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Recent years have witnessed an increasing popularity of algorithm design for distributed data, largely due
to the fact that massive datasets are often collected and stored in different locations. In the distributed
setting, communication typically dominates the query processing time. Thus, it becomes crucial to design
communication efficient algorithms for queries on distributed data. Simultaneously, it has been widely
recognized that partial optimizations, where we are allowed to disregard a small part of the data, provide
us significantly better solutions. The motivation for disregarded points often arise from noise and other
phenomena that are pervasive in large data scenarios.

In this paper we focus on partial clustering problems, k-center, k-median and k-means objectives, in the
distributed model, and provide algorithms with communication sublinear of the input size. As a consequence
we develop the first algorithms for the partial k-median and means objectives that run in subquadratic running
time. We also initiate the study of distributed algorithms for clustering uncertain data, where each data point
can possibly fall into multiple locations under certain probability distribution.
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1 INTRODUCTION

The challenge of optimization over large quantities of data has brought communication efficient
distributed algorithms to the fore. From the perspective of optimization, it has also become clear
that partial optimizations, where we are allowed to disregard a small part of the input, enable us
to provide significantly better optimization solutions compared with those which are forced to
account for the whole input [4, 19]. While several algorithms for distributed clustering have been
proposed, partial optimizations for clustering problems, introduced by Charikar et al. [4], have
not received as much attention. While the results of Chen [6] improve the approximation ratios,
the running time of the k-median and k-means versions have not been improved and the (at least)
quadratic running times have remained as a barrier.

In this paper we study partial clustering under the standard (k, t)-median/means/center objective
functions, where k is the number of centers we can use and ¢ is the maximum number of points
we can ignore. See Definition 1.1 below for a formal definition. In the distributed setting, let s
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denote the number of sites. The (k, t)-center problem has recently been studied by Malkomes et
al. [21], who gave a 2-round O(1)-approximation algorithm with O(sk + st) bits of communication’,
assuming that each point can be encoded in O(1) bits. In fact, we observe that results from streaming
algorithms [15] can in fact provide us 1-round O(1)-approximation algorithms with O(sk + st) bits
of communication for (k, t)-center, (k, t)-median, and (k, t)-means. However, in many scenarios of
interest, we have n > t > k and t > s. Thus the st term generates a significant communication
burden. In this paper we reduce O(st) to O(t) for the (k, t)-center problem, as well as for (k, t)-
median and (k, t)-means problems and unify their treatment. We also provide the first subquadratic
algorithms for median and means version of this problem.

Large data sets often have erroneous values. Stochastic optimization has recently attracted a lot of
attention in the field of databases, and has substantiated as a subfield called ‘uncertain/probabilistic
databases’ (see, e.g., [22]). For the clustering problem, a method of choice is to first model the
underlying uncertainty and then cluster the uncertain data. Clustering under uncertainty has been
studied in centralized models [8, 16], but the algorithms proposed therein do not consider commu-
nication costs. Note that it typically requires significantly more communication to communicate
a distribution (for an uncertain point) than a deterministic point, and thus black box adaptations
of centralized algorithms do not work well in the distributed setting. In this paper we propose
communication-efficient distributed algorithms for handling both data uncertainty and partial
clustering. To the best of our knowledge neither distributed clustering of uncertain data nor partial
clustering of uncertain data has been studied. We note that both problems are fairly natural, and
likely to be increasingly useful as distributed cloud computing becomes commonplace.

Models and Problems. We study the clustering problems in the coordinator model, which is a
popular model in the study of multiparty communication, see, e.g. [23]. In the coordinator model,
there are s sites and one central coordinator, who are connected by a star communication network
with the coordinator at the center. However, direct communication between sites can be simulated
by routing via the coordinator, which at most doubles the communication. The computation is in
terms of rounds. At each round, the coordinator sends a message (could be an empty message) to
each site and every site sends a message (could be an empty message) back to the coordinator. The
coordinator outputs the answer at the end”. The input A is partitioned into (A, ..., A;) among
the s sites. Let n; = |A;], and n = |A[ = }};¢[5) n; be the total input size.

We will consider clustering over a graph with n nodes and an oracle distance function d(-, -).
An easy example of such is points in Euclidean space. More complicated examples correspond to
documents and images represented in a feature space and the distance function is computed via a
kernel. We now give the definitions of (k, t)-center/median/means.

Definition 1.1 ((k, t)-center,median,means). Let A be a set of n points and k, ¢ are integer parame-
ters (1 < k < n,0 <t < n). In the (k, t)-median problem we want to compute
min d(p,K) subjectto |K| <k and |O]| <1,
K,0cA
peA\O
where d(p, K) = min, ¢k d(p, x). We typically call K the centersand O the outliers. In the (k, t)-means
and the (k, t)-center problem we replace the objective function Y} ,ca\0 d(p, K) with 2, c410 d*(p,K)
and max,ca\o d(p, K) respectively.

UIn this paper, we hide poly log n factors in the O notation, even when the function in O(-) does not depend on n. Note
that this is different from the typical usage that O(f) hides the factors of poly(log f).

2We note that any algorithm in the coordinator model can also be implemented in parallel computation models such as
MapReduce [10] - we can just pick an arbitrary machine as the coordinator.
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In the definition above, we assume that centers are chosen from the input points. In the Euclidean
space, compared with the setting of unconstrained centers, such restriction will only affect the
approximation by a factor of 2.

For the uncertain data, we follow the assigned clustering introduced in [8]. Let # be a finite set
of points in a metric space. There are n input nodes A, where node j follows distribution D; over
P. Each site i knows the distributions 9; associated with the nodes j € A;.

Definition 1.2 (Clustering Uncertain Data). In clustering with uncertainty, the output is a subset
K C P of size k (centers), a subset O C P of size at most ¢ (ignored points), as well as a mapping
7 : A — K. In every realization o : A — P of the values of the input nodes, node j € A (now
realized as o(j) € P) is assigned to the same center 7(j) € K. In uncertain (k, t)-median, the goal is
to minimize the expected cost

B | D deGhai)|= ) E [doG).a())]. (1)
o~ea D5 | S50 jemo 7T
The definition of uncertain (k, t)-means is basically the same as uncertain (k, t)-median, except that
we replace the objective function (1) with }};c4\0 Eo~0; [dz(a(i), 7{(]'))] . For uncertain (k, t)-center,
we have two objectives:

max (2, Eo). 7)) @
o1 o, [}26 40 ﬂ(i))] ¥

Note that these two objectives are not equivalent, since E and max do not commute in Equation (3)
and we cannot equate it to (2). Equation (2) is in the same spirit as Equation (1), and corresponds to a
per point measurement. We term this problem as uncertain (k, t)-center-pp. Equation (3) corresponds
to a more global measurement and we term this problem as uncertain (k, t)-center-g. This version
was considered in [8, 16].

Our Results. We present all our results in Table 1, which include both one-round and two-round

algorithms. In the column of ‘Local Time’, the first is the local computation time of all sites, and

the second is the local computation time at the coordinator. Observe that the total running time is

o, n?), which becomes O(n?/s) if the partitions are balanced. This shows that we can reduce the

running time by distributing the clustering across many sites.

In particular we have obtained the following algorithms which finish in two-rounds in the
coordinator model. We say a solution is an («, ff)-approximation if it is a solution of cost «C while
excluding ft points, where C is the optimum cost for excluding ¢ points. In addition, we denote by
B the number of bits required to encode a point.

(1) We give (O(1), 1)-approximation algorithms with O((sk + t)B) communication for the (k, t)-
median (Section 3) and the (k, t)-center (Theorem 4.3) problems. The lower bounds in [5] for
the ¢ = 0 case indicate that these communication costs are tight, if we want to output all the
outliers (which our algorithms do), up to logarithmic factors. We also give an (O(1 + 1/€), 1 +€)-
approximation algorithm with O((sk + t)B) communication for the (k, t)-median (with better
running time) and the (k, t)-means (Theorem 3.1) problems.

(2) We show that for (k, t)-median/means and (k, t)-center-pp the above results are achievable even
on uncertain data (Theorem 5.6). For uncertain (k, t)-center-g we obtain an (O(1 + 1/¢), 1 + €)-
approximation algorithm with O(skB + tI + s log A) communication, where I is the information
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Objective Approx. Centers Ignored Rounds Total Comm. Local Time
. 1 Q((sk +st)B) ) é(nf;), O(k?s3t%)
median o(1) k 2 O((sk + t)B) O(n?), O(k*t*(sk + 1)*)
2+ 8)t 2 O(s/6 + skB) O(n?), O(s*k7)
1 O((sk + st)B) O(n?), O((sk + st)?)
k,(1 t 1 k,t - i), )
means/ | 0Ly (+eyor(l+e) 2 O((sk + )B) O(n?), O((sk + t)?)
median k| @re+oy
(1+ ek (24 8)t 2 O(s/S + skB) O(n?), O((sk)?)
: 1 O((sk + st)B) O((k + t)n;), O((sk + st)?)
center o(1) k 2 O((sk + t)B) O((k + t)n;), O((sk + t)?)
2+ 8)t 2 O(s/8 + skB) O(n?), O((sk)®
uncertain
median/ as in the regular case above regular case runtime +O(n; T),
means/ unchanged
center-pp
2 5(n? 3 2
center-g | Q0 +1/€) X (1+e)t 2 O(skB +t1+slogA) | O(n}logA), O((sk +1)?)
O(1) t 1 O(s(kB + tI)log A) O((k + t)n; log A), O(s(k + t)?)

Table 1. Our results. T denotes the runtime to compute 1-median/mean of a node distribution, I is the
information encoding a node in the uncertain data case, B the information encoding a point and A the ratio
between the maximum pairwise distance and the minimum pairwise distance in the dataset. The algorithms
for k, (1 + €)t bicriteria are randomized algorithms with success probability at least 1 — 1/poly(n), but when
€ = 1 the randomized algorithm can be derandomized. All other algorithms are deterministic.

to encode the distribution of an uncertain point, and A is the ratio between the maximum
pairwise distance and the minimum pairwise distance in the dataset (Theorem 5.14).

Our results for the (k, t)-center problem improves that in [21]. And as far as we are aware, our results
on distributed (k, t)-median/means and of uncertain input are the first of their kinds. Our results
for distributed (k, t)-median or means also lead to subquadratic time constant factor approximation
centralized algorithms, which have been left open for many years.

Our two-round algorithms can be easily modified to be one-round at the cost of bigger commu-
nication costs and longer runtime, which will be explained in Section 6.

Technical Overview. The high level idea of our algorithms is fairly natural: Each site first performs
a preclustering, i.e., it computes some local solution on its own dataset. Then each site sends the
centers of the local solution, number of attached points to each center and the ignored points to
the coordinator, who will then solve the induced weighted clustering problem.

A major difficulty is to determine how many points to ignore in the local solution at each site.
Certainly for the sake of safety each site can ignore t points and send all ignored ¢ points to the
coordinator for a final decision. This would however incur ©(st) bits of communication. To reduce
the communication of this part to O(t), we hope to find {ty, ..., ts} such that }; t; = t and each
site i sends a solution with just ¢; ignored points. At the cost of an extra round of communication,
we solve the minimization problem }; fi(t;) subject to }; t; = t for convex functions {f;}. It is
tempting to take f;(;) to be the cost of local solution with ¢; ignored points on site i, however, such
fi is not necessarily convex. The remedy is to take a lower convex hull of f; instead, which can be
shown to have only a mild effect on the solution cost. The convex hull of t points can be found in
O(t log t) time, and we can further reduce the runtime without compromising approximation ratio
by computing local solutions on each site for only log t geometrically increasing values of t;.

For uncertain data, it is natural to reduce the clustering problems to the deterministic case. To this
end, we ‘collapse’ each node j to its optimal center in #. For instance, for the (k, t)-median problem,
each node j is ‘collapsed’ to y; = arg min, .p Es [d(a(j), y)], called the 1-median of node j. It may
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Fig. 1. An example of a compressed graph produced

be tempting to consider the clustering problem on the set of 1-medians, but the ‘collapse’ cost is
lost, hence we construct a compressed graph G that allows us to keep track of the collapse costs. The
graph looks like a clique with tentacles, see Figure 1. The 1-medians form a clique in G with edge
weight being the distance in the underlying metric space; for each 1-median y;, we add a tentacle
(an edge) from y; to a new vertex p; with edge weight being the collapse cost E4[d(c(j), y;)]. We
manage to show that the original clustering problem is equivalent, up to a constant factor in cost,
to the clustering problem on the compressed graph where the facility vertices are 1-medians {y;}
and the demand vertices are {p;}. Our previous framework for deterministic data is then applied to
the compressed graph.

Lastly, for the global center problem with uncertain data, we build upon the approach developed
in [16], which uses a truncated distance function £,(x,y) = max{d(x,y) — 7,0} instead of the
usual metric distance d(, -). Our algorithm performs a parametric search on 7, and applies our
previous framework to solve the global problem using local solutions. Now in the analysis of the
approximation ratio we need to relate the optimum solution to the solution with truncated distance
function, which is a fairly nontrivial task.

Related Work. In the centralized model, Charikar et al. gives a 3-approximation algorithm for
(k, t)-center, and an (O(1), O(1)) bicriteria algorithm for (k, t)-median [4]. This bicriteria was later
removed by Chen [6], who designed an O(1)-approximation algorithm using O(k?(k + t)?n°) time.
Feldman and Schulman studied the (k, t)-median problem with different loss functions using the
coreset technique [13].

On uncertain data, Cormode and McGregor considered k-center/ median/means where each D;
is a discrete distribution [8]. Guha and Munagala provided a technique to reduce the uncertain
k-center to the deterministic k-median problem [16]. Wang and Zhang studied the special case of
k-center on the line [24]. We refer the readers to the survey by Aggarwal [1].

Clustering on distributed data has been studied only recently. In the coordinator model, in
the d-dimensional Euclidean space, Balcan et al. obtained O(1)-approximation algorithms with
O((kd + sk)B) bits of communication for both k-median and k-means [2]. Their results on k-
means were further improved by Liang et al. [20] and Cohen et al. [7]. Chen et al. provided a
set lower bounds for these problems [5]. In the MapReduce model, Ene et al. designed several
O(1)-approximation O(1)-round algorithms for the k-center and the k-median problems [12]. Im
and Moseley further studied the partial clustering variant [17], however their algorithms require
communication polynomial in n. Cormode et al. studied the k-center maintenance problem in the
distributed data stream model where the coordinator can keep track of the cluster centers at any
time step [9].

For a general discrete distribution on m points in Euclidean space with % be the whole space, T = O(m) [11]; for special
distributions such as normal distribution, T = O(1).
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2 PRELIMINARIES
Notation. We use the following notations in this paper.

e sol(Z, k, t,d): A solution (computed by an algorithm) to the median/means/center problem
on point set Z with at most k centers and at most ¢ outliers, under the distance function d;

e opt(Z, k,t,d): An optimal solution to the median/means or center problem on point set Z
with at most k centers and at most t outliers, under d;

e Csol(Z, k, t,d): The cost of the solution sol(Z, k, t, d);

® Copt(Z, k, t,d): The cost of the solution opt(Z, k, t, d);

e 7(j): The center to which point j is attached.

When Z lies in a metric space and d agrees with the distance function on the metric space, we omit
the parameter d in the notations above.

Combining Preclustering Solutions. We review a theorem from [15], which concerns combining
local solutions into a global solution. The problems considered in the theorem have no outliers
(t = 0) and lie in a metric space, so we abbreviate the notation sol(Z, k, ¢, d) to sol(Z, k), etc.

THEOREM 2.1 ([15]). Suppose that A = Ay W --- W A (disjoint union) and {sol(A;, k)} are the
preclustering solutions at sites. Let M = {n(j) : j € A} and L = 3 ;c4 d(j, 7(j)), where n(j) denotes
the preclustering assignment. Consider the weighted k-median problem on M where the weight of
m € M is defined to be the number of points that are assigned to m in the preclustering, that is,
I{j|Jj€A, n(j) =m}|. Then

(i) There exists a weighted k-median solution sol(M, k) such that Cso|(M, k) < 2(L + Copt(A, k)).

(ii) Given any weighted k-median solution sol(M, k), there exists a k-median solution sol(A, k) such
that Csol(A, k) < sol(M, k) + L.

Consequently, there exists a k-median solution sol(A, k) such that Cso1(A, k) < 2y(L + Copt(A, k) + L
and centers are restricted to M, where y is the best approximation ratio for the k-median problem.

COROLLARY 2.2. The result in Theorem 2.1 extends to

(i) the k-center problem;

(ii) the k-means problem with weaker constants, using a relaxed triangle inequality;

(iii) the (k, t)-median/means/center approximation on the weighted point set M (with y being the
corresponding bicriteria approximation ratio), provided the preclustering does not ignore any
points. Otherwise the total number of ignored points is the sum of the ignored points in the
clustering and preclustering phases.

3 (k,t)-MEDIAN AND (k, t)-MEANS

In this section, we first present a two-round algorithm in Section 3.1 and then analyse it in Section 3.2.
We improve the algorithm for a better communication complexity in Section 3.3 in the case where
we are only interested in the clustering and do not output the list of outliers. Finally in Section 3.4
we show how to obtain an subquadratic-time centralized algorithm by simulating a distributed
algorithm sequentially.

3.1 Algorithm

Our algorithm for distributed (k, t)-median clustering is provided in Algorithm 1. For integer pairs
(i, q), we consider the lexicographical order as partial order, that is,

i1 < iy; or
i1 =iy and q1 < q>.

(i1,CI1) < (iz,qz) if { (4)
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Algorithm 1 Distributed (k, (1 + €)t)-median clustering

Input: A=A W.-- WA k>1,t>0andp > 1
Output: sol(A, k, (1 + €)t) such that Cso1(A, k, (1 + €)t) = O(1 + 1/€) - Copt(A, k, t)
1: for each site i do
2: }I<—{|_prj:1£rsl_logptj,reZ}U{O,t}
3 Compute sol(A;, 2k, q) for each g € I > Use the algorithm in Theorem 3.2
4 Compute the (lower) convex hull of the point set {(g, Csol(A;, 2k, q))} g1, Which induces a
function f;(-) defined on {0, ..., t}

5: Send the function f;(-) to the coordinator

6: end for

7: Coordinator computes €(i,q) = fi(q — 1) — fi(q) foreach1 < i <sandeach1 < g <t

8: Coordinator stably sorts all {{(i, q)} in decreasing order’

9: Coordinator finds £(iy, go) of rank® pt and sends £(iy, qo), iy and qq to all sites

10: for each site i do

11: t; « max{q: €(i,q) = €(ip, q0)} > define max 0 = 0
12: if i = iy then

13: ti<—min{q €1 : g > g and Cso1(A;, 2k, q0) = fi)(go0)}

14: end if

15: Send the coordinator the 2k centers built in sol(4;, 2k, t;), the number of points attached to
each center, and the ¢; unassigned points

16: end for
17: Coordinator considers the union of the centers obtained from each site and the unassigned
points, and outputs sol(A, k, (1 + €)t). > Use Theorem 3.2 and Remark 2

On a high level, the algorithm consists of two rounds. In the first round, each site guesses
the number of points to exclude in its local input by computing the solution sol(4;, 2k, q) for
logarithmically many values of g, then computes a convex hull of the costs for these values of g and
sends the convex hull to the coordinator. The coordinator then determines a cost threshold, which
will in turn determine the number of points to exclude on each individual site, and guarantees
that the overall solution obtained this way is a constant-factor approximation. The coordinator
then sends the threshold back to the sites. In the second round, each site determines the number of
points to exclude from its local input, and sends the preclustering results to the coordinator and
the coordinator then computes an overall solution.

We present the main theorem regarding the algorithm and defer the proof to the next subsection.

THEOREM 3.1. For the distributed (k, t)-median problem, with probability at least 1 — 1/poly(n),
Algorithm 1 with p = 2 outputs sol(A, k, (1 + €)t) satisfying Csoi(A, k, (1 + €)t)) < O(1 + 1/e) -
Copt(A, k, t). The sites communicate a total of O((sk + t)B) bits of information with the coordinator
over 2 rounds. The runtime at each site is é(nf) and the runtime at the coordinator is O((sk + t)?). The
same result holds for (k, t)-means with larger constants in the approximation ratio and the runtime.
The algorithm can be derandomized when € = 1.

REMARK 1. In Line 17 of Algorithm 1, (i) no input point is ignored in the preclustering; (ii) if the

preclustering aggregated q points but the coordinator’s algorithm chooses less than q copies (to exclude
exactly t) then the proofs are not affected in any way.
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3.2 Analysis of Algorithm

To prove the correctness of Algorithm 1, we begin with a theorem about approximating (k, t)-
median or means with a different trade-off between the approximation ratio and the runtime from
that in [4]. The result in [4] is built upon the algorithm in [3], which increases the running time to
cubic time for a better approximation factor. In the theorem below we aim at quadratic runtime
and build our algorithm upon [18].

THEOREM 3.2. Let € € (0,1]. We can compute sol(Z, k,(1 + €)t) and sol(Z, (1 + €)k, t) for the
(k, t)-median problem using an algorithm in O(|Z|?) time such that

(@) Csol(Z, k, (1 + €)t) < O(1 + 1/€) - Copt(Z, k, t), and
(b) Csol(Z,(1 + €)k, t) < O(1 + 1/€) - Copt(Z, k, 1).

The algorithm for approximation guarantee (a) is randomized and succeeds with probability at least
1 - 1/poly(log |Z|), while the algorithm for approximation guarantee (b) is deterministic.
The result extends to the (k, t)-means problem with slightly larger constants.

Proor. Using [18], we can obtain in O(|Z|?) time two solutions with ki, k, centers and each
solution ignores exactly t outliers, where k; < k < k,. Although not explicitly stated in [18], but as
observed in [4], the algorithm is applicable to the outlier case as we can simply stop the algorithm
when there are ¢ points unprocessed.

Next we shall show approximation guarantee (a) by constructing a solution of exactly k centers
with a similar procedure as the randomized rounding in [18]. Set a = (k; — k)/(kz — k1). First, we
iteratively pair off every center in the small solution with its nearest (remaining) center in the
large solution. Then with probability a we choose all the centers in the small solution and with
probability 1 —a we choose the paired centers in the large solution. At last, we choose k — k; centers
at random from the remaining centers in the large solution.

In the current case we also have two solutions and each solution ignores exactly ¢ outliers. Notice
that if a point is labeled outlier in one solution and not in the other, it must be directly connected to
a center (in the language of [18]). If we choose all the centers in the small solution then we cannot
have more than ¢ outliers. If we choose the large solution then we may exceed ¢ outliers if all the
points labeled outliers in the large solution were excluded and some of the points clustered in the
small solution (but not in the large) cannot be accommodated because the corresponding center
was not chosen. In expectation we have at most a - t extra outliers.

Let S; be the cost of the solution if the first step chooses the small solution and S, be the cost of
the solution if the first step chooses the paired centers in the large solution. The same argument
in [18] shows that

aE(Sy) + (1 - a)E(Sz) < 6Copi(Z, K, t).
Hence E(S1) < (6/a)Copt(Z, k, t).

o If a > €/2, we choose the small solution and run the derandomized version of the rounding
part, which will give a solution of cost at most E(S;) < (12/€)Copt(Z, k, t). The derandomized
rounding runs in time O(|Z|?) [18] and the claim of the overall runtime follows.

e Otherwise, E(S;) < 2-Copt(Z.k, 1) < I_Le/zcopt(z, k,t) < 12Copt(Z, k, t). By Markov’s
inequality and a union bound, each run of (randomized) rounding fails with probability
< 1/2+1/3 = 5/6, producing a solution with more than ¢ + €t outliers or with cost more
than 36Copi(Z, k, t). If we run the rounding ©(log |Z|) times we can, with probability at least
1/poly(|Z]), find a solution with at most t + et outliers and cost at most 36Cop:(Z, k, t) (by
picking the solution with minimum cost among all solutions with at most ¢ + et outliers). The
randomized rounding runs in time O(|Z|) [18] and the claim of the overall runtime follows.
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For approximation guarantee (b), when k; < (1 + €)k we use the large solution, and the cost is
at most 3Copt(Z, k2, t) < 3Copt(Z, k. t). When k; > (1 + €)k, it holds thata > 1 - 1/(1 +¢€) > €/2,
a case that was discussed above. Note that the algorithm can be derandomized in this case. The
solution is a (12/¢)-approximation and the theorem follows.

Note that the above rounding argument uses the triangle inequality. While the triangle inequality
does not hold for squares of distances (as in the k-means objective function), we instead use
2(x* +y%) > (x + y)2. ]

REMARK 2. The result generalizes to the weighted k-median/mean problem, since [18] also works
for the weighted variant.

REMARK 3. When € = 1, the algorithm for approximation guarantee (a) can be derandomized
because the total number of outliers cannot exceed 2t in rounding, and the derandomization in [18]
applies. This observation will be used in Section 3.4.

Throughout the rest of the section, we denote by t; the number of ignored points from A; in the
global optimum solution opt(A, k, t). We need the following lemmas.

LEMMA 3.3. It holds that }.;_; Copt(Ai, k, t7) < 2Copt(A, k, t). For (k, t)-means the constant changes
from 2 to 4.

Proor. We shall use an argument used in [15]. Let 7op: be the center projection function and K be
the set of optimum centers in the optimal solution opt(A, k, t). For each A;, we construct a solution
sol(A;, k, t}) by excluding the points excluded in opt(A, k, t) and choosing {arg min, ., d(u,k): k€ K}
to be the centers. Then by the triangle inequality,

Csol(Ais k’ t;k) <2 Z d(x’ ﬂopt(x))~

x€A;
Summing overi = 1,...,syields Y};_; Csol(Ay, k, t7) < 2Copt(A, k, t). The result for k-means follows
from applying the triangle inequality with (a + b)? < 2(a® + b?). o

LEmMMA 3.4. Thety,...,ts computed in Step 11 of Algorithm 1 minimizes Y,; f;(t;) subject to }; t; <
ptand0 <t; <t

Proor. Suppose that t], ..., t; is a minimizer. Since f;(-) is non-increasing for all i, it must hold
that 3, t/ = pt. By the definition of t;, it also holds that ', t; = pt. If (t],...,t;) # (t1,. .., ), there
must exist i, j such that ¢; > t; and tj’. < t;. By the definition of ¢; and the sorting of {{(i, q)}, we
know that

f(l', t; + 1) < f(io, q()), 5(_], tj) > f(io,(]o).
From convexity of f; and that ¢ > t; + 1 and ] + 1 < t;, it follows that
filt] = 1) = fi(t]) < L(io. o) < fi(t) — fi(t; + 1)

which means that increasing ! by 1 and decreasing ¢/ by 1 will not decrease the sum
G(g}, - q}) = ) (fil0) = filt]).
i

Therefore 3, fi(t]) = X; fi(0) = G(t],...,t;) will not increase. We can continue this procedure
until (t],...,t;) = (t1, ..., ts). O
4 Stably means that when €(iy, q1) = £(ia, q2), the sorting algorithm puts £(iy, q1) before £(iz, q2) if (i1, q1) < (i2, q2) as

defined in (4).
4Element of rank r means the r-th element in a sorted list
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10 Sudipto Guha, Yi Li, and Qin Zhang

Recall that I = {|p"] : 1 <r < [log, t], r € Z} U {0, ¢}, defined in Line 2 of Algorithm 1.

LEMMA 3.5. It holds for all i # iy that t; € I and Cso1(A, 2k, t;) = fi(t;), where iy is computed in
Step 9 and t;’s in Step 11 of Algorithm 1.

Proor. Since 0 € I, we need only to consider the i’s with t; # 0. By the selection of (iy, qo) in the
sorted list, it must hold that
[(l, ti) > f(io,qo) > [(l, b + 1) for i< ip
f(l., ti) > f(l.o, qo) > 0(i,t; + 1) for i> iy,

which implies that €(i, t;) > €(i, t; + 1) whenever i # i, i.e.,
filti = 1) = filty) > fi(t)) - fiti + 1), i # do.

Hence (i, fi(t;)) is a vertex of the convex hull for all i # iy, that is, t; € I and f;(t;) = Csol(A;, 2k, t;).
O

Now we are ready to bound the ‘goodness’ of local solutions.

LEMMA 3.6. Let p = 2. It holds that }; Csol(Ay, 2k, t;) < C - Copt(A, 2k, t) for some absolute
constant C and ),; t; < 3t, where ty, ..., ts are computed in Step 11 and may be updated in Step 13 of
Algorithm 1.

Proor. Let f; = min{q € [ : ¢ > t;'}. It follows from Lemma 3.3 with }}; £/ < t that
* : 1 »
zcopt(As k, t) > Zl: Copt(Ai, k, ti) > Zl: Copt(Aia k, ti) > C_,O ZI: Cso](Ai, Zk, ti),

where the last inequality follows from Theorem 3.2 (applied with €e = p — 1 = 1) and G is the
approximation factor therein. Observe that #; < 2t} and thus }};{; < 2Y;¢7 < 2t, and

Z Coor(As, 2Kk, 1) > Z fili) > Zﬁ(t»,

where the last equality follows from Lemma 3.4, and ¢;’s are computed in Step 11.

Now, by Lemma 3.5, fi(t;) = Csol(Aj, 2k, t;) for all except one i. The exceptional ¢; will be replaced
by a bigger value, which will not increase f;(¢;) by the monotonicity of f;, and the first part follows.
This update will increase }; t; by at most ¢ and thus }; t; < 3t. O

Now, Theorem 3.1 follows straightforwardly from Lemma 3.6 and Theorem 3.2. Note that
[I] = O(log t).

Proor oF THEOREM 3.1. The communication cost is straightforward. By Lemma 3.6, the coor-
dinator will solve the problem of at most 2sk + 3t points. The claims on approximation ratio and
the runtime then follow from Theorem 3.2, noting that it takes time O(|I| log |I|) = O(1) to find the
convex hull. All s sites run deterministic algorithms and only the coordinator runs a randomized
algorithm, and the failure probability follows. O

3.3 Improvement When Not Outputting Outliers

In this subsection we discuss the scenario where we are only interested in the clustering and not
the list of ignored points. We show that the communication complexity can be improved from
O(s(kB + t)) to O(skB) at the cost of slightly more ignored points in the bicriteria approximation.
See Theorem 3.8 for a precise statement.
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We set p = 1+ § and change line 12 to line 15 of Algorithm 1 to the following. The sites do not
send the ignored nodes but just the number of them, and the exceptional site runs a slightly more
convoluted algorithm.

12: if i # iy then

13: Send the coordinator t;, the 2k centers built in sol(A;, 2k, t;) and the number of points
attached to each center

14: else

15: ti1 =max{q € I: g <t; and Csoi(A}, 2k, q) = fi(q)}

16:  tiz =min{q € [:q >t and Csi(As, 2k, q) = fi(q)}

17: Combine sol(A;, 2k, t; 1) and sol(A;, 2k, t; ») to form a solution sol(A;, 4k, t;) by taking the
union of the medians, attaching each point to the closest center among the combined centers,
and ignoring the points with largest ¢; distances.

18: Send to the coordinator t;, the combined centers and the number of points attached to each
center.

19: end if

Observe that Lemma 3.6 still holds with }}; #; < (1 + )t, since we are not changing the exceptional
t;. For the exceptional site i, suppose that t; = (1 — 0)t;.1 + 0t; ; for some 6 € (0,1), we have
(1 - 6)fi(ti1) + 0fi(ti2) < fi(t;). We now argue the next critical lemma.

LEMMA 3.7. Col(Ay, 4k, t;) < (1= 0)fi(ti1) + Ofi(ti2).

Proor. We will prove the lemma by carefully designing an assignment of n — ¢; points to the
4k centers which is bounded above by the right hand side. Since choosing the minimum n — t;
distances will only result in a smaller value, the lemma would follow.

For j = 1, 2, let 7r; be the center projection function in sol(A;, 2k, t; ;) and P; the set of clustered
points in sol(A;, 2k, t; ;). For x € P; N P,, we attach x to the nearer one between the two centers
m1(x) and m5(x), and the incurred cost is

min{d(x, m(x)), d(x, m2(x))} < (1= 0)d(x, m1(x)) + 0d(x, ma(x)). ()

For x € P;AP,, since only one of 7;(x) and m,(x) exist, we abbreviate it as 7(x) for simplicity.
Define h(x) for each x € P;AP; as

h(x) = (1-0)-d(x,7(x)), x€P\Py
6 - d(x, (x)), x € P, \ Py.

Letr = |P1NPy|,ry = |P1\ Pzl and r, = |P2 \ P1|. Itholds thatr +r; = n—t;;andr+r; = n—t; 5,
thus r; > ry and
(1-60)ri+0r,=n—t;—r.
Define Q; = P; \ P, and Q; = P, \ P;. Pick x = arg min, 4,0, h(z). If x € Q1, pick an arbitrary
u € Q,, otherwise pick u € Q;. Attach x to 7(x) in the 4k-center solution we are constructing and
mark u as outlier. Note that this incurs a cost of

(1= 0)d(x, 7(x)) + 0d(u, 7(u)), x € Qy;

(1 = 0)d(u, 7(u)) + 0d(x, n(x)), x € Q,, ©)

d(x, m(x)) < {

by our choice of x, because one of the combination terms is exactly h(x) and it is smaller than h(u),
which is exactly the other term. Then we remove x and u from Q; or Q, depending on the case.
Now, |Q1] = r; — 1 and |Qy| = r; — 1, and note that

1-0)(r-1)+0(y—-1)=n—t;—r—1.
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12 Sudipto Guha, Yi Li, and Qin Zhang

Since r; > ry, we can continue this process until Q; = 0. At this point we have run the procedure
above r, times, and it holds that

1-Ori=n—ti—r—r,.
Note that ry > n—t; —r —r;, so we can choose E C Q; to be the points with smallest n—t; —r —ry

values of h. Attach points in E to their respective centers and mark the remaining points in Q; as
outliers. This incurs a cost of

n—ti—r—r
D dGe () < ———2 ) dx,x(x) = (1-6) Y. d(x, 7(x)) (7)
r

x€E x€Q, x€Q1
In total we have assigned r + r, + (n — t; — r — r;) = n — t; points as desired. The desired upper
bound on cost follows from (i) summing both sides of (5) over P; N P,; (ii) summing both sides of
(6) over x and the corresponding u during the pairing procedure; and (iii) Equation (7). Note that
(ii) covers (P;AP;) \ Q1, where Q is the post-pairing set. o

As a consequence of Lemma 3.7, Csol(A;, 4k, t;) < fi(2;). Thus the upper bound on the approxi-
mation ratio still holds. Finally, note that |I| = O(1/5) and we conclude that

THEOREM 3.8. For the distributed (k, t)-median problem, with probability at least 1 — 1/poly(n), the
modified Algorithm 1 with p = 1+ & outputs sol(A, k, (2 + € + 8)t) satisfying Csol(A, k, (2+ €+ O)t) <
O(1 + 1/€) - Copt(A, k, t). The sites communicate a total of@(sé‘1 + skB) bits of information with
the coordinator over 2 rounds. The runtime on site i is é(n?/cS) and the runtime on the coordinator is
O((sk)?). The same result holds for (k, t)-means with a larger constant in the approximation ratio.

3.4 Subquadratic-time Centralized Algorithm

We now show an unusual application of Theorem 3.1 in speeding up existing constant-factor approx-
imation algorithms for (k, t)-median (or means). Note that the centralized bicriteria approximation
algorithms in [4] have a runtime of O(n®) on n points, while the modifications in Theorem 3.2
improve the running time to O(n?), this leaves open the important question: Are there algorithms
with provable constant factor approximation guarantees which are subquadratic? Observe that the
question is even more pertinent in the context of unicriterion approximation, for which the only
known result is a O(n*k?t?)-time constant-factor approximation of (k, t)-median [6]. In the sequel
we show that the running time can be brought to almost linear time. The improvement arises from
the fact that we can simulate a distributed algorithm sequentially.

LEMMA 3.9. Suppose that we are given a O(n'*®k?) time algorithm for bicriteria approximation
which produces 2k centers or 2t outliers with approximation factor y, where oy < 1. Then we can

- L [ 2@ -
produce a similar algorithm with running time O(t?) + O (n e kz) and approximation coy for some
absolute constant ¢y > 0.
Proor. We will apply Theorem 3.1 after dividing the data arbitrarily in s pieces of size n/s. The
sequential simulation of the s sites will take time O(s (n/s)'*® k?) based on the statement of the

lemma. The coordinator will require time O((sk + £)?) = O(s?k?) + O(t?). Observe that we can now
balance n!*% = s2*®_which provides us the optimum s to use and achieve a running time of

O(2) + O(s2k2) = O(t2) + O (n*a“ kz) . O

THEOREM 3.10. Let a > 0 and suppose that t < \/n. There exists a centralized algorithm for the
(k, t)-median problem that runs in O(n'*%k?) time and outputs a solution sol(A, k, 2t) satisfying
Cool(A, k, 2t) < (1+1/a)?DCop(A, k, t).
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Proor. Note that the algorithm in Theorem 3.2 has runtime O(n?), so we can take @y = 1 in
Lemma 3.9 to obtain an algorithm of approximation ratio y = 6 and runtime O(* + n*/*k?), which
is O(n**k?) by our assumption that t < +/n. Repeatedly applying Lemma 3.9 for j times gives
an algorithm of runtime O(n'*'/(#'~Dk2) and approximation ratio (coy)’. Let j = log(1 + 1/a), the
runtime becomes O(n'*“k?) and the approximation ratio (1 + 1/a)!°8(") = (1 + 1/a)°®, O

REMARK 4. We remark that

(i) the theorem above also holds for sol(A, 2k, t), where the number of centers, instead of the outliers,
is relaxed;

(ii) for the unicriterion approximation, if we use the algorithm of runtime O(n*t*k?) from [6] instead
of the result of Theorem 3.2, we need to balance s* and s(n/s)'** for an analogy of Lemma 3.9,
which will eventually lead to an algorithm of runtime O(n'**t?k?), provided that t < n'/°.

4 (k,t)-CENTER CLUSTERING

Our algorithm for (k, t)-center clustering is presented in Algorithm 2. It is similar to Algorithm 1
but only simpler, because the preclustering stage admits a simpler algorithm due to Gonzalez [14].
For the k-center problem on a point set Z of n points, Gonzalez’s algorithm outputs a re-ordering

of points in Z, say, p1, . .., pn, such that for each 1 < r < n, the solution sol(Z, r) of choosing
{p1,...,pr} as the r centers is a 2-approximation for the r-center problem on Z, i.e., Csoi(Z, 1) <
ZCOpt (Z, r).

Algorithm 2 Distributed (k, t)-center clustering

1: for each site i do

2 Run Gonzalez’s algorithm and obtain a re-ordering {as, . . ., ay, } of the points in A;

3 foreach1 < g <tdo

4: Compute £(i, q) < min{d(a;, ax+q) : j < k +q}

5 end for

6: end for

7: Sites and coordinator sort {£(i, q)}, and follow the subsequent steps as in Algorithm 1, where
the coordinator in the last step runs the algorithm in [4] for the k-center problem with exactly
t outliers.

The core argument is that the k-center algorithm of Gonzalez can be used to simultaneously
(a) precluster the local data into local solutions and (b) provide a witness that can be compared
globally.

REMARK 5. In Algorithm 2, (i) none of the original points is ignored in the preclustering, and (ii) it
is possible that the preclustering aggregated q points but the coordinator’s algorithm chooses less than
q copies to exclude exactly t points. This does not affect the proofs of (k, t)-center clustering.

We now analyze the performance of Algorithm 2. Denote by t; the number of points ignored
from A; in the global optimum solution opt(A, k, t). First we show two structural lemmas.

LEMMA 4.1. 2Copt(Aj, k, t) > max Copt(Ai, k, 1))

Proor. Use the same argument in the proof of Lemma 3.3. O
LEMMA 4.2. max Copt(Aj, k, t7) = Zr,ntlzr;t (mlax Copt(A, k, t,-)) .

Proor. It follows from the fact that 33, ¢/ = ¢. O
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14 Sudipto Guha, Yi Li, and Qin Zhang

THEOREM 4.3. For the distributed (k, t)-center problem, Algorithm 2 outputs sol(A, k, t) satisfying
Csol(A, k, 1) < O(1) - Copt(A, k, t). The sites communicate a total of O((sk + t)B) bits of information to
the coordinator over 2 rounds. The runtime on site i is O((k + t)n;) and the runtime on the coordinator

is O((sk + t)?).

Proor. The approximation ratio follows from a similar argument to that of Theorem 3.1, using
Lemma 4.1 and 4.2. The coordinator runtime follows from [4, Theorem 3.1] and the site runtime
from [14], noting that we need only the first k + ¢ points of the reordering of each A;. The
communication cost is clear from Algorithm 2. O

5 CLUSTERING UNCERTAIN INPUT

Recall that in the setting of clustering with uncertainty there is an underlying metric space (P, d).
We are given a set of input nodes j € A which correspond to distributions 9; on #. In this section
we shall use nodes to indicate the input and points to indicate deterministic objects in the metric
space P. We shall denote by o(j) a realization of node j and by 7(j) the center node to which j is
attached. Note that 7(j) is a fixed point that is independent of the realization of the nodes. Our
goal in the (k, t)-median problem in this context is to compute

min Z (minE[d(a(i),ﬂ(j))] : (8)
Kl<k.j6]<t |jemo \ ™9 ¢

For (k, t)-means we use d*(-, ) and for (k, t)-center-pp we use max; instead of 2

Defined : AX P — R as J(j,p) = E,[d(a(j), p)], the objective function (8) is then reduced to
the usual (k, t)-median problem with the new distance function d. However, this definition only
allows the computation of distance between an input node and a point in #. To extend dtoa pair of
input nodes, the site holding A; will need to know the point set ;ea, supp(D;) from some other
site i’. This will blow up the communication cost, and thus naively using this distance function in
combination with the algorithms developed previously will not work well. To circumvent this issue
we combine the notion of 1-median introduced in [8] along with the framework in Theorem 2.1,
and introduce a compression scheme to evaluate distances.

Definition 5.1. For each node j, define its 1-median and 1-mean to be

y; = argminE[d((j), y)], y; = argmin E[d*(a()), )],
yeP 9 yeP ©

respectively.

Definition 5.2 (Compressed graph). The compressed graph G(A) is a weighted graph on vertices
P U {p;}jea, where the edges are as follows: (1) each pair (4, v) € P is an edge with weight d(u, v),
and (2) for each j € A, the vertex p; is connected only to y; with weight ¢; = E;[d(c(j), y;)]. Define
the distance dg(u, v) between two vertices u, v in G to be the length of the shortest path between u
and v in G.

For the compressed graph G, we can also consider the following (k, t)-median problem, where we
restrict the demand points to {p;} and the possible centers to {y;}, and the distance function is the
length of shortest path on G. We continue to use the notations sol(G, k, t), Cs(G, k, t), etc., to denote
the solution and the corresponding cost of (k, t)-median problem on G. The following two lemmas
show that (k, t)-median problem in Eqn (8) is, up to some constant factor in the approximation
ratio, equivalent to the (k, t)-median problem on the compressed graph.
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LEMMA 5.3. If there exists a solution sol(A, k, t) of cost Cso1(A, k, t) to the objective in Equation (8),
then there exists a solution sol(G(A), k,t) on the compressed graph such that Cso(G(A), k,t) <
5CSO|(A’ k’ t)‘

Proor. Let A’ be the set of clustered nodes in the feasible (k, t)-median solution of the original
problem with the objective in (8). Define the set of center points M = {y; : j € A’}. For each
Jj €A letyy() = argmin, ¢y d(z(j), y). Let sol(G(A), k, t) be the solution of connecting each point
pj (j € A’) to y,(j) in the compressed graph G. We try to upper bound the cost Csoi(G(A), k, t):

Cool(G(A), k. 1) = Z d6(Yr(j)s Pj) (definition of Cso)

jeA!

= Z (AW ) + do(yj, py) (definition of dg)
jeA!

< Z d(Yr(j)» () + Z d(z(j), y;) + Z dc(yj, pj) (triangle inequality)
jehr jen jer

<2 dx(Ly)+ )6

jeA! jeA!

where the last line follows from d(y(j), 7(j)) < d(7(j), y;) by the definition (optimality) of ;).
Observe that for any realization o(j), it holds that

d(yj, 7)) < d(y;, 0(j)) + d(a(j), 7(j)).

Taking expectation over o,
d(y;, 7)) < Bd(y;, o)) + Ed(0(), 7)) = £ + Ed(o()), 2()).
Summing over j € A/,

2w mG) < Y6+ ) Bd(e()aG) < ) b+ Cop(Akt). ©)
JeA jeA! jeA! JjeA!
We next bound 3¢ €;. This is exactly the cost of connecting each j € A’ to its 1-median, which
is the optimal solution of at most n — t centers for A’. The optimal cost for n — t centers is clearly
less than that for k centers and hence ) ;car € < Copt(A, k, 1).
Therefore Cooi(G(A), k, t) < 2 - 2Copt(A, k, 1) + Copt(A, k, 1) = 5Copt(A, k, t) as claimed. O

LEMMA 5.4. Ifthere exists a solution sol(G(A), k, t) of cost Csol(G(A), k, t) on the compressed graph,
then there exists a solution sol(A, k, t) for the problem formulated in (8) such that Cs (A, k,t) <
ZCSOI(G(A)a k7 t)'

ProoF. Let A” be the set of clustered nodes in sol(G(A), k, t). A similar argument of increasing
the number of centers as in Lemma 5.3 yields that }};cx» {; < Csol(G(A), k, t). Suppose that p; is
assigned to 7(j) in sol(G(A), k, t) in the compressed graph. Note that z(j) € P. Let sol(A, k, t) be
the solution of attaching j to z(j) in #, and the cost can be bounded as

Cuol (B k1) = " B(d(o(), 7(7))) (definition of Col)
jeA” g
< Z (d(a(h), yp)) Z d(y;, 7(j)) (triangle inequality)
JeA” JjeA”
< Z £+ Z dg(pj, 7(j)) (definition of dg, see below)
jea” jea”
< 2Cs0l(G(A), k, 1), (definition of Csq)
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Algorithm 3 A Compression Scheme for Distributed Partial Clustering of Uncertain Data

1: for each site i do

2: Compute {; = E;[d(c(j), y;)] for all j € A;

3 Construct the compressed graph of A; as described in Definition 5.2

4 Run any algorithm corresponding to Section 3 and Section 4 on the compressed graph,
with the following change: whenever the site has to communicate p;, it also sends y; (or y;)
and the values of E,[d(a(j), y;)] (or Ex[d*(a(j), y]')])

5. end for

where the third line follows from dg(pj, 7(j)) = d(p;, y;) + d(y;, #(j)) = d(y;, 7(j)). )

The equivalence between the original problem and the one on the compressed graph also holds
for the (k, t)-center-pp and the (k, )-means problems.

LEMMA 5.5. Lemma 5.3 and Lemma 5.4 both hold

(a) for (k,t)-center-pp with the same constants; and
(b) for (k,t)-means with slightly larger constants.

PrOOF. (a) Observe that }}; is replaced with max; and Equation (9) rewrites to

max d(y;, 7(j)) < max{; + Copt(A, k, t).
jeA! jeA’

The remainder of the equations hold with this transformation.

(b) Note that we used triangle inequality in the proof above. Although the square of the distance
does not obey the triangle inequality, we can nevertheless apply (a + b)? < 2a® + 2b? after the
triangle inequality. The derivations above will go through and the results hold with slightly
larger constants. O

The overall algorithm is summarized in Algorithm 3. Note that we cannot just cluster the {y;};
the graph is necessary. To implement the algorithm, we need to show that each site is able to
compute the distance function individually. Indeed, note that any site that contains p; will also
contain the corresponding y; or y]’. and the value E;[d(c(j), y;)] or E[d*(o()), yj’.)] respectively.
Therefore the distance oracle on the graph can be implemented by the site in constant time.

THEOREM 5.6. For the distributed (k, t)-median problem, with probability at least 1 — 1/poly(n),
Algorithm 3 outputs sol(A, k, (1 + €)t) such that Cso1(A, k, (1 + €)t) = O(1 + 1/€) - Copt(A, k, t). The
sites communicate a total ofé((sk + t)B) bits of information to the coordinator over 2 rounds. The
runtime on site i is é(nf + n;T), where T is the runtime to compute 1-median, and the runtime on the
coordinator is O((sk + t)?). The same result holds for the (k, t)-median and center-pp problems with
larger constants.

Proor. By Lemma 5.4 for the median problem and Lemma 5.5 for the means and center-pp
problems, it suffices to show that we can solve the (k, )-median problem on the compressed graph.
The result then follows from Theorem 3.1 and Theorem 3.8 with the following amendments: When
a site sends the t or t; potential outliers, it needs to send the y; and the corresponding values
Eo[d(a(j), y;)] or E¢[d*(a(j), y]’.)], which at most doubles the communication cost. The runtime is
increased by O(n; T) due to Step 2 since computing ¢; on the compressed graph takes O(T) time. O

Other results claimed in Table 1 follow from analogous amendments to Theorem 3.8.
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The global k-Center case. We now focus on (k, t)-center-g. In this setting we optimize

min ( E [ ax d(o(j), ”(i))]) .
|KI‘<SQZ:T<‘CQJ)?5¢ o~[1; D; | jeA\O
Definition 5.7 (Truncated distance [16]). For 7 > 0, define L, : P X P — Ras L. (u,v) =
max{d(u,v) — 7,0} and p; : AX P — Ras p;(j,u) = E¢c[L:(0(j),u)]. Note that L.(-,-) is not a
metric for 7 > 0.

Definition 5.8. Givenanode set Z C A, let P(Z) C P be the associated point set corresponding to
possible realizations of nodes in Z. Let sol(Z, k, t, p,) and opt(Z, k, t, p;) be a solution by algorithm
and the global optimum solution respectively to the (k, t)-median problem on node set Z where
the centers are restricted to $(Z) and the weighted assignment cost of assigning node j € Z to
center m € P(Z) is p;(j, m). The costs Csoi(Z, k, t, pr) and Copi(Z, k, t, pr) are defined analogously.

Let dpin and dmay denote the minimum and the maximum distance, respectively, between two
distinct points in # and let A = dmay/dmin. The algorithm is presented in Algorithm 4.

Algorithm 4 Algorithm for (k, t)-center-g

All parties compute dyin and dpax
Each party creates T = {2/dp;n /18 : 0 < i < [log, A] + 2}
for each 7 € T do

All parties run Algorithm 2 with the following changes: when it calls Algorithm 1 as a
subroutine, sol(A;, 2k, q) in Algorithm 1 is replaced with sol(A;, 2k, g, ps; ) and the sites obtain
the numbers of local outliers {t;(r)}
5. end for
6: Coordinator finds 7 = max{r € T : }; Csol(Ay, 2k, t;(7), psr) = 2Co7}, where Cj is the approxi-

mation factor for (b) in Lemma 5.9.

7: Coordinator solves (k, t)-center-g on the preclustering solutions sol(A;, 2k, t;(%), ps;) and out-
puts sol(A, k, (1 + e)t).

L A e

Now we try to analyze the performance of Algorithm 4. We first show an analogy of Theorem 3.2
that we can compute a constant approximation to Copt(Z, k, t, p7).

LEMMA 5.9. Let T > 0. For the (k, t)-center problem on Z, we can compute in O((k + 1)|Z]) time
sol(Z, k, (1 + e)t, por) orsol(Z, (1 + €)k, t, p3;) such that

(@) Csol(Z, k, (1 + €)t, por) < O(1 + 1/€) - Copt(Z’ k.t pr);

(b) Csol(Z, (1 + )k, t, p3;) < O(1 + 1/€) - Copt(Z, k. t, pr).

The algorithm for approximation guarantee (a) is randomized and succeeds with probability at least
1 — 1/poly(|Z|) while the algorithm for (b) is deterministic.

Proor. The proof is similar to that of Theorem 3.2. The only different part is the accounting for
the truncation. For the (1 + €)k result we note a pseudo-triangle inequality (see [16, Lemma 4.1])
p3c(,m) < p(j,m") + p:(i,m’") + p.(i,m) for any m’, since in this case we assign points within
three hops. For the (1 + €)t result we assign within 9 hops—each point has a center in the large and
small solutions within 3 hops. The pairing of the centers in the two solutions show that the pair of
a center in the small solution exists within 6 hops. The whole argument for Theorem 3.2 then goes
through. O
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18 Sudipto Guha, Yi Li, and Qin Zhang

REMARK 6. Similar to Remark 3, the algorithm for approximation guarantee (a) in the preceding
lemma (Lemma 5.9) can be made deterministic when € = 1.

We next show that the 7 computed in Step 6 is a good choice of 7 and will ensure that the preclus-
tering solutions sol(A;, 2k, t;(7), p2;) can be combined to yield a good global solution. Specifically
we have the following two lemmas.

LEMMA 5.10. The T computed in Step 6 satisfies the following two conditions.

(i) 2 Cool(A, 2k, 1;(27), p1az) < 4CoT;
(ii) 2; Copt(Ay, k, t], paz) = 2T forall {t]} s.t. 3, t] < t,

Proor. Note that 7yax = max T > dpax/6, it always holds that pg,,, = 0. Thus the condition
23i Col(Ai, 2k, t:(Tmax)s Porm) < 2CoTmax always holds, and ¢ exists. Condition (i) follows from the
maximality of 7, which means that 27 will not satisfy the constraint.

Next we show that condition (ii) holds. Let {t/} be an arbitrary sequence satisfying that 3’; ¢/ < .
Similarly to the proof of Lemma 3.4, one can show that 3}; Csoi(A;, 2k, t/, psz) = 2; Csol(A, 2k, £i(T), pez),
using the fact that }; ¢/ < t < pt = }}; t;. Combining with Lemma 5.9 with € = 1, we have that

CO Z COpt(Ai’ k7 tl/’ ,02%) > Z CSO'(Ai7 Zk’ tl/7 péf) > Z CSO'(Aiv Zk’ tl(f)’ pﬁi’) > 2C0f7
L L L

whence condition (ii) follows. O

LEMMA 5.11. Suppose that © satisfies the condition (i) and (ii) of Lemma 5.10, a y -approximation of
the weighted center-g problem induced by preclustering sol(A;, 2k, t;(7), ps+) is an O(y) approximation
OfCOPt(A’ k7 t)'

To prove this lemma, we need the following two auxiliary lemmas.

LEMMA 5.12. 2Copt (A, k, t, pr) 2 3 Copt(Ai, k, t], par), where t} is the number of ignored nodes
from A; in the global optimum solution opt(A, k, t, p;).

Proor. Fix a realization of the nodes. The proof mimics Lemma 3.3 for each realization. It then
uses the observation that £, (uy, uz) + L (ug, us) > Ly (uy, u3) and takes the expectation. ]

LEMMA 5.13. If Copt(Z, k, t, pr) 2 T then Copt(Z, k, t) > /3.

Proor. The case of ¢t = 0 (no outliers) is proved in [16, Lemma 4.4]. For a general t > 0, let
Z' C Z be the set of clustered point in opt(Z, k, t), then Copi(Z”, k, 0, pr) = Copt(Z, k, t, pr) > T,
thus Copt(Zs k, t) = Copt(Z’, k, 0) > T/3. [m}

ProOF OF LEMMA 5.11. It follows from Lemma 5.12 and condition (ii) of Lemma 5.10 that

ZCOPt(A’ k’ t’ pf) 2 Z Copt(Ais ka t;ka PZ%) > 2f9
i

where t is the number of ignored nodes from A; in the global optimum solution opt(A, k, t, p). It
then follows from Lemma 5.13 that Cope(A, k, t) > 7/3,

To simplify the notation, in the rest of the proof we shorthand #;(27) as t;. Let A} C A; be the set
of nodes clustered in the global optimum solution opt(A, k, t). Consider “collapsing” the nodes in A}
to their corresponding centers in sol(A;, 2k, t;, p12;) while keeping the same centers in sol(A, k, t).
If a node in A} is marked as an outlier in sol(A;, 2k, t;, p12¢) then it is not moved, and it continues
to be excluded from the calculation. This movement increases the expectation of the maximum
assignment by 127 + Co1(A, 2k, t;, p12¢). Now consider the same process where we collapse A for
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all i. The total increase across the different i is 127 + ;; Cso1(A;, 2k, t;, p127) because the increase in
127 arises from distance truncation and is common. Thus we achieve a solution of cost at most

v (Copt(& k. t) + 128 + 3" Coot(Bi 2K, 1, pro) |
i

Now consider “expanding” the nodes of A; from the preclustering to the distribution D;. By
that logic the expected maximum can increase by at most 127 + );; Csol(A;, 2k, t;, p12# ), which by
condition (i) of Lemma 5.10 totals to C'y7 < 3C"yCopt(A, k, t) for some constant C” that depends
only on Cy. The lemma follows. O

We state the main theorem for the (k, t)-center-g problem to conclude this section.

THEOREM 5.14. For the distributed (k, t)-center-g problem, with probability at least 1 — 1/poly(n),
Algorithm 4 outputs sol(A, k, (1 + e)t) satisfying Csol(A, k, (1 + €)t) = O(1 + 1/€) - Copt(A, k, t). The
sites communicate a total of O(skB + slog A + tI) bits of information to the coordinator over 2 rounds,
where I is the bit complexity to encode a node. The runtime at site i is O(k + t)n; log A) and the
runtime at the coordinator is O((sk + t)?). The algorithm can be derandomized when € = 1.

Proor. The claim on approximation ratio follows from Lemma 5.11. To determine 7, the commu-
nication cost increases by a factor of log A; to send the preclustering solutions, the communication
cost for sending the outliers increases by a factor of I. The runtime follows from Lemma 5.9 with
an increase of a factor of log A. O

We remark that the dependence on log A can be removed with another pass where each site
computes a 7; using binary search. The discussion is omitted in the interest of simplicity.
Other results claimed in Table 1 follow from analogous amendments to Theorem 3.8.

6 ONE-ROUND ALGORITHMS

We have shown two-rounds results in Table 1. The algorithms can be adapted to be one-round in a
straightforward manner, by setting ¢; = ¢ for all sites i. The results for (k, t)-median/means that
ignores (2 + 9)t or (2 + € + J)t points basically follow from Theorem 3.8, where for (k, t)-median
with k centers (unicriterion) we need to apply again the 1-round result, and for (k, t)-median/means
with (1 + €)k centers we simply use the second inequality of Theorem 3.2 instead of the first one at
the final clustering step at the coordinator. The result for (k, t)-center that ignore (2 + §)t points
is due to the following modifications on Algorithm 4: sites do not send the total (1 + §)¢ local
outliers to the coordinator, and thereafter the coordinator performs the second level clustering
with (another) ¢ outliers, we have (2 + )t outliers in total.
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