
≥ Ω

(
K

R−1
R

ln(nTK)4

)
,

which implies that βA(T ) = Ω(K
R−1
R ln(nTK)−4) .

The rest of this section is devoted to the proof of The-
orem 14. In Section IV-A, we first prove a special case of

Theorem 14 when T = Θ(HK−
R−1
R ln(HK)), for which the

algorithm is guaranteed to output the best arm with constant
probability. Then, in Section IV-B, we prove Theorem 14 by
performing a technical modification to Algorithm 1 and a re-
duction from general parameter settings to several independent
runs of modified Algorithm 1 with different parameters.

A. Special Case when T = Θ(HK−
R−1
R ln(HK))

Our algorithm for the special case when T =
Θ(HK−

R−1
R ln(HK)) is presented in Algorithm 1. We have

the following guarantees.

Theorem 16. Let H be the instance dependent complexity
parameter defined in (10). There exists a universal constant
cALG > 0 such that if T ≥ cALGHK

−R−1
R ln(HK), then

Algorithm 1 returns the best arm with probability at least 0.97.

Algorithm 1 uses a fixed-confidence centralized procedure
AC as a building block, with the following guarantees.

Lemma 17. (See, e.g. [14], [15], [18], [23]) There exists
a centralized algorithm AC(I, δ) where I is the input and
δ is the error probability parameter, such that the algorithm
returns the best arm and uses at most O(H(I)(lnH(I) +
ln δ−1)) pulls with probability at least (1− δ).

We describe Algorithm 1 briefly in words. At a high level,
the algorithm goes by R iterations. We keep a set of active
arms, denoted by Sr−1, at the beginning of each iteration r
with S0 = [n]. During each iteration r, the agents collectively
learn more information about the active arms in Sr−1 and
eliminate a subset of arms to form Sr. This is done in four
steps. In the preparation step, each agent ` is assigned with
exactly one arm i

(r)
` , which is the one it will learn in the

later steps. If there are more agents than active arms, we
simply assign each arm to K/ |Sr−1| agents. Otherwise, we
first assign each arm to a random agent (which can be done
by shared randomness without communication), and then each
agent uses the centralized procedure AC to identify i

(r)
` as

the best arm among the set of assigned arms. We note that
the latter case will only happen during iteration r = 1 (if it
ever happens). Then each agent ` plays i(r)` in the learning
step and shares his own observation in the communication
and aggregation step. In the elimination step, we calculate the
confidence interval (CI) for each active arm using a carefully
designed dependence on T , K, and R, and eliminate the arms
whose CI does not overlap with the best arm. We note that this
algorithm uses R communication steps, and therefore needs
(R + 1) rounds. In Section IV-A1, we describe a trick to
shave 1 communication step and make the algorithm runs in
R rounds.

For convenience, we assume without loss of generality that
arm 1 is the best arm in the input set S. We first establish
the following lemma which concerns about Lines 3–6 in
Algorithm 1.

Lemma 18. For large enough constant cALG > 0 and
T ≥ cALGHK

−R−1
R ln(HK), suppose Lines 3–6 are executed



Algorithm 1: Fixed-Time Collaborative Learning Best
Arm Identification with Constant Error Probability

Input: a set of arms S = [n], time horizon T and
communication steps R (R ≤ O(lnK))

1 initialize S0 ← S
2 for iteration r = 1 to R do

/* Step 1: preparation */
3 if |Sr−1| > K then
4 randomly assign each arm in Sr−1 to one of

the K agents, and let A` be the set of arms
assigned to agent `

5 for agent ` = 1 to K do
6 i

(r)
` ← AC(A`, 0.01), if AC does not
terminate within T/2 pulls, stop the
procedure anyways and set i(r)` ← ⊥

7 else
8 assign each arm in Sr−1 to K/|Sr−1| agents

(so that each agent is assigned with exactly
one arm), and let i(r)` be the arm assigned to
agent `

/* Step 2: learning */
9 for agent ` = 1 to K do

10 play arm i
(r)
` for 1

2 · T/R times and let p̂(r)
` be

the average of the observed rewards (if
i
(r)
` 6= ⊥)

/* Step 3: communication and
aggregation */

11 for agent ` = 1 to K do
12 broadcast i(r)` and p̂(r)

`

13 S̃r ← {i(r)` : ` ∈ [K]}
14 Let q̂(r)

i = 1
|{`∈[K]:i`=i}|

∑
`∈[K]:i`=i

p̂
(r)
l for each

i ∈ S̃r
/* Step 4: elimination */

15 Sr ← S̃r\

{
i ∈ S̃r : there exists an arm j with

q̂
(r)
j ≥ q̂

(r)
i + 2 ·

√
R ln(200KR)

max{1,K/|Sr−1|}·T

}
16 return the only arm in SR if |SR| = 1, and ⊥

otherwise

during iteration r = 1, then after the preparation step, with
probability at least 0.98, there exists an agent ` ∈ [K] such
that i(r)` = 1.

Proof. Let `∗ be the agent such that 1 ∈ A`∗ . Since
H(A`∗) =

∑
i∈A`∗\{1}∆−2

i . By linearity of expectation,
we have that E[H(A`∗)] =

∑
i∈S\{1}∆−2

i /K = H/K.
By Markov’s Inequality, and for large enough cALG and
T ≥ cALGHK

−R−1
R lnH ≥ cALGH ln(HK)/K, we have

that with probability at least 0.99, T/2 is greater than or equal
to the sample complexity bound in Lemma 17 for S = A`∗

and δ = 0.01. Taking a union bound with the event that the
run of AC(A`∗ , 0.01) is as described in Lemma 17, we have
that Pr[i

(r)
`∗ = 1] ≥ 0.98.

The following lemma concerns about the learning and
elimination steps of Algorithm 1.

Lemma 19. During each iteration r, assuming that 1 ∈ S̃r,
with probability at least (1− 0.01/R),

1) we have that 1 ∈ Sr;
2) if we further assume 1) T ≥ cALGHK

−R−1
R ln(HK)

for sufficiently large cALG > 0 and 2) either r = 1 or
|Sr−1| ≤ K

R−r+1
R , we have that |Sr| ≤ K

R−r
R .

Proof. Note that for each i ∈ S̃r, we have that |{` ∈ [K] :

i
(r)
` = i}| ≥ max{1,K/|Sr−1|}. Therefore, q̂(r)

i is the average
of at least max{1,K/|Sr−1|} · 1

2T/R pulls of arm i. By
Chernoff-Hoeffding bound, we have

Pr

[∣∣∣q̂(r)
i − θi

∣∣∣ >√ R ln(200KR)

max{1,K/|Sr−1|} · T

]
≤ 1

20KR
.

(24)
We now condition on the event that

∀i ∈ S̃r :
∣∣∣q̂(r)
i − θi

∣∣∣ ≤√ R ln(200KR)

max{1,K/|Sr−1|} · T
,

which holds with probability at least (1 − 0.01/R) by (24),
the fact that |S̃r| ≤ K, and a union bound. Let E3 denote this
event.

For the first item in the lemma, it is straightforward to verify
that 1 ∈ Sr since for any suboptimal arm i ∈ S̃r \{1}, it holds
that

q̂
(r)
i − q̂

(r)
1 ≤ θi − θ1 + 2

√
R ln(200KR)

max{1,K/|Sr−1|} · T

< 2

√
R ln(200KR)

max{1,K/|Sr−1|} · T
.

We now show the second item in the lemma. With the
additional assumptions (in the second item), we have that
max{1,K/|Sr−1|} ≥ K

r−1
R . Thus conditioned on E3, for all

arms i ∈ S̃r it holds that∣∣∣q̂(r)
i − θi

∣∣∣ ≤
√
R ln(200KR)

K
r−1
R T

.

For any suboptimal arm i ∈ S̃r, the corresponding gap ∆i has

to be less or equal to 4

√
R ln(200KR)

K
r−1
R T

so that it may stay in

Sr. This is because otherwise we have

q̂
(r)
i + 2

√
R ln(200KR)

K
r−1
R T

≤ θi + 3

√
R ln(200KR)

K
r−1
R T

≤ θ1 −

√
R ln(200KR)

K
r−1
R T

≤ q̂(r)
1 ,



and the arm will be eliminated at Line 15. Since H ≤
TK

R−1
R

cALGH ln(HK) and cALG is a large enough constant, the

number of suboptimal arms i such that ∆i ≤ 4

√
R ln(200KR)

K
r−1
R T

can be upper bounded by

TK
R−1
R

cALGH ln(HK)
· 16 · R ln(200KR)

K
r−1
R T

< K
R−r
R ,

and therefore |Sr| ≤ K
R−r
R .

Analysis of Algorithm 1. By Lemma 18, we have 1 ∈ S̃1

with probability 0.98, conditioned on which and applying
Lemma 19, we have both 1 ∈ SR and |SR| ≤ 1 with
probability 0.99 (by a union bound over all R iterations).
Therefore, Algorithm 1 outputs arm 1 (the best arm) with
probability 0.97.

1) Further Improvement on the Round Complexity
We have proved that Algorithm 1 satisfies the requirement in

Theorem 16 using R communication steps, and therefore (R+
1) rounds. Now we sketch a trick to further reduce the number
of communication steps of Algorithm 1 by one, and therefore
the algorithm only uses R rounds, fully proving Theorem 16.

The main modification is made to the first iteration (r = 1)
of Algorithm 1. In the preparation step, if |S0| > K

R−1
R , then

we randomly assign each arm in S0 to 100K
1
R agents, and

each agent uses the same procedure to identify i(1)
` . Otherwise,

the routine of the algorithm remains the same.
If |S0| > K

R−1
R , in the elimination step, we first set S̃1 to

be the set of arms that are identified by at least K
1
R agents

in the preparation step. Then the elimination rule in Line 15
remains the same.

The rest iterations r = 2, 3, . . . remains the same. However,
we only need to proceed to the (R − 1)-st iteration and
therefore the algorithm uses (R−1) communication steps and
R rounds.

To analyze the modified algorithm, the main difference is
that we can strengthen Lemma 18 by showing that 1 ∈ S̃1 with
probability at least 0.9. This is because by Markov’s Inequality,
for each agent ` such that 1 ∈ A`, with probability at least
0.99, T/2 is greater than or equal to the sample complexity
of the instance A` (with error probability δ = 0.01)), and
therefore Pr[i

(1)
` = 1] ≥ 0.98. Therefore, the expected number

of agents that identify arm 1 is at least 0.98·100K
1
R ≥ 50K

1
R .

Applying Markov’s Inequality, we show that Pr[1 ∈ S̃1] ≥
0.98.

We also have that |S̃1| ≤ K
R−1
R . Therefore, we iteratively

apply a similar argument of Lemma 19 to the rest of the (R−1)
iterations, we have that with probability at least 0.97, for each
r = 2, 3, . . . , R− 1, it holds that 1 ∈ Sr and |Sr| ≤ R

R−r−1
R .

Therefore, the algorithm returns arm 1 after (R−1) iterations
with probability at least 0.97.

B. Algorithm for General Parameter Settings

For conciseness of the presentation, we only extend Al-
gorithm 1 (that uses (R + 1) rounds) to general parameter

settings. It is easy to verify that the same technique works
for the algorithm described in Section IV-A1, which will fully
prove Theorem 14. In the following of this subsection, we
prove Theorem 14 with an algorithm with round complexity
(R+ 1).

We first make a small modification to Algorithm 1 and
strengthen its theoretical guarantee. To do this, we need
to introduce the following stronger property on the fixed-
confidence centralized procedure AC.

Lemma 20. There exists a centralized algorithm AC(S, δ)
where the input is a set S of arms, such that there exists a
cost function fC such that

fC(S, δ) ≤ O(H(S)(lnH(S) + ln δ−1)),

and the function is monotone in inversed gaps
∆−1

2 ,∆−1
3 , . . . ,∆−1

|S| where ∆i is the difference between
the mean of the best arm and that of the i-th best arm, and

Pr[algorithm returns the best arm and uses at least

fC(S, δ) and at most 100fC(S, δ) pulls] ≥ 1− δ.

It can be easily verified that the Successive Elimination
algorithm in [23] is a valid candidate algorithm for Lemma 20.

We now describe our technical change to Algorithm 1.
Algorithm 1′: In Line 6 of Algorithm 1, instead of
choosing T/2 as the time threshold, each agent ` in-
dependently chooses τ` ∈ {T/200, T/2} uniformly
at random and uses τ` as the time threshold.

It is straightforward to see that for a large enough constant
cALG, Theorem 16 still holds for the Algorithm 1′. We now
state the additional guarantee for the Algorithm 1′.

Lemma 21. For any T and any suboptimal arm i ∈ S, the
probability that Algorithm 1′ returns i is at most 0.86.

Proof. For any fixed suboptimal arm i ∈ S, let p be the
probability that Algorithm 1′ returns i.

If Lines 3–6 are not executed during iteration r = 1 or there
exists an agent ` such that the corresponding i

(1)
` at Line 6

equals to the best arm (arm 1), by Lemma 19 we know that
Pr[1 ∈ SR] ≥ 0.99, and thus the probability that i is returned
is at most 0.01. For now on, we focus on the case that Lines 3–
6 are executed during iteration r = 1 and none of i(1)

` equals
to 1.

By Lemma 19, we know that Pr[∃` : i
(1)
` = i] ≥ p− 0.01.

We further have

Pr[∃` : i
(1)
` = i and τ` = T/200] ≥ p− 0.51

since Pr[τ` = T/200] = 0.5. By Lemma 20, we have that

Pr[∃` : best arm of A` is i and
fC(A`, 0.01) ≤ T/200] ≥ p− 0.52. (25)

Now consider a new partition of arms {A′`}`∈[K] which
is almost identical to {A`} except for that the assignments
for arms 1 and i are exchanged. We note that first, the



marginal distribution of {A′`} is still the uniform distribution;
and second, when i is the best arm of A`, we have that
fC(A`, 0.01) ≥ fC(A′`, 0.01) due to the monotonicity of fC

and the gaps of H(A`) are point-wisely less than or equal to
that of H(A′`). By (25),

Pr[∃` : best arm of A` is 1 and fC(A`, 0.01) ≤ T/200]

= Pr[∃` : best arm of A′` is 1 and fC(A′`, 0.01) ≤ T/200]

≥ p− 0.52.

By Lemma 19 and Lemma 20, we have that

Pr[1 ∈ SR] ≥ Pr[∃` : i
(1)
` = 1]− 0.01

≥ Pr[∃` : best arm of A` is 1 and
fC(A`, 0.01) ≤ T/200 and τ` = T/2]− 0.02

≥ p− 0.52

2
− 0.02

=
p

2
− 0.28.

Since 1 ∈ SR is a disjoint event from the event that i is
returned by the algorithm, we have p+p/2−0.28 ≤ 1, leading
to that p ≤ 1.28/1.5 < 0.86 .

We are now ready to prove the main algorithmic result
(Theorem 14).

Proof of Theorem 14. We build a meta algorithm that in-
dependently runs the Algorithm 1′ for several times with
different parameters.

Meta Algorithm: For each s = 1, 2, 3, . . . , we run
Algorithm 1′ with time horizon T

s210s ·
6
π2 and com-

munication step parameter R for 10s times, and let
the returned values be is,1, is,2, . . . , is,10s . Finally,
the algorithm will find the largest s such that the
most frequent element in {is,·} has frequency greater
than 0.9 and output the corresponding element, or
output ⊥ if no such s exists.

We note that we can still do this in R communication steps
and the total run time will be at most∑

s

10s · T

s210s
· 6

π2
≤ T.

Let s∗ be the largest s ≥ 1 such that T
s210s ·

6
π2 ≥

cALGHK
−R−1

R ln(HK), where cALG is the constant in The-
orem 16 for Algorithm 1′. If no such s exists, it is easy to
verify that the theorem holds trivially. Otherwise, we have that
2s
∗

= Ω(TK
R−1
R /(H ln(HK)(ln(TK

R−1
R /H))2)) .

By Theorem 16 and Chernoff-Hoeffding bound, we have
that

Pr[frequency of 1 in {is∗,·} > 0.9]

≥ 1− exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

On the other hand, for each s = s∗ + j (where j ≥ 1), by
Lemma 21, Chernoff-Hoeffding bound, and a union bound,
we have that

Pr[∃suboptimal arm i : frequency of i in {is,·} > 0.9]

≤ n · exp

(
−2j · Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

Finally, we have

Pr[Meta Algorithm returns 1]

≥ Pr[frequency of 1 in {is∗,·} > 0.9]

−
+∞∑
j=1

Pr[∃suboptimal arm i : freq. of i in {is∗+j,·} > 0.9]

≥ 1−
+∞∑
j=0

n · exp

(
−2j · Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))

≥ 1− n · exp

(
−Ω

(
TK

R−1
R

H ln(HK)(ln(TK
R−1
R /H))2

))
.

V. LOWER BOUNDS FOR FIXED-CONFIDENCE
DISTRIBUTED ALGORITHMS

In this section, we prove the following lower bound theorem
for fixed-confidence collaborative learning algorithms.

Theorem 22. For any large enough T , suppose that a random-
ize algorithm A for the fixed-confidence best arm identification
problem in the collaborative learning model with K agents
satisfies that βA(T ) ≥ β, then we have that A uses

Ω

(
min

{
min{ln ∆−1

min, lnT}

ln
(

1 + K(lnK)2

β

)
+ min{ln ln ∆−1

min, ln lnT}
,

√
β/(lnK)3

})
rounds in expectation.

To prove the theorem, we work with the following simpler
problem.

The SIGNID problem. In the SIGNID problem, there is only
one Bernoulli arm with mean reward denoted by ( 1

2 + ∆)
(where ∆ ∈ [− 1

2 ,
1
2 ] \ {0}). The goal for the agent is to make

a few pulls on the arm and decide whether ∆ > 0 or ∆ < 0.
Let I(∆) denote the input instance. Throughout this section,
we use the notations PrI(∆)[·] and EI(∆)[·] to denote the
probability and expectation when the underlying input instance
is I(∆). We say a collaborative learning algorithm A is δ-error
and β-fast for the instance I(∆), if we have that

Pr
I(∆)

[
A returns the correct decision

within ∆−2/β running time
]
≥ 1− δ.



We first provide the following theorem on the round com-
plexity lower bound for the SIGNID problem (which will be
formally proved in Section V-A). Then we will show how
these statements imply the round complexity lower bound for
the best arm identification problem in the fixed confidence
setting.

Theorem 23. Let ∆∗ ∈ (0, 1/8). If A is a (1/K5)-error
and β-fast algorithm for every SIGNID problem instance I(∆)
where |∆| ∈ [∆∗, 1/8), then there exists ∆[ ≥ ∆∗ such that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 +K/β) + ln ln(1/∆∗)
,

√
β/(lnK)

})
rounds

]
≥ 1

2
.

Since we can easily convert a (1/3)-error and β-fast al-
gorithm to a δ-error and β/O(ln δ−1)-fast algorithm for any
δ < 0, we have the following corollary.

Corollary 24. Let ∆∗ ∈ (0, 1/8). If A is a (1/3)-error and β-
fast algorithm for every SIGNID problem instance I(∆) where
|∆| ∈ [∆∗, 1/8), then there exists ∆[ ≥ ∆∗ such that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,

√
β/(lnK)2

})
rounds

]
≥ 1

2
.

We now show how Theorem 23 implies the round complex-
ity lower bound for the best arm identification problem. The
proof of our main Theorem 22 will come after the following
theorem.

Theorem 25. Let ∆∗ ∈ (0, 1/8). Given any randomized al-
gorithm ABAI for the fixed-confidence best arm identification
problem in the collaborative learning model with K agents, if
for any 2-arm instance J where ∆min(J) ∈ [∆∗, 1/8),

Pr
[
ABAI returns the best arm of J

within ∆−2
min/β running time

]
≥ 2

3
,

then there exists a 2-arm instance J∗ where ∆min(J∗) ∈
[∆∗, 1/8), such that

Pr

[
ABAI uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,

√
β/(lnK)2

})
rounds on J∗

]
≥ 1

2
. (26)

Proof. We first show that given such algorithm ABAI that
uses no more than R = R(∆min) rounds of communication
in expectation, there exists an algorithm A for SIGNID such
that A is (1/3)-error and Ω(β)-fast for all instances I(∆)
where ∆ ∈ [∆∗, 1/8), and A uses at most R(∆) rounds of
communication in expectation.

To construct the algorithm A, we set up a best arm iden-
tification instance J where one of the two arms (namely the
reference arm) is set to be a Bernoulli arm with mean reward
1/2, and the other arm (namely the unknown arm) is the one
in the SIGNID instance. A simulates ABAI and plays the arm
in the SIGNID instance once whenever ABAI wishes to play
the unknown arm. A returns ‘< 0’ if and only if ABAI returns
the reference arm, and A returns ‘> 0’ if and only if ABAI

returns the unknown arm.
Suppose I(∆) is the given SIGNID instance, we have

that ∆min(J) = ∆, and therefore A uses R(∆) rounds
of communication in expectation. Also one can verify that
A is a (1/3)-error and β-fast algorithm for I(∆) whenever
∆ ∈ [∆∗, 1/8). By Corollary 24, there exists ∆[ ≥ ∆∗ such
that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK)/β) + ln ln(1/∆∗)
,

√
β/(lnK)2

})
rounds

]
≥ 1

2
.

This implies that for the 2-arm instance J∗ where ∆min(J∗) =
∆[, we have that (26) holds.

Proof of Theorem 22. Let J(∆) be the 2-arm instance where
one of the two arms is a Bernoulli arm with mean reward
1/2 and the other arm is a Bernoulli arm with mean reward
1/2−∆. By the lil’UCB algorithm in [15], we know that there
exists a centralized algorithm O such that TO(J(∆), 1/3) ≤
O(∆−2 ln ln ∆−1) for all ∆ ∈ (0, 1/4). Therefore, there exists
a universal constant c > 0 such that for any large enough T ,
we have TO(J(cT/ lnT ), 1/3) ≤ T for all ∆ ∈ (0, 1/4).

For any ∆min, we set ∆∗ = max{∆min, cT/ lnT}. By the
definition of βA(T ) (in (1)) and the assumption that βA(T ) ≥
β, we have that for all instance J(∆) where ∆ ∈ [∆∗, 1/4),
it holds that

TO(J(∆), 1/3)

TA(J(∆), 1/3)
≥ β,

which implies that

TA(J(∆), 1/3) ≤ TO(J(∆), 1/3)

β

= O(∆−2 ln ln ∆−1/β) = O(∆−2 ln lnT/β).

We now invoke Theorem 25, and get that there exists J∗
and O such that TO(J∗, 1/3) ≤ T and

Pr
J∗

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K lnK ln lnT )/β) + ln ln(1/∆∗)
,√

β

(lnK)2 ln lnT

})
rounds

]
≥ 1

2
.

Note that ln(1/∆∗) ≤ O(lnT ). When lnT = Ω(K),
the second term in the min{., .} function becomes smaller.



Therefore, in the first term, we can assume that lnT = O(K)
and get the following simplified statement.

Pr
J∗

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 + (K(lnK)2)/β) + ln ln(1/∆∗)
,√

β

(lnK)3

})
rounds

]
≥ 1

2
.

A. Proof of Theorem 23

Suppose A is a δ-error β-fast algorithm. We define the
following events. For any integer α ≥ 0, let E(α, T ) to denote
the event that A uses at least α rounds and at most T time
steps before the end of the α-th round, and let E∗(α, T ) to
denote the event that A uses at least (α + 1) rounds and at
most T time steps before the end of the α-th round.

We will make use of two lemmas: the progress lemma
and the distribution exchange lemma. The progress lemma
basically says that if the algorithm A only performs o(∆2)
pulls by the end of the α-th round, then it must move forward
to the (α+ 1)-st round and perform more pulls.

Lemma 26 (Progress Lemma). Recall that A is a δ-error β-
fast algorithm, and E and E∗ are defined at the beginning of
this section. For any ∆ ∈ [∆∗, 1/8), any α ≥ 0, and any
q ≥ 1, so long as

Pr
I(∆)

[E(α,∆−2/(Kq))] ≥ 1/2,

we have that

Pr
I(∆)

[E∗(α,∆−2/(Kq))]

≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 2δ − 4√
3q
, (27)

where K is the number of agents A uses in parallel.

We defer the proof of Lemma 26 to Section V-B. Intuitively,
Lemma 26 holds because of the following reason: If A uses at
most ∆−2/(Kq) time steps, it may perform at most ∆−2/q
pulls throughout all K agents. When q is large, this is not
enough information to tell I(∆) from I(−∆), and therefore
A cannot make a decision on the sign of the arm, and has to
proceed to the next round.

The distribution exchange lemma basically says that if the
algorithm A uses (α + 1) rounds for instance I(∆), then
its (α + 1)-st round must conclude before time ∆−2/β for
instance I(∆′) where ∆′ ≤ ∆.

Lemma 27 (Distribution Exchange Lemma). Recall that A is
a δ-error β-fast algorithm, and E and E∗ are defined at the

beginning of this section. For any ∆ ∈ [∆∗, 1/8), any α ≥ 0,
any q ≥ 100, and any ζ ≥ 1, we have that

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I(∆)

[E∗(α,∆−2/(Kq))]− δ

−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q
. (28)

We defer the proof of Lemma 27 to Section V-D. At a higher
level, we prove Lemma 27 using the following intuition. For
instance I(∆), since A is a δ-error β-fast algorithm, each
agent is very likely to use at most ∆−2/β pulls during the
(α+1)-st round, and only sees at most (∆−2/(Kq)+∆−2/β)
pull outcomes before the next communication (given the event
E∗(α,∆−2/(Kq))), which is insufficient to tell between I(∆)
and I(∆/ζ). Therefore, if the instance is I(∆/ζ), each agent
is also very likely to use at most ∆−2/β pulls during the
(α+ 1)-st round, and hence the whole algorithm finishes the
(α+1)-st round before (∆−2/(Kq)+∆−2/β) time with high
probability.

However, it is not technically easy to formalize this intu-
ition. If we simply use the statistical difference between the
two distributions (under I(∆) and I(∆/ζ)) for the ∆−2/β
pulls during the (α+1)-st round to upper bound the probability
difference between each agent’s behavior for the two instances,
we will face a probability error of Θ(

√
1/β) for each agent.

In total, this becomes a probability error of Θ(K
√

1/β)� 1
throughout all K agents, which is too much. To overcome this
difficulty, in Section V-C, we establish a technical lemma to
derive a much better upper bound on the difference between
the probabilities that two product distributions assign to the
same event, given that the event does not happen very often.

We are now ready to prove Theorem 23.

Proof of Theorem 23. Combining Lemma 26 and Lemma 27,
when ∆ ∈ [∆∗, 1/8), α ≥ 0, q ≥ 100, ζ ≥ 1 and
PrI(∆)[E(α,∆−2/(Kq))] ≥ 1/2, we have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 3δ

−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 12√

3q
. (29)

Set ζ =
√

1 + (Kq)/β, and (29) becomes

Pr
I(∆/ζ)

[E(α+ 1, (∆/ζ)−2/(Kq))]

≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− 3δ

−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 12√

3q
. (30)

Let t0 be the largest integer such that

0.1 · (1 + (K · 1000t20)/β)−t0/2 ≥ ∆∗,

and we have t0 = Ω
(

ln(1/∆∗)
ln(1+K/β)+ln ln(1/∆∗)

)
. Let t =

min{t0, bcR
√
β/(lnK)c} for some small enough universal



constant cR > 0. We also set q = 1000t20. By the definition
of event E(·, ·) and the numbering of the steps of the com-
munications, we have that E(0, 100/(Kq)) always holds, and
therefore

1 = Pr
I(1/10)

[E(0, 100/(Kq))]. (31)

Starting from (31), we iteratively apply (30) for t times. Let
∆[ = 0.1 · (1 + (Kq)/β)−t/2 ≥ ∆∗, we have that

Pr
I(∆[)

[E(t,∆[/(Kq))] ≥ 1−

(
3δ
(

exp
(

5
√

(3 lnK)/β
)
− 1
)

+ 1/K5 +
12√

3000t20

)
t, (32)

so long as(
3δ +

(
exp

(
5
√

(3 lnK)/β
)
− 1
)

+ 1/K5 +
12√

3000t20

)
t ≤ 1

2
. (33)

We see that (33) holds as long as δ ≤ 1/K5 and cR is small
enough (note that when β < lnK/c2R then t = 0). Therefore,
we conclude that

Pr
I(∆[)

[
A uses Ω

(
min

{
ln(1/∆∗)

ln(1 +K/β) + ln ln(1/∆∗)
,

√
β/(lnK)

})
rounds

]
≥ 1

2
.

B. Proof of the Progress Lemma (Lemma 26)

Proof of Lemma 26. Let F denote the event that A uses
exactly α rounds, and uses at most ∆−2/(Kq) time steps.
It is clear that

Pr
I(∆)

[E∗(α,∆−2/(Kq))] ≥ Pr
I(∆)

[E(α,∆−2/(Kq))]− Pr
I(∆)

[F ].

Therefore it suffices to show that

Pr
I(∆)

[F ] ≤ 2δ +
4√
3q
. (34)

Note that

Pr
I(∆)

[F ] = Pr
I(∆)

[F ∧ A returns ‘> 1/2’]

+ Pr
I(∆)

[F ∧ A returns ‘< 1/2’]. (35)

We first focus on the first term of the Right-Hand Side (RHS)
of (35). Let D∆ denote the product distribution B(1/2 +
∆)⊗∆−2/q , and let D−∆ denote B(1/2 − ∆)⊗∆−2/q , where
B(θ) is the Bernoulli distribution with the expectation θ. By

Pinsker’s inequality (Lemma 31) and simple KL-divergence
calculation we have that when ∆ ∈ (0, 1/8), it holds that

‖D∆ −D−∆‖TV ≤
√

1

2
KL(D∆‖D−∆) ≤ 4√

3q
.

On the other hand, since when event F happens, A uses
at most ∆−2/(Kq) ·K = ∆−2/q pulls (over all agents), we
have

Pr
I(∆)

[F ∧ A returns ‘> 1/2’]

≤ Pr
I(−∆)

[F ∧ A returns ‘> 1/2’] + ‖D∆ −D−∆‖TV

≤ Pr
I(−∆)

[A returns ‘> 1/2’] +
4√
3q
≤ δ +

4√
3q
. (36)

For the second term of the RHS of (35), we have

Pr
I(∆)

[F ∧ A returns ‘< 1/2’]

≤ Pr
I(∆)

[A returns ‘< 1/2’] ≤ δ. (37)

Combining (35), (36), and (37), we prove (34).

C. Probability Discrepancy under Product Distributions for
Infrequent Events

In this section, we prove the following lemma to upper
bound the difference between the probabilities that two product
distributions assign to the same event. Given that the event
does not happen very often, our upper bound is significantly
better than the total variation distance between the two product
distributions.

Lemma 28. Suppose 0 ≤ ∆′ ≤ ∆ ≤ 1/8. For any
positive integer m = ∆−2/ξ where ξ ≥ 100, let D denote
the product distribution B(1/2 + ∆)⊗m and let D′ denote
the product distribution B(1/2 + ∆′)⊗m, where B(µ) is the
Bernoulli distribution with the expectation µ. Let X be any
probability distribution with sample space X . For any event
A ⊆ {0, 1}m ×X such that PrD⊗X [A] ≤ γ, we have that

Pr
D′⊗X

[A] ≤ γ · exp
(

5
√

(3 lnQ)/ξ
)

+ 1/Q6,

holds for all Q ≥ ξ.

Proof. Let L = {` ∈ {0, 1}m : |`| ≥ m/2 − z/∆} where
|`| denotes the number of 1’s in the vector ` and z ≥ 0 is a
parameter to be decided later. We have that

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A]

≤ Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L] + Pr
`∼D′

[` 6∈ L]. (38)

We first focus on the first term of the RHS of (38). Note that

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L]

=
∑
`∈L

Pr
x∼X

[(`, x) ∈ A | ` ∈ L]·(1/2+∆′)|`|(1/2−∆′)m−|`|

(39)



When ` ∈ L, by monotonicity, we have

(1/2 + ∆′)|`|(1/2−∆′)m−|`|

(1/2 + ∆)|`|(1/2−∆)m−|`|

≤ (1/2 + ∆′)m/2−z/∆(1/2−∆′)m/2+z/∆

(1/2 + ∆)m/2−z/∆(1/2−∆)m/2+z/∆

=

(
1/4− (∆′)2

1/4−∆2

)m/2(
(1/2−∆′)(1/2 + ∆)

(1/2 + ∆′)(1/2−∆)

)z/∆
≤
(

1

1− 4∆2

)m/2(
1 + 2∆

1− 2∆

)z/∆
. (40)

Since (1−ε)−1/ε ≤ e1.2 for all ε ∈ (0, 1/4) and (1+ε)1/ε ≤ e
for all ε ∈ (0, 1), for ∆ ∈ (0, 1/8), we have(

1

1− 4∆2

)m/2(
1 + 2∆

1− 2∆

)z/∆
≤ exp

(
1.2 · 4∆2 ·m/2 + 1.2 · 2∆ · z/∆ + 2∆ · z/∆

)
= exp(2.4/ξ + 4.4z). (41)

Combining (39), (40), (41), we have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A ∧ ` ∈ L]

≤ exp(2.4/ξ + 4.4z) · Pr
(`,x)∼D⊗X

[(`, x) ∈ A ∧ ` ∈ L]

≤ exp(2.4/ξ + 4.4z) · Pr
(`,x)∼D⊗X

[(`, x) ∈ A]

≤ γ · exp(2.4/ξ + 4.4z). (42)

For the second term of the RHS of (38), by Chernoff-
Hoeffding bound, we have

Pr
`∼D′

[` 6∈ L] ≤ exp
(
−2m(z/(∆m))2

)
= exp

(
−2z2ξ

)
.

(43)

Combining (38), (42), and (43), we have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A] ≤ γ·exp(2.4/ξ+4.4z)+exp
(
−2z2ξ

)
.

Setting z =
√

(3 lnQ)/ξ and for ξ ≥ 100 and Q ≥ ξ, we
have

Pr
(`,x)∼D′⊗X

[(`, x) ∈ A]

≤ γ · exp
(

2.4/ξ + 4.4
√

(3 lnQ)/ξ
)

+ 1/Q6

≤ γ · exp
(

5
√

(3 lnQ)/ξ
)

+ 1/Q6.

D. Proof of the Distribution Exchange Lemma (Lemma 27)

We first introduce a simple mathematical lemma, whose
proof can be found in Appendix A.

Lemma 29. For any γ1, . . . , γK ∈ [0, 1] and x ≥ 0 , it holds
that

K∏
i=1

max{1− γi − γix, 0} ≥
K∏
i=1

(1− γi)− x.

Proof of Lemma 27. We will only prove (28) for A as a
deterministic algorithm, i.e. when there is no randomness in A
except for the observed rewards drawn from the arm. Once this
is established, we can easily deduce that the same inequality
holds for randomized A by taking expectation on both sides
of (28) over the (possibly shared) random bits used by each
agent of the collaborative learning algorithm A.

Let ` ∈ {0, 1}∆−2/q be the rewards from the first ∆−2/q
plays of the arm. Once conditioned on `, E∗(α,∆−2/(Kq))
becomes a deterministic event, since A is deterministic and
the event only depends on the first ∆−2/q rewards. In light
of this, we let S denote the set of ` conditioned on which
E∗(α,∆−2/(Kq)) holds. We have

∑
s∈S

Pr
I(∆)

[` = s] = Pr
I(∆)

[E∗(α,∆−2/(Kq))]. (44)

For each agent i ∈ [K], let Gi be the event that the agent uses
more than ∆−2/β pulls during the (α + 1)-st round. Since
A is deterministic, conditioned on ` ∈ S, Gi only depends
on the random rewards observed by the i-th agent during the
(α + 1)-st round, and is independent from Gj for any j 6= i.
Since A is a δ-error β-fast algorithm, we have

δ ≥ Pr
I(∆)

[A uses > ∆−2/β time]

≥
∑
s∈S

Pr
I(∆)

[` = s] · Pr
I(∆)

[G1 ∨G2 ∨ · · · ∨GK | ` = s]

=
∑
s∈S

Pr
I(∆)

[` = s] ·

(
1−

K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

))
= Pr

I(∆)
[E∗(α,∆−2/(Kq))]

−
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
,

where the last equality is because of (44). We thus have

∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
≥ Pr
I(∆)

[E∗(α,∆−2/(Kq))]− δ. (45)

We also have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] · Pr
I(∆/ζ)

[¬G1 ∧ ¬G2 ∧ · · · ∧ ¬GK | ` = s]

=
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆/ζ)
[Gi | ` = s]

)
. (46)



We next to fuse (45) and (46). Invoking Lemma 28 with
Q = K and ξ = β, we have∑

s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆/ζ)
[Gi | ` = s]

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

max

{
1

− Pr
I(∆)

[Gi | ` = s] · exp
(

5
√

(3 lnK)/β
)
− 1/K6, 0

}

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·

(
K∏
i=1

max

{
1− Pr

I(∆)
[Gi | ` = s]

· exp
(

5
√

(3 lnK)/β
)
, 0

}
− 1/K5

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·

(
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)

−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5

)

≥
∑
s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5, (47)

where the second to the last inequality is due to Lemma 29.
Finally, we have∑

s∈S

Pr
I(∆/ζ)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)

≥
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
∑
s∈S

∣∣∣∣ Pr
I(∆/ζ)

[` = s]− Pr
I(∆)

[` = s]

∣∣∣∣ , (48)

where by Pinsker’s inequality (Lemma 31) and simple KL-
divergence calculation for ∆ ∈ (0, 1/8), we have∑

s∈S

∣∣∣∣ Pr
I(∆/ζ)

[` = s]− Pr
I(∆)

[` = s]

∣∣∣∣ ≤ 8√
3q
. (49)

Combining (46), (47), (48), and (49), we have

Pr
I(∆/ζ)

[E(α+ 1,∆−2/(Kq) + ∆−2/β)]

≥
∑
s∈S

Pr
I(∆)

[` = s] ·
K∏
i=1

(
1− Pr

I(∆)
[Gi | ` = s]

)
−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q

≥ Pr
I(∆)

[E∗(α,∆−2/(Kq))]− δ

−
(

exp
(

5
√

(3 lnK)/β
)
− 1
)
− 1/K5 − 8√

3q
, (50)

where the last inequality is due to (45).
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APPENDIX

The following lemma states Chernoff-Hoeffding bound.

Lemma 30. Let X1, X2, . . . , Xn be independent random
variables bounded by [0, 1]. Let X =

∑n
i=1Xi. For additive

error, for every t ≥ 0, it holds that

Pr [|X − E[X]| ≥ t] ≤ 2 exp

(
−2t2

n

)
.

For multiplicative error, for every δ ∈ [0, 1], it holds that

Pr [|X − E[X]| ≥ δ E[X]] ≤ 2 exp

(
−δ

2 E[X]

3

)
.

The following lemma states Pinsker’s inequality [46].

Lemma 31. If P and Q are two discrete probability distribu-
tions on a measurable space (X,Σ), then for any measurable
event A ∈ Σ, it holds that

|P (A)−Q(A)| ≤
√

1

2
KL(P‖Q)

where

KL(P‖Q) =
∑
x∈X

P (x) ln

(
P (x)

Q(x)

)
is the Kullback–Leibler divergence.

A. Proof of Lemma 3

Proof. Let S` = |Θ||X=B−` . We have E[S`] = γB2j ·(
1
2 −B

−`).
For the first item, we have for any ` > j,

E[S`] = γB2j ·
(

1

2
−B−`

)
=
γB2j

2
− γB2j−` =

γB2j

2
± γBj−1.

Since B = γ ≥ (lnn)100, by Chernoff-Hoeffding bound we
have that for any ` > j, with probability at least 1− n−10,

S` =
γB2j

2
±Bj+0.6.

Now consider the second and third items. If ` > j, then by
Chernoff-Hoeffding bound,

Pr

[
S` ≤

(
1

2
−B−(j+1)

)
γB2j −

√
10γ lnnBj

]
≤ Pr

[
S` ≤ E[S`]−

√
10γB2j lnn

]
≤ 1/n10. (51)

If ` ≤ j, then

Pr

[
S` ≥

(
1

2
−B−j

)
γB2j +

√
10γ lnnBj

]
≤ Pr

[
S` ≥ E[S`] +

√
10γB2j lnn

]
≤ 1/n10. (52)

Since B ≥ (lnn)100, we have(
1

2
−B−j

)
γB2j +

√
10γ lnnBj < ζ1

=

(
1

2
−B−(j+1)

)
γB2j −

√
10γ lnnBj . (53)

The last two items follows from (51), (52) and (53).

B. Proof of Lemma 29

Proof. Note that when x ≥ mini∈[K]

{
1−γi
γi

}
, the Left-Hand

Side (LHS) of the desired inequality becomes 0 and the RHS
is less than or equal to 0. Therefore, we only need to prove
the inequality assuming x < mini∈[K]

{
1−γi
γi

}
.

Now the LHS becomes
∏K
i=1(1 − γi − γix). Let f(t) =∏K

i=1(1 − γi − γit) for t ∈ [0, x]. Note that f ′(t) =



−
∑K
i=1 γi

∏
j 6=i(1 − γj − γjt) ≥ f ′(0) for t ∈ [0, x]. We

have
K∏
i=1

(1− γi − γix) = f(x) ≥ f(0) + f ′(0)x

=
K∏
i=1

(1− γi)−

 K∑
i=1

γi
∏
j 6=i

(1− γj)

x

≥
K∏
i=1

(1− γi)−

(
K∏
i=1

(γi + (1− γi))

)
x

=
K∏
i=1

(1− γi)− x.


