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Abstract
We show that randomization can lead to significant improvements for a few fundamen-
tal problems in distributed tracking. Our basis is the count-tracking problem, where
there are k players, each holding a counter ni that gets incremented over time, and
the goal is to track an ε-approximation of their sum n = ∑

i ni continuously at all
times, using minimum communication. While the deterministic communication com-
plexity of the problem is Θ(k/ε · log N ), where N is the final value of n when the
tracking finishes, we show that with randomization, the communication cost can be
reduced toΘ(

√
k/ε · log N ). Our algorithm is simple and uses only O(1) space at each

player, while the lower bound holds even assuming each player has infinite computing
power. Then, we extend our techniques to two related distributed tracking problems:
frequency-tracking and rank-tracking, and obtain similar improvements over previ-
ous deterministic algorithms. Both problems are of central importance in large data
monitoring and analysis, and have been extensively studied in the literature.
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1 Introduction

We start with a very basic problem in distributed tracking, what we call count-tracking.
There are k players each holding a counter ni that is initially 0. Over time, the counters
get incremented and we denote by ni (t) the value of the counter ni at time t . The
goal is to track an ε-approximation of the total count n(t) = ∑

i ni (t), i.e., an n̂(t)
such that (1 − ε)n(t) ≤ n̂(t) ≤ (1 + ε)n(t),1 continuously at all times. There is a
coordinator whose job is to maintain such an n̂(t), and will try to do so usingminimum
communication with the k players (the formal model of computation will be defined
shortly).

There is a trivial solution to the count-tracking problem: Every time a counter ni
has increased by a 1+ε factor, the player informs the coordinator of the change. Thus,
the coordinator always has an ε-approximation of every ni , hence an ε-approximation
of their sum n. Letting N denote the final value of n, simple analysis shows that the
communication cost of this algorithm is O(k/ε · log N ).2 This algorithm was actu-
ally used in [16] for solving essentially the same problem, which also provided many
practical motivations for studying this problem. Note that this algorithm is determin-
istic and only uses one-way communication (from the players to the coordinator), and
yet it turns out this simple algorithm is already optimal for deterministic algorithms,
even if two-way communication is allowed [29]. Thus the immediate questions are:
What about randomized algorithms that are allowed to fail with a small probability?
Is two-way communication not useful at all? In this paper, we set out to address these
questions, and then move on to consider other related distributed tracking problems.

1.1 The Distributed TrackingModel

We first give a more formal definition of the computation model that we will work
with, which is essentially the same as those used in prior work on distributed tracking
[2,3,5,7,9,10,16,29]. There are k distributed sites S1, . . . , Sk , each receiving a stream
of elements over time, possibly at varying rates. Let N be the total number of elements
in all k streams. We denote by Ai (t) the multiset (bag) of elements received by Si up
until time t , and let A(t) = ⊎k

i=1 Ai (t) be the combined data set, where � denotes
multiset addition. There is a coordinator whose job is to maintain (an approximation
of) f (A(t)) continuously at all times, for a given function f (e.g., f (A(t)) = |A(t)|
for the count-tracking problem above). The coordinator has a direct two-way com-
munication channel with each of the sites; note that broadcasting a message costs k
times the communication for a single message. The sites do not communicate with
each other directly, but this is not a limitation since they can always pass messages
via the coordinator. We assume that communication is instant, i.e., no element will
arrive until all parties have decided not to send more messages. As in prior work, our
measures of complexity will be the communication cost and the space used to process
each stream. Unless otherwise specified, the unit of both measures is a word, and we

1 We sometimes omit “(t)” when the context is clear.
2 A more careful analysis leads to a slightly better bound of O(k/ε · log(εN/k)), but we will assume that
N is sufficiently large, compared to k and 1/ε, to simplify the bounds.
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assume that any integer less than N , as well as an element from the stream, can fit in
one word.

This model was initially abstracted from many applied settings, ranging from dis-
tributed data monitoring, wireless sensor networks, to network traffic analysis, and
has been extensively studied in the database community. See the recent survey of [6]
for more information. From 2008 [9], the model has started to attract interests from
the theory community as well, as it naturally combines two well-studied models: the
data stream model and multi-party communication complexity. When there is only
k = 1 site who also plays the role of the coordinator, the model degenerates to the
standard streamingmodel; when k ≥ 2 and our goal is to do a one-shot computation of
f (A(∞)), then the model degenerates to the (number-in-hand) k-party communica-
tion model. Thus, distributed tracking is more general than both models. Meanwhile,
it also appears to be significantly different from either, with the above count-tracking
problem being the best example. This problem is trivial in both the streaming and the
communication model (even computing the exact count is trivial), whereas it becomes
nontrivial in the distributed tracking model and requires new techniques, especially
when randomization is allowed, as illustrated by our results in this paper.

Note that there is some work on distributed streaming (see e.g. [12,17]) that adopts
a model very similar to ours, but with a fundamental difference. In their model there
are k streams, each of which runs a streaming algorithm on its local data. But the
function f on the combined streams is computed only at the end or upon requests by
the user. As one can see that the count-tracking problem is also trivial in this model.
The crucial difference is that, in this model, the sites wait passively to get polled. If
we want to track f continuously, we have to poll the sites all the time. Whereas in
our model, the sites actively participate in the tracking protocol to make sure that f is
always up-to-date.

1.2 Problem Statements, Previous and New Results

In this paper, we first study the count-tracking problem. Then we extend our approach
to two related, more general problems: frequency-tracking and rank-tracking. Both
problems are of central importance in large data monitoring and analysis, and have
been extensively studied in the literature. In all the communication upper bounds, we
will assume k ≤ 1/ε2; otherwise all of them will carry an extra additive O(k log N )

term.Our results are summarized in Table 1; belowwe discuss each of them separately.
As mentioned earlier, the deterministic communication complexity for the count-

tracking problem has been settled at Θ(k/ε · log N ) [29],3 with or without two-way
communication. In this paper, we show that with randomization and two-way commu-
nication, this is reduced toΘ(

√
k/ε · log N ). We first in Sect. 2.1 present a randomized

algorithm with this communication cost that, at any one given time instance, main-
tains an ε-approximation of the current n with a constant probability. The algorithm is
very simple and uses O(1) space at each site. It is easy to make the algorithm correct
for all time instances and boost the probability to 1 − δ: Since we can use the same

3 The lower bound in [29] was stated for the heavy hitters tracking problem, but essentially the same proof
works for count-tracking.
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Table 1 Space and communication costs of previous and new algorithms

Space (per site) Communication

Count-tracking Trivial O(1) Θ(k/ε · log N )

New O(1) O(
√
k/ε · log N )

Ω(
√
k/ε · log N ) messages

Frequency-tracking [29] O(1/ε) Θ(k/ε · log N )

New O(1/(ε
√
k)) O(

√
k/ε · log N )

Ω(1/(ε
√
k)) bits* Ω(

√
k/ε · log N ) messages

Rank-tracking [29] O(1/ε · log n) O(k/ε · log N log2(1/ε))

New O
(

1
ε
√
k
log1.5 1

ε log0.5 1
ε
√
k

)
O

(√
k/ε · log N log1.5 1

ε
√
k

)

Ω(1/(ε
√
k)) bits* Ω(

√
k/ε · log N ) messages

Sampling [10] O(1) O(1/ε2 · log N )

We assume k ≤ 1/ε2. All upper bounds are in terms of words
*This is conditioned upon the communication cost being O(

√
k/ε · log N ) bits

approximate value n̂ of n until n grows by a 1 + ε factor, it suffices to make the
algorithm correct for O(log1+ε N ) = O(1/ε · log N ) time instances. Then running

O(log( log N
δε

)) independent copies of the algorithm and taking the median will achieve
the goal of tracking n continuously at all times, with probability at least 1 − δ. The
Ω(

√
k/ε · log N ) lower bound (Sect. 2.2) actually holds on the number of messages

that have to be exchanged, regardless of the message size, and holds even assuming
the sites have unlimited space and computing power. That randomization is neces-
sary to achieve this

√
k-factor improvement follows from the previous deterministic

lower bound [29]; here in Sect. 2.2 we give a proof that two-way communication is
also required. More precisely, we show that any randomized algorithm with one-way
communication has to use Ω(k/ε · log N ) communication, i.e., the same as that for
deterministic algorithms.

In the frequency-tracking (a.k.a. heavy hitters tracking) problem, A(t) is a multiset
of cardinality n(t) at time t . Let f j (t) be the frequency of element j in A(t). The goal
is to maintain a data structure fromwhich f j (t), for any given j , can be estimated with
absolute error at most εn(t), with probability at least 0.9 (say). Note that this problem
degenerates to count-tracking when there is only one element. It is reasonable to ask
for an error in terms of n(t): if the error were ε f j (t), then every element would have
to be reported if they were all distinct. In fact, this error requirement is the widely
accepted definition for the heavy hitters problem, which has been extensively studied
in the streaming literature [8]. Several algorithms with the optimal O(1/ε) space exist
[18–20]. In the distributed tracking model, we previously [29] gave a deterministic
algorithm with O(k/ε · log N ) communication, which is the best possible for deter-
ministic algorithms. In this paper, by generalizing our count-tracking algorithm, we
reduce the cost to O(

√
k/ε · log N ), with randomization (Sect. 3). Since this prob-

lem is more general than count-tracking, by the count-tracking lower bound, this is
also optimal. Our algorithm uses O(1/(ε

√
k)) space to process the stream at each

site, which is actually smaller than the Ω(1/ε) space lower bound for this problem
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in the streaming model. This should not come as a surprise: Due to the fact that the
site is allowed to communicate to the coordinator during the streaming process, the
streaming lower bounds do not apply in our model. To this end, we prove a new space
lower bound of Ω(1/(ε

√
k)) bits for our model, showing that our algorithm also uses

near-optimal space. This space lower bound is conditioned upon the requirement that
the communication cost should be O(

√
k/ε · log N ) bits. Note that it is not possible

to prove a space lower bound unconditional of communication: A site can send every
element to the coordinator and thus only needs O(1) space. In fact, what we prove is
a space-communication trade-off; please see Sect. 3.2 for the precise statement.

For the rank-tracking problem, it will be convenient to assume that the elements
are drawn from a totally ordered universe and A(t) contains no duplicates. The rank
of an element x in A(t) (x need not be in A(t)) is the number of elements in A(t)
smaller than x , and our goal is to compute a data structure from which the rank of any
given x can be estimated with error at most εn(t), with constant probability. Note that
a rank-tracking algorithm also solves the frequency-tracking problem (but not vice
versa), by turning each element x into a pair (x, y) to break all ties (by comparing the
pairs lexicographically) andmaintaining such a rank-tracking data structure.When the
frequency of x is desired, we ask for the ranks of (x, 0) and (x,∞) and take the differ-
ence.We previously [29] gave a deterministic algorithm for the rank-tracking problem
with communication O(k/ε · log N log2(1/ε)). In this paper, we show in Sect. 4 how
randomization can bring this down to O(

√
k/ε · log N log1.5(1/ε

√
k)), which is again

optimal ignoring polylog(1/ε, k) factors. Since rank-tracking is more general than
frequency-tracking, the previous lower bounds also hold here. Our algorithm uses
space that is also close to the Ω(1/(ε

√
k)) lower bound.

Since we are talking about randomized algorithms with a constant success prob-
ability, we should also compare with random sampling. It is well known [25] that
this probabilistic guarantee can be achieved for all the problems above by taking a
random sample of size O(1/ε2). A random sample can be maintained continuously
over distributed streams [10,24], solving these distributed tracking problems, with
a communication cost of O(1/ε2 · log N ). This is worse than our algorithms when
k = o(1/ε2). As noted earlier, all the upper bounds we have mentioned above have
a hidden additive O(k log N ) term. Thus when k = Ω(1/ε2), all of them boil down
to O(k log N ),4 so our results are more interesting for the k ≤ 1/ε2 case, which we
will assume in all the upper bounds throughout the paper. In the lower bound state-
ments, however, we do distinguish between the two cases. The lower bounds in Table 1
assume k ≤ 1/ε2, and they all match the upper bounds (except for the rank-tracking
problem); for the k = Ω(1/ε2) case, the lower bound is Ω(k) (Theorem 3), which
leaves a gap of Θ(log N ) from the upper bound.

The idea behind all our algorithms is very simple. Instead of deterministic algo-
rithms, we use randomized algorithms that produce unbiased estimators for ni , the
frequencies, and ranks with variance (εn)2/k, leading to an overall variance of (εn)2,
which is sufficient to produce an estimate within error εn with constant probability.
This means we can afford an error of εn/

√
k from each site, as opposed to εn/k for

4 The bound of the random sampling algorithm [10,24] is actually slightly better, which is
O(k log N/ log(kε2)).
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deterministic algorithms. This is essentially where we obtain the
√
k-factor improve-

ment by randomization. Our algorithms are simple and extremely lightweight, in
particular the count-tracking and frequency-tracking algorithms, thus can be easily
implemented in power-limited distributed systems like wireless sensor networks.

1.3 Other RelatedWork

As distributed tracking is closely related to the streaming and the k-party communi-
cation model, it could be enlightening to compare with the known results of the above
problems in these models. As mentioned earlier, the count-tracking problem is trivial
in bothmodels, requiring O(1) space in the streamingmodel and O(k) communication
in the k-party communication model.

Both the frequency-tracking and rank-tracking problems have been extensively
studied in the streaming model with a long history. The former was first resolved by
theMGalgorithm [20]with the optimal space O(1/ε), though several other algorithms
with the same space bound have been proposed later on [18,19]. The rank problem
is also one of the earliest problems studied in the streaming model [21]. The best
deterministic algorithm to date is the one by Greenwald and Khanna [13]. It uses
O(1/ε · log n) working space to maintain a structure of size O(1/ε), from which any
rank can be estimated with error εn. Note that the rank problem is often studied as
the quantiles problem in the literature. Recall that for any 0 ≤ φ ≤ 1, the φ-quantile
of D is the element in A(t) that ranks at �φn�, while an ε-approximate φ-quantile
is any element that ranks between (φ − ε)n and (φ + ε)n. Clearly, if we have the
data structure for one problem, we can do a binary search to solve the other. Thus
the two problems are equivalent, for deterministic algorithms. For algorithms with
probabilistic guarantees, we need all O(log(1/ε)) decisions in the binary search to
succeed, which requires the failure probability to be lowered by an O(log(1/ε)) factor.
By running O(log log(1/ε)) independent copies of the algorithm, this is not a problem.
So the two problems differ by at most a factor of O(log log(1/ε)).

The existing streaming algorithms for the frequency and rank problems can be used
to solve the one-shot versionof the problem in the k-party communicationmodel easily.
More precisely,we use a streaming algorithm to summarize the data set at each sitewith
a structure of size O(1/ε), and then send these summary structures to the coordinator,
resulting in a communication cost of O(k/ε). Recently, we designed randomized
algorithms for these two problems with O(

√
k/ε) communication [14,15], which

have just been shown to be near-optimal [27]. Here we have extended the one-shot
algorithms of [14,15] to the continuous tracking setting. The results have demonstrated
that, the seemingly more challenging tracking problem, which requires us to solve the
one-shot problem continuously at all times, is only harder by an Θ(log N ) factor than
the one-shot version (except for the count-tracking problem, which is much harder
than its one-shot version).

Finally, we should mention that all these distributed tracking problems have been
studied in the database community previously, but mostly using heuristics. Keralapura
et al. [16] approached the count-tracking problem using prediction models, which do
not work under adversarial inputs. Babcock and Olston [3] studied the top-k tracking
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problem, a variant of the frequency (heavy hitters) tracking problem, but did not offer
a theoretical analysis. The rank-tracking problem was first studied by Cormode et al.
[7]; their algorithm has a communication cost of O(k/ε2 · log N ) under certain inputs.

2 Tracking Distributed Count

2.1 The Algorithm

The algorithm with a fixed p Let p be a parameter to be determined later. For now we
will assume that p is fixed. The algorithm is very simple: Whenever site Si receives
an element (hence ni gets incremented by one), it sends the latest value of ni to the
coordinator with probability p. Let n̄i be the last updated value of ni received by the
coordinator. We first estimate each ni by

n̂i =
{
n̄i − 1 + 1/p, if n̄i exists;
0, else.

(1)

Then we estimate n as n̂ = ∑
i n̂i .

Analysis As mentioned in the introduction, our analysis will hold for any given one
time instance. It is also important to note that this given time instance shall not depend
on the randomization internal to the algorithm.

We show that each n̂i is an unbiased estimator of ni with variance at most 1/p2.
This is very intuitive, since ni − n̄i is the number of failed trials until the site decides
to send an update to the coordinator, when we look backward from the current time
instance. This follows a geometric distribution with parameter p, but not quite, as it
is bounded by ni . This is why we need to separate the two cases in (1). The following
calculation appeared in [14]; we include it here for completeness.

Lemma 1 E[n̂i ] = ni ; Var[n̂i ] ≤ 1/p2.

Proof Define the random variable

X =
{
ni − n̄i + 1, if n̄i exists;
ni + 1/p, else.

Nowwe can rewrite n̂i as n̂i = ni −X+1/p. Thus it suffices to show that E[X ] = 1/p
and Var[X ] ≤ 1/p2. Letting t = ni − n̄i + 1, we have

E[X ] =
ni∑

t=1

(t(1 − p)t−1 p) + (ni + 1/p)(1 − p)ni = 1

p
.

Var[X ] =
ni∑

t=1

((t − 1/p)2(1 − p)t−1 p) + (ni + 1/p − 1/p)2(1 − p)ni

= (1 − p)(1 − (1 − p)ni )

p2
≤ 1

p2
.
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By Lemma 1, we know that n̂ is an unbiased estimator of n with variance ≤ k/p2.
Thus, if p = √

k/εn, the variance of n̂ will be (εn)2, which means that n̂ has error at
most 2εn with probability at least 3/4, by Chebyshev inequality. Rescaling ε and p
by a constant will reduce the error to εn and improves the success probability to 0.9,
as desired.

Previously, we used similar ideas to solve the one-shot quantile problem over dis-
tributed data [14]. Here, we essentially treat the numerical values of the items in the
quantile problem as the timestamps in the count-tracking problem, and simulate the
one-shot sampling algorithm of [14] in the continuous setting.

Dealing with a decreasing p. It is not possible and necessary to set p exactly to
√
k/εn.

From the analysis above, it should be clear that keeping p = Θ(
√
k/εn)will suffice. To

do so, we first track n within a constant factor. This can be done efficiently as follows.
Each site Si keeps track of its own counter ni . Whenever ni doubles, it sends an update
to the coordinator. The coordinator sets n′ = ∑k

i=1 n
′
i , where n

′
i is the last update of

ni . When n′ doubles (more precisely, when n′ changes by a factor between 2 and 4),
the coordinator broadcasts n′ to all the sites. Let n̄ be the last broadcast value of n′.
It is clear that n̄ is always a constant-factor approximation of n. The communication
cost is O(k log N ), since each site sends O(log N ) updates to the coordinator and
the coordinator broadcasts O(log N ) times, each of which costs k messages. These
broadcasts divide the whole tracking period into O(log N ) rounds, and within each
round, n stays within a constant factor of n̄, the broadcast value at the beginning of
the round.

Now, when n̄ ≤ √
k/ε, all the sites set p = 1. This causes all the first O(

√
k/ε)

elements to be sent to the coordinator. When n̄ >
√
k/ε, each site sets p = 1

�εn̄/
√
k�2 ,

where �x�2 denotes the largest power of 2 smaller than x . Since n̄ is monotonically
increasing, p gets halved over the rounds. At the beginning of a round, each site can
sends the current local count to the coordinator and start a new tracking algorithmwith
the new sampling probability. The correctness of this algorithm is obvious, while the
extra communication cost in each round is k.

It is easy to see that the total communication cost in each round is O(k + pn) =
O(k + √

k/ε) = O(
√
k/ε), thus the total cost is O(

√
k/ε · log N ).

Theorem 1 There is a randomized algorithm for the count-tracking problem that tracks
n = ∑

i ni within error εn with probability at least 0.9. It uses O(1) space at each
site and O(

√
k/ε · log N ) total communication.

2.2 The Lower Bound

Before proving the lower bounds, we first state our lower bound model formally, in the
context of the count-tracking problem. The N elements arrive at the k sites in an online
fashion at arbitrary time instances. We do not allow spontaneous communication.
More precisely, it means that a site is allowed to send out a message only if it has
just received an element or a message from the coordinator. Likewise, the coordinator
is allowed to send out messages only if it has just received messages from one or
more sites. When a site S j is allowed to send out a message, it decides whether it will
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indeed send a message, and the content of the message if so, based only on its local
counter n j and the message history between S j and the coordinator, possibly using
some random source. We assume that the site does not look at the current clock. We
argue that the clock conveys no information since the elements arrive at arbitrary and
unpredictable time instances. (If the elements arrive in a predictable fashion, say, one
per time step, the problem can be solved without communication al all.) Similarly,
when the coordinator is allowed to send out messages, it makes the decision on where
and what to send based only on its message history and some random source. We will
lower bound the communication cost only by the number of messages, regardless of
the message size.

2.2.1 One-Way Communication Lower Bound

In this section we show that two-way communication is necessary to achieve the upper
bound inTheorem1, by proving the following lower bound. Remember thatwe assume
N is sufficiently larger than k and 1/ε.

Theorem 2 If only the sites can send messages to the coordinator but not vice versa,
then any randomized algorithm for the count-tracking problem that, at any time, esti-
mates n within error εn with probability at least 0.9must sendΩ(k/ε·log N )messages.

Proof We first define the hard input distribution μ.

(a) With probability 1/2, all elements arrive at one site that is uniformly picked at
random.

(b) Otherwise, the N elements arrive at the k sites in a round-robin fashion, each site
receiving N/k elements in the end.

By Yao’s Minimax principle [28], we only need to argue that any deterministic algo-
rithm with success probability at least 0.8 under μ has expected cost Ω(k/ε · log N ).

Note that when only one-way communication is allowed, a site decides whether
to send messages to the coordinator only based on its local counter n j . Thus the
communication pattern can be essentially described as follows. Each site S j has a
series of thresholds t1j , t

2
j , . . . such that when n j = t ij , the site sends the i-th message

to the coordinator. These thresholds should be fixed at the beginning.
We lower bound the communication cost by rounds. Let Wi be the number of

elements that have arrived up until round i . We divide the rounds by settingW1 = k/ε,
and Wi+1 = �(1 + ε)Wi
 for i ≥ 1. Thus there are 1/ε · log(εN/k) rounds, which is
Ω(1/ε · log N ) for sufficiently large N .

At the beginning of round i + 1, suppose that S1, S2, . . . , Sk have already sent
zi1, z

i
2, . . . , z

i
k messages to the coordinator, respectively. Let

t i+1
max = (1 + ε) · max

{

t
zij
j | j = 1, 2, . . . , k

}

.

We first observe that there must be at least k/2 sites with their next threshold t
zij+1

j ≤
t i+1
max. Otherwise, suppose there are less than k/2 sites with such next thresholds, then
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with probability at least 1/4 case (a) happens and the random site S j chosen to receive

all elements has t
zij+1

j > t i+1
max ≥ (1 + ε)t

zij
j . Thus, with probability at least 1/4 the

algorithm fails when the t i+1
max-th element arrives, contradicting the success guarantee.

On the other hand, with probability 1/2 case (b) happens. In this case all t
zij
j ( j =

1, 2, . . . , k) are no more than Wi/k, since in case (b), elements arrive at all k sites in
turn. In the next εWi elements, each site S j receives εWi/k elements. If the site S j

has t
zij+1

j ≤ t i+1
max, then it must send a message in this round, since Wi/k + εWi/k ≥

t i+1
max ≥ t

zij+1

j , that is, its (zij + 1)-th threshold is triggered. As argued, there are ≥ k/2

sites with t
zij+1

j ≤ t i+1
max, so the communication cost in this round is at least k/2.

Summing up all rounds, the total communication is at least Ω(k/ε · log N ). 	


2.2.2 Two-Way Communication Lower Bound

Below we prove two randomized lower bounds when two-way communication is
allowed. The first one justifies the assumption k ≤ 1/ε2, since otherwise, random
sampling will be near-optimal.

Theorem 3 Any randomized algorithm for the count-tracking problem that, at any
time, estimates n within error 0.1n with probability at least 0.9 must exchange Ω(k)
messages.

Proof The hard input distribution is the same as that in the proof of Theorem 2. To
prove this lower bound we are only interested in the number of sites that communicate
with the coordinator at least once. Before any element arrives, we can still assume
that each site keeps a triggering threshold. The thresholds of S j shall remain the same
unless it communicates with the coordinator at least once. We argue that there must
be at least k/2 sites whose triggering threshold is no more than 1, since otherwise if
case (a) happens and the randomly chosen site is one with a triggering threshold larger
than 1, the algorithm will fail, which would happen with probability at least 1/4. On
the other hand, if case (b) happens, then all the sites with threshold 1 will have to
communicate with the coordinator at least once: either their thresholds are triggered
by the round-robin arrival of elements, or they receive a message from the coordinator,
which can possibly change their threshold. 	


Finally, we show that the upper bound in Theorem 1 is tight. We first introduce the
following primitive problem.

Definition 1 (1-bit) Let s be either k/2+√
k or k/2−√

k, each with probability 1/2.
From the k sites, a subset of s sites picked uniformly at random each have bit 1, while
the other k − s sites have bit 0. The goal of the communication problem is for the
coordinator to find out the value of s with probability at least 0.8.

We will show the following lower bound for the 1- bit problem.
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Lemma 2 Any deterministic algorithm that solves 1-bit has distributional communi-
cation complexity Ω(k).

Lemma 2 immediately implies the following theorem:

Theorem 4 Any randomized algorithm for the count-tracking problem that, at any
time, estimates n within error εn with probability at least 0.9 must exchangeΩ(

√
k/ε ·

log N ) messages, when k < 1/ε2.

Proof We will again fix a hard input distribution first and then focus on the distribu-
tional communication complexity of deterministic algorithmswith success probability
at most 0.8. Let [m] = {0, 1, . . . ,m − 1}. The adversarial input consists of � =
log εN

k = Ω(log N ) rounds. We further divide each round i ∈ [�] into r = 1/(2ε
√
k)

subrounds.
The input at round i ∈ [�] is constructed as follows, at each subround j ∈ [r ], we

first choose s to be k/2 + √
k or k/2 − √

k with equal probability. Then we choose s
sites out of the k sites uniformly at random and send 2i elements to each of them (the
order does not matter).

It is easy to see that at the end of in each subround in round i , the total number
of items is no more than τi = √

k/ε · 2i . Thus after s · 2i elements have arrived in a
subround, the algorithm has to correctly identify the value of s with probability at least
0.8, since otherwise with probability at least 0.2 the estimation of the algorithm will
deviate from the true value by at least

√
k · 2i > ετi , violating the success guarantee

of the algorithm. This is exactly the 1-bit problem defined above. By Lemma 2, the
communication cost of each subround is Ω(k). Summing over all r subrounds and
then all � rounds, we have that the total communication is at least � · r · Ω(k) ≥
Ω(

√
k/ε · log N ). 	


Now we prove Lemma 2.

Proof (of Lemma 2) First of all, observe that whenever the coordinator communicates
with a site, the site can send its whole input (i.e., its only bit) to the coordinator. After
that, the coordinator knows all the information about that site and does not need to
communicate with it further. Therefore all that we need to investigate is the number
of sites the coordinator needs to communicate with.

There can be two types of actions in the protocol.

(a) A site initiates a communication with the coordinator based on the bit it has.
(b) The coordinator, based on all the information it has gathered so far, asks some

site to send its bit.

Note that if a type (b) communication takes place before a type (a) communication,
we can always swap the two, since this only gives the coordinator more information
at an earlier stage. Thus we can assume that all the type (a) communications happen
before type (b) ones.

In the first phase where all the type (a) communications happen, let x be the number
of sites that send bit 0 to the coordinator, and y be the number of sites that send bit 1 to
the coordinator. If E[x+ y] = Ω(k), thenwe are done. So let us assume that E[x+ y] =
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o(k). By Markov inequality we have that, with probability at least 0.9, x + y = o(k).
After the first phase, the problem becomes that there are s′ = s − y = s − o(k) sites
having bit 1, out of a total k′ = k − x − y = k − o(k) sites. The coordinator needs to
figure out the exact value of s′ with probability at least 0.8 − (1 − 0.9) = 0.7.

In the second phase where all type (b) communication happens, from the coordi-
nator’s perspective, all the remaining sites are still symmetric (by the random input
we choose), therefore the best it can do is to probe an arbitrary site among those that
it has not communicated with. This is still true even after the coordinator has probed
some of the remaining sites. Therefore, the problem boils down to the following: The
coordinator picks z sites out of the remaining k′ sites to communicate and then decides
the value of s′ with success probability at least 0.7. We call this problem the sampling
problem.We can show that to achieve the success guarantee, z should be at leastΩ(k).
This result is perhaps folklore; proofs to more general versions of this problem can be
found in [4] (Chapter 4), and also [22,26]. We include a simpler proof in the appendix
for completeness. With this we conclude the proof of Lemma 2. 	


3 Tracking Distributed Frequencies

In the frequency-tracking problem, A (we omit “(t)” when the context is clear) is a
multiset and the goal is to track the frequency of any item j within error εn. Let fi j
denote the local frequency of element j in Ai , and let f j = ∑k

i=1 fi j .

3.1 The Algorithm

The algorithm with a fixed pAs in Sect. 2.1 we first describe the algorithmwith a fixed
parameter p. If each site tracks the local frequencies fi j exactly, we can essentially use
the count-tracking algorithm to track the f j ’s. To achieve small space, we make use
of the following algorithm due to Manku and Motwani [18] at each site Si : The site
maintains a list Li of counters. When an element j arrives at Si , the site first checks
if there is a counter ci j for j in Li . If yes, it increases ci j by 1. Otherwise, the site
samples this element with probability p. If it is sampled, the site inserts a counter ci j ,
initialized to 1, into Li . It is easy to see that the expected size of Li is O(pni ).

Next, we follow a similar strategy as in the count-tracking algorithm: The site
reports the counter ci j to the coordinator when it is first added to the counter
list with an initial value of 1. Afterward, for every j that is arriving, the site
always increments ci j as before, but only sends the updated counter to the
coordinator with probability p. We use c̄i j to denote the last updated value of
ci j .

The tricky part is how the coordinator estimates fi j , hence f j . Fix any time instance.
The difference between fi j and ĉi j comes from two sources: one is the number of j’s
missed before a copy is sampled, and the other is the number of j’s that arrive after
the last update of ci j . It is easy to see that both errors follow the same distribu-
tion as ni − n̄i in the count-tracking algorithm. Thus it is tempting to modify (1)
as
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f̂i j =
{
c̄i j − 2 + 2/p, if c̄i j exists;
0, else.

(2)

However, this estimator is biased and its bias might be as large as Θ(εn/
√
k). Sum-

ming over k streams, this would exceed our error guarantee. To see this, consider the
fi j copies of j . Effectively, the site samples every copy with probability p, while
c̄i j − 2 is exactly the number of copies between the first and the last sampled copy
(excluding both). We define X1 as before

X1 =
{
t1, if the t1th copy is the first one sampled;
fi j + 1/p, if none is sampled.

We define X2 in exactly the same way, except that we examine these fi j copies back-
ward:

X2 =
⎧
⎨

⎩

t2, if the t2th copy is the first one sampled
in the reverse order;

fi j + 1/p, if none is sampled.

It is clear that X1 and X2 have the same distribution with E[X1] = E[X2] = 1/p (by
Lemma 1), so f̂i j = fi j − (X1 + X2)+2/p is unbiased. Since c̄i j −2 = fi j − t1 − t2,
the correct unbiased estimator should be

f̂i j =
{
c̄i j − 2 + 2/p, if c̄i j exists;
− fi j , else.

(3)

Compared with the previous wrong estimator (2), the main difference is how the
estimation is done when no copy of j is sampled. When fi j = Θ(εn/

√
k) and p =

Θ(1/ fi j ), with constant probability, none of j is sampled, which would result in a
bias of Θ( fi j ) = Θ(εn/

√
k).

However, the correct estimator (3) depends on fi j , the quantity we want to estimate
in the first place. The workaround is to use another unbiased estimator for fi j when
c̄i j is not yet available. It turns out that we can just use simple random sampling: The
site samples every element with probability p (this is independent of the sampling
process that maintains the list Li ), and sends the sampled elements to the coordinator.
Let di j be the number of sampled copies of j received by the coordinator from site i ,
the final estimator for fi j is

f̂ ′
i j =

{
c̄i j − 2 + 2/p, if c̄i j exists;
−di j/p, else.

(4)

Since di j is independent of c̄i j , the estimator is still unbiased. Below we analyze its
variance.

Analysis Intuitively, the variance is not affected by using the simple random sampling
estimator di j/p, because it is only used when c̄i j is not available, which means that fi j
is likely to be small, but when fi j is small, di j/p actually has a small variance. When
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fi j is large, di j/p has a large variance, but we will use it only with small probability.
Below we give a formal proof.

Lemma 3 E[ f̂ ′
i j ] = fi j ; Var[ f̂ ′

i j ] = O(1/p2).

Proof We first analyze the estimator f̂i j of (3). That E[ f̂i j ] = fi j follows from the
discussion above. Its variance is Var[ f̂i j ] = Var[X1 + X2]. Note that X1 and X2 are
not independent, but they both have expectation 1/p and variance ≤ 1/p2. We first
rewrite

Var[X1 + X2] = E[X2
1 + X2

2 + 2X1X2] − E[X1 + X2]2
= Var[X1] + E[X1]2 + Var[X2] + E[X2]2

+ 2E[X1X2] − (E[X1] + E[X2])2
≤ 4/p2 + 2E[X1X2] − 4/p2 ≤ 2E[X1X2].

Let Et be the event that the t th copy of j is the first being sampled. We have

E[X1X2] =
fi j∑

t=1

(1 − p)t−1 ptE[X2 | Et ] + (1 − p) fi j ( fi j + 1/p)2

=
fi j∑

t=1

(1 − p)t−1 pt

(

(1 − p) fi j−t ( fi j − t + 1) +
fi j−t∑

l=1

(1 − p)l−1 pl

)

+(1 − p) fi j ( fi j + 1/p)2

≤ 1

p2
+ (1 − p) fi j f 2i j + (1 − p) fi j fi j

p
.

Let c = fi j p. If c ≤ 2, i.e. fi j ≤ 2/p, the variance is O(1/p2). If c > 2, we have

E[X1X2] ≤ 1

p2
+ c2

p2ec
+ c

p2ec
= O(1/p2),

since c2 ≤ ec when c > 2.
Next we analyze the final estimator f̂ ′

i j of (4). First, di j is the sum of fi j Bernoulli

random variables with probability p, so E[di j/p] = fi j and Var[di j/p] ≤ fi j p/p2 =
fi j/p. Let E∗ be the event that ĉi j is available, i.e., at least one copy of j is sampled,
and E0 = E∗, then

E[ f̂ ′
i j ] = E[ f̂i j | E∗]Pr[E∗] + E[−di j/p | E0]Pr[E0]

= E[ f̂i j | E∗]Pr[E∗] + (− fi j )Pr[E0]
= E[ f̂i j ] = fi j .
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The variance is

Var[ f̂ ′
i j ] = E[ f̂ ′2

i j ] − E[ f̂ ′
i j ]2

= E[ f̂ 2i j | E∗]Pr[E∗] + E[(di j/p)2 | E0]Pr[E0] − f 2i j

= E[ f̂ 2i j | E∗]Pr[E∗] − f 2i j + E[(di j/p)2]Pr[E0]
= E[ f̂ 2i j | E∗]Pr[E∗] − f 2i j + (Var[di j/p] + f 2i j )Pr[E0]

Note that

Var[ f̂i j ] = E[ f̂ 2i j ] − f 2i j

= E[ f̂ 2i j | E∗]Pr[E∗] + E[ f̂ 2i j | E0]Pr[E0] − f 2i j

= E[ f̂ 2i j | E∗]Pr[E∗] + f 2i jPr[E0] − f 2i j ,

hence E[ f̂ 2i j | E∗]Pr[E∗] − f 2i j = Var[ f̂i j ] − f 2i jPr[E0], which implies

Var[ f̂ ′
i j ] = Var[ f̂i j ] + Var[di j/p]Pr[E0]

≤ Var[ f̂i j ] + fi j
p

· (1 − p) fi j .

Due to the same reason as above, the second term is O(1/p2), and the proof completes.
	


Dealing with a decreasing p As in the count-tracking algorithm, we divide the whole
tracking period into O(log N ) rounds. Within each round, n stays within a constant
factor of n̄, while n̄ remains fixed for the whole round.

Within a round, we set the parameter p for all sites to be p = 1/�εn̄/
√
k�2. When

we proceed to a new round, all sites clear their memory and start a new copy of the
algorithm from scratch with the new p. Given an item j , the coordinator estimates
its frequency from each round separately, and add them up. Since the variance in a
round is O(k/p2) and p decreases geometrically over the rounds, the total variance is
asymptotically bounded by the variance of the last round, i.e., O((εn)2), as desired.

The space used at some site could still be large, since the site may receive too many
elements in a round. If all the O(n) elements in a round have gone to the same site,
the site will need to use space O(pn) = O(

√
k/ε). To bound the space, we restrict

the amount of space used by each site. More precisely, when a site receives more than
n̄/k elements, it sends a message to the coordinator for notification, clears its memory,
and starts a new copy of the algorithm from scratch. The coordinator will treat the new
copy as if it were a new site, while the original site no longer receives more elements.
Now the space used at each site is at most pn̄/k = O(1/(ε

√
k)). Since there are at

most O(k) such new “virtual” sites ever created in a round, this does not affect the
variance by more than a constant factor.

It remains to show that the total communication cost is O(
√
k/ε · log N ). From

earlier we know that there are O(log N ) rounds; within each round, n̄ is the same
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and n stays within Θ(n̄). Focus on one round. For each arriving element, the site Si
updates c̄i j with probability p and also independently samples it with probability p to
maintain di j . This costs O(n · p) = O(

√
k/ε) communication.

Theorem 5 There is a randomized algorithm for the frequency-tracking problem that
tracks the frequency of any element within error εn with probability at least 0.9. It
uses O(1/(ε

√
k)) space at each site and O(

√
k/ε · log N ) communication.

3.2 Space Lower Bound

It is easy to see that the communication lower bounds for the count-tracking problem
also hold for the frequency-tracking problem. In this section, we prove the following
space-communication trade-off.

Theorem 6 Consider any randomized algorithm for the frequency-tracking problem
that, at any time, estimates the frequencyof any elementwithin error εn with probability
at least 0.9. If the algorithm uses C bits of communication and uses M bits of space
per site, then we must have C · M = Ω(log N/ε2), assuming k ≤ 1/ε2.

Thus, if the communication cost is C = O(
√
k/ε · log N ) bits, the space required

per site is at least Ω(1/(ε
√
k)) bits, as claimed in Table 1. If we ignore the word/bit

difference, the space bounds are also tight. Interestingly, this lower bound also shows
that the random sampling algorithm [10] (see Table 1) actually attains the other end
of this space-communication trade-off.

Proof (of Theorem 6) We will use a result in [27] for the one-shot version of the
frequency estimation problem under the k-party communication model, i.e., all sites
get all data in the beginning, and the goal is to estimate the global frequency of each
element within error 2εn, where n is the total number elements. Their result states
that, there is an input distribution μk such that, any algorithm that solves the one-shot
version of the problem under μk with probability 0.9 needs at least c

√
k/ε bits of

communication for some constant c, assuming k ≤ 1/ε2. Moreover, any algorithm
that solves � independent copies of the one-shot version simultaneously needs at least
� · c√k/ε bits of communication.

We consider the frequency tracking problem over ρk sites, for some integer ρ ≥ 1
to be determined later. The hard input distribution is defined as follow.

The input construction We divide the whole tracking period into log N rounds. In
each round i = 1, . . . , log N , we first generate a (one-shot) input independently
chosen from distribution μρk , and for every element picked from μρk for any site,
we duplicate it 2i−1 times. As a result, the number of elements in a round increases
geometrically. In a round, site S1 gets all its elements first, then S2 gets all its elements,
and so on so forth. We pick elements from a different domain for different rounds so
that we have log N independent instances of the one-shot problem.

LetAρk be any continuous tracking algorithm solving the frequency tracking prob-
lem over ρk sites. In our input construction, at any time, the last round always contains
half of all the elements that have arrived so far, and thus Aρk must solve the one-shot
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problem that is “embedded” in each round, i.e., the algorithm must solve log N inde-
pendent instances of the one-shot problem. By the result in [27], the communication
cost of Aρk under the above input distribution is at least c

√
ρk/ε · log N .

LetAk be a continuous tracking algorithm over k sites that communicates C bits in
total and uses M bits of space per site. Below we describe a ρk-site tracking algorithm
for the input constructed above by simulating algorithm Ak . The difficulty is that in
our ρk-site problem, we have ρk sites receiving inputs, namely S1, . . . , Sρk , but Ak

is an algorithm for only k sites, namely S′
1, . . . , S

′
k . However, note that in the above

input construction, a site will receive all of its elements in a round before the next
site starts to receive elements. Therefore, sites S1, . . . , Sk can run Ak together before
any element arrives at Sk+1; whenever Ak exchanges a message, they do the same.
At some point, S1 receives all its elements, then S1 sends its memory content to Sk+1
(relayed by the coordinator). With the memory footprint, Sk+1 then takes the role of S1
in the simulation ofAk and continues. The simulation is possible because S1 will not
receive any element during the rest of the round. Similarly, when S2 has received all
its elements, it sends its memory content to Sk+2, who replaces S2 in the simulation.
In general, when S j is done with all its elements, it passes its role to S j+k . When Sρk

is done, the simulation finishes for this round. Sρk then sends a broadcast message and
we proceed to the next round. It is clear that the above ρk-site algorithm solves the
frequency tracking problem for the input constructed above as long as Ak is correct.

Let us analyze the communication cost of the simulation. First, all sites exchange
exactly the same messages asAk does, which costsC . We also communicate ρ(k−1)
memory snapshots and a broadcast message in each round, which costs ≤ ρkM log N
over all rounds. Thus, we have

C + ρkM log N ≥ c
√

ρk/ε · log N .

After rearranging, we have

M ≥ c

ε
√

ρk
− C

ρk log N
= 1√

ρk

(
c

ε
− C√

ρk log N

)

.

Thus, if we set
√

ρ =
⌈

2Cε

c
√
k log N

⌉
, then

M ≥ c

2ε
√

ρk
= Ω

(
log N

Cε2

)

,

as claimed. 	


4 Tracking Distributed Ranks

On a stream S of n elements, an algorithm that produces an unbiased estimator for
any rank with variance O((εn)2) was presented in [23], which has been very recently
improved and made to work in a stronger model [1]. It uses O(1/ε · log1.5(1/ε))
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working space to maintain a rank estimation summary structure of size O(1/ε). This
summary can be used to produce an unbiased estimator for the rank (in S) of any query
x with variance O((εn)2). We call this algorithm A and will use it as a black box in
our distributed tracking algorithm.

The overall algorithm. As before, with O(k log N ) communication, we first track n̄,
a constant factor approximation of the current n. This also divides the tracking period
into O(log N ) rounds, and n increases by a constant factor during each rounds. At
any time, each site runs an instance of algorithm C, described below. The algorithm
C will process a chunk of elements of size at most n̄/k. A site may receive more than
n̄/k elements in a round. When the (n̄/k + 1)th element arrives, the site finishes the
current instance of C, and starts a new one, which will process the next n̄/k elements,
and so on so forth. Therefore, the Θ(n) elements arriving in a round are divided into
chunks of size at most n̄/k, each of which is processed by an instance of algorithm
C. There are at most 2k chunks in a round, and thus, to estimate the rank of x in this
round, it suffice to estimate the rank of x in each chunk with variance O((εn)2/k).

Algorithm C. Algorithm C reads at most n̄/k elements, and divides them into blocks
of size b = εn̄/

√
k, so there are at most 1

ε
√
k
blocks. The algorithm builds a balanced

binary tree on the blocks in the arrival order (see Fig. 1), and thus the height of the tree
is h ≤ log 1

ε
√
k
. For each node v in the tree, let D(v) be all the elements contained in

the leaves in the subtree rooted at v. We say v is full if all the elements in D(v) have
arrived, and we say that v is active if some of the elements in D(v) have arrived but
v is still not full. For each active v, the site starts an instance of A, denoted as Av , to
process elements in D(v) as they arrive. For a node v at level � (the leaves are said
to be on level 0), |D(v)| = 2�b. We set the error parameter of Av to ε� = 2−�/

√
h,

so that the variance of the rank estimators is O((ε�|D(v)|))2 = O(b2/h). When v is
full, the site sends the rank estimation summary computed by Av to the coordinator,
and free the space used by Av . The communication cost is the summary size, which
is O(1/ε�) = O(

√
h2�), while the space usage of Av is O(

√
h2� · log1.5(√h2�)).

Fig. 1 Algorithm C
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Furthermore, for each new element, the site samples it with probability p =
√
k

εn̄ , and
if it is sampled, the site sends it to the coordinator.

Analysis of costs.We first analyze the space usage of C. At any time, there are at most
h active nodes, one at each level, so the space used by C is at most

h∑

�=0

√
h2� log1.5

1

ε
√
k

= O

( √
h

ε
√
k
log1.5

1

ε
√
k

)

.

The communication for C includes all the summaries computed, and the elements
sampled. For each node v on level �, the size of the summary computed by Av is
O(

√
h2�). There are 1

ε
√
k
2−� nodes on level �, hence the total size of the summaries

on level � is

O

(
1

ε
√
k
2−� · 2�

√
h

)

= O

( √
h

ε
√
k

)

.

Summing over all h levels, the total communication cost of C for sending summaries is

O( h1.5

ε
√
k
). Since there are at most 2k instances of C in a round, the total communication

cost in a round is O(h1.5
√
k/ε). The number of sampled elements in a round is

O(np) = O(
√
k/ε). Thus, over all O(log N ) rounds, the total communication cost is

O(h1.5
√
k/ε · log N ).

Rank estimation. It remains to showhow the coordinator estimates the rankof anygiven
element x at any time with variance O((εn)2), where n is the number of elements have
arrived thus far. Based on the binary tree, we decompose all n elements into smaller
disjoint subsets, and estimate the rank of x in each of the subsets. Since all estimators
are unbiased, the overall estimator is also unbiased; the variance will be the sum of all
the variances.

We will focus on the current round; all previous rounds can be handled similarly.
Recall that there are O(n̄) elements arriving in this round and n̄ = Θ(n), which
are divided into chunks of n̄/k elements. Consider any such chunk processed by one
instance of C. Suppose up to now, C has processed n′ elements in this chunk for
some n′ ≤ n̄/k. We write n′ as n′ = q · b + r for some r < b, and decompose
these n′ elements into at most h + 1 disjoint subsets as follows. The first qb elements
are decomposed into at most h subsets, each of which corresponds to a full node in
the binary tree of C (denoted as v1, . . . , vh). Each vi has already sent its summary
(summarizing D(vi )) to the coordinator, from which the coordinator can estimate the
rank of any x in D(vi ). Therefore, given x , we can estimate its rank in

⋃
i D(vi ). For

each vi on level �, as we have discussed above, we can estimate the rank of x in D(vi )

with variance is ((2−l/
√
h) ·2lb)2 = b2/h, so the total variance from all h nodes is b2.

For the last r elements of the chunk that are still being processed by an active
(leaf) node, the coordinator does not have any summary for them. But recall that the
site always samples each element with probability p = √

k/(εn̄) and sends it to the
coordinator if it is sampled. Thus, the rank of x in these r elements can be estimated
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as follows: count the number of elements sampled which are smaller than x ; rescale
this count by 1/p. It is quite standard to calculate the variance of this estimator, which
is r/p ≤ b/p = b2. Combined with the above analysis, we can estimate the rank of
x in any chunk of n̄/k elements with variance O(b2). Since there are at most 2k such
chunks in the round, the total variance is O(b2k) = O((εn̄)2) = O((εn)2). As the
variances of the previous rounds are geometrically decreasing, the total variance from
all the rounds is still bounded by O((εn)2), as desired.

Theorem 7 There is a randomized algorithm for the rank-tracking problem that tracks
the rank of any element within error εn with probability at least 0.9. The space

used by each site is O
(

1
ε
√
k
log1.5 1

ε
log0.5 1

ε
√
k

)
and the total communication cost

is O
(√

k
ε
log N log1.5 1

ε
√
k

)
.

Appendix: Lower Bound for the Sampling Problem

Claim To solve the sampling problem we need to probe at least Ω(k) sites.

Proof Suppose that the coordinator only samples z = o(k) sites. Let X be the number
of sites that are sampledwith bit 1. Then X is chosen from the hypergeometric distribu-
tionwith probability density function (pdf)Pr[X = x] = (s′

x

)(k′−s′
z−x

)
/
(k′
z

)
. The expected

value of X is z
k′ · s′, which is z

k′
(
k
2 − y + √

k
)
or z

k′
(
k
2 − y − √

k
)
, depending on

the value of s′. Let p = ( k
2 − y

)
/k′ = 1

2 ±o(1) and α = √
k/k′ = 1/

√
k±o(1/

√
k).

To avoid tedious calculation, we assume that X is picked randomly from one of the
two normal distributions N1(μ1, σ

2
1 ) and N2(μ2, σ

2
2 ) with equal probability, where

μ1 = z(p − α), μ2 = z(p + α), σ1, σ2 = Θ(
√
zp(1 − p)) = Θ(

√
z). In Feller [11]

it is shown that the normal distribution approximates the hypergeometric distribution
very well when z is large and p±α are constants in (0, 1).5 Now our task is to decide
from which of the two distributions X is drawn based on the value of X with success
probability at least 0.7.

Let f1(x;μ1, σ
2
1 ) and f2(x;μ2, σ

2
2 ) be the pdf of the two normal distributions

N1,N2, respectively. It is easy to see that the best deterministic algorithm of differ-
entiating the two distributions based on the value of a sample X will do the following.

– If X > x0, then X is chosen from N2, otherwise X is chosen from N1, where x0
is the value such that f1(x0;μ1, σ

2
1 ) = f2(x0;μ2, σ

2
2 ) (thus μ1 < x0 < μ2).

Indeed, if X > x0 and the algorithm decides that “X is chosen from N1”, we can
always flip this decision and improve the success probability of the algorithm.

5 In Feller’s book [11] the following is proved. Let p ∈ (0, 1) be some constant and q = 1− p. The popu-
lation size is N and the sample size is n, so that n < N and Np, Nq are both integers. The hypergeometric

distribution is P(k; n, N ) = (Np
k

)( Nq
n−k

)
/
(N
n
)
for 0 ≤ k ≤ n.

Theorem 8 [11] If N → ∞, n → ∞ so that n/N → t ∈ (0, 1) and xk := (k − np)/
√
npq → x, then

p(k; n, N ) ∼ e−x2/2(1−t)
√
2πnpq(1 − t)
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Fig. 2 Differentiating two distributions

The error comes from two sources: (1) X > x0 but X is actually drawn from N2;
(2) X ≤ x0 but X is actually drawn from N1. The total error is

1/2 · (Φ(−�1/σ1) + Φ(−�2/σ2)),

where �1 = x0 − μ1 and �2 = μ2 − x0. (Thus �1 + �2 = μ2 − μ1 = 2αz). Φ(·) is
the cumulative distribution function (cdf) of the normal distribution. See Fig. 2.

Finally note that �1/σ1 = O(αz/
√
z) = O(

√
z/k) = o(1) and �2/σ2 =

O(αz/
√
z) = o(1), so Φ(−�1/σ1) + Φ(−�2/σ2) > 0.99. Therefore, the failure

probability is at least 0.49, contradicting our success probability guarantee. Thus we
must have z = Ω(k). 	
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