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We compare the predictions of two different approaches of studying the electron-positron
pair-creation process triggered by a supercritical field inside the interaction region before the field
is turned off. These two approaches are based on the projection of the electron-positron field
operator on the sub-space spanned by either field-free or instantaneous energy eigenstates. For
the case of an infinitely extended static electric field, we suggest that the type of the chosen turn-
off of the external field determines which of the two approaches is physically more meaningful.
We also derive an alternative quantum kinetic Vlasov equation, which is more meaningful than

the traditional one to predict the interaction if the field is turned off sufficiently rapidly.
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1. Introduction

The possibility to break down the vacuum state and to create electron-positron pairs from
either a supercritical time-independent or a sufficiently rapidly oscillating external
electromagnetic field has been the subject of recent interest. In part, this interest to probe the
nonlinear properties of the quantum vacuum has also been fostered by dramatic advances in the
development of lasers with unprecedented strength [1]. Here intensities of the order of 10%*
~10%W/cm? may become accessible in the next few years [2,3], which might open the door to
exciting investigations of the vacuum decay via pair production.

Historically for a constant electric field the Dirac equation in external field can be solved
exactly in terms of the parabolic cylinder functions [4] and all physical quantities such as the total
number of produced pairs and their momentum distribution can be addressed. Certain exactly
solvable models with explicit field switching on and off are also available. The observation that
pairs are created mostly at rest in agreement with the previous studies, see original works [4-6] as
well as monographs [7,8,9].

One of the long-term goals has been to obtain a better understanding of the fundamental
aspects of the pair creation dynamics inside the creation region. However, despite some
promising early works [10-12] it is presently still an unresolved problem how to appropriately and
possibly even unambiguously identify particles inside the supercritical interaction zone. It
therefore remains a conceptual challenge to relate the created "quasi-particles" during the
interaction to the real particles after the interaction. This difficulty was also discussed in a nice
work by the Moscow group [13]. While the space-time evolution of the electron-positron field
operator can be obtained either as a solution to the time-dependent Dirac equation or equivalently
as a solution from the Heisenberg equation of motion [7], how to separate this operator into an
electronic and positronic portion in an unambiguous way is not clear. Computationally, it is
therefore an important challenge to examine, which particular approach (meaning which subset of
basis states are used for the projection of the field operator) is most suitable to predict the final
(and uniquely determined) particles and their distributions after the interaction from the
development of the corresponding quasi-particles during the interaction. In our opinion, to view
the interaction zone from the very beginning as a theoretically inaccessible black box restricts a
possibly important access to analyze the pair-creation process at those locations where it actually

happens.
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Let us take the point of view that for sufficiently long interaction times the effect of the turn-
off on the final number of created particles after the interaction should be negligible as the
accumulated total number of created particles is large and most of the particles have left the
interaction zone. For these dynamical scenarios, the most meaningful approach to study the pair
creation process inside the interaction zone should be the one whose predictions for the particle
yield during the interaction should be easiest to be extrapolated to the true and unambiguous final
yield after the field is turned off. If in the long-pulse regime, the number of particles predicted
before and after the turn-off is very different, then the corresponding approach would be in
contradiction with our physical intuition.

There are also (at least) two mutually competing pair creation mechanisms during the turn-off
time interval. While a very rapid turn-off obviously does not provide a sufficiently long duration
for the particle number to grow, due to its rapid time-dependence, it's spectrum also provides new
and large frequencies that could trigger (temporally induced) transitions, which by themselves
could increase the yield. On the other hand, these high-frequency transitions are less important on
a relative scale if the turn-off time is long, but then the particle number has also more time to
grow. So there might be an optimal turn-off that would minimize the additional pair creation
solely associated with the turn-off. In a similar vein, an early work by Gerry et al. [10] has
studied the pair creation yield for the special case of a sub-critical and spatially localized electric
field, where any pair-creation was possibly exclusively due to the temporal inhomogeneity
provided during the field's turn-on and off periods. In case where the turn-on was immediately
followed by the turn-off, the created particles did not have enough time to accelerate out of the
pair creation zone and were completely annihilated again after the interaction. In contrast, if after
the turn-on period the field was held constant, such that the electrons and positrons had sufficient
time to separate spatially from each other, the turn-off period would further increase the particle
yield. So the overall reducing or enhancing influence of the turn-off period on the final yield is
determined, for subcritical fields, mostly by the duration of the plateau region.

In this work we examine the predictions of the pair-creation yield in supercritical fields for
two different basis systems, based on the subspace of instantaneous eigenvectors of two different
Hamiltonians. As both projections match when the external field is turned off, they naturally
predict the same yield after the interaction. We will suggest that the type of chosen turn-off of the
external field determines which projection during the interaction is more helpful with regard to

predicting in a continuous way the final yield after the interaction. Even though from a
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mathematically rigorous point of view, both projections are unphysical during the interaction,
they can nevertheless provide a rough guidance to better understand the dynamics.

In order to amplify the differences for the two approaches, we examine an infinitely extended
constant electric field as investigated in the pioneering work by Schwinger [14]. Here the
interaction term, (given in the temporal gauge by the vector potential) grows linearly in time such
that one can expect that the impact of the turn-off (which returns the potential back to zero) on the
yield should be more pronounced for the yield than it is compared to more oscillatory time-
dependent fields.

The work is organized as follows. In Section 2 we introduce the two projections on the
electron-field operator, which allows us to revisit the Schwinger problem from the perspective of
the dynamics of two-level systems. In Section 3 we show that the observation that each particle is
born close to rest leads directly to an overall linear growth of the total particle yield. The
observation that pairs are created mostly at rest in agreement with the excellent previous studies
Narozhny and Nikishov [4]. In Section 4 we derive the corresponding quantum Vlasov equations
for each projection. In Section 5 we suggest that the field's turn-off duration determines which
approach to model the interaction is more physical. Finally, in Section 6 we finish with a brief

summary and open questions.

2.1 The model system
If the external electric field does not have a spatial inhomogeneity, then the pair-creation
dynamics can be described in the temporal gauge by a time-dependent vector potential A(t). For a

one-spatial dimension dynamics, the Dirac Hamiltonian takes the form in atomic units
A
H=co, [P—qT(t)]-l-CZG3 @.1)

where P is the momentum operator and we assume the coupling to a positron with charge q = +1.
The two 2x2 Pauli-matrices are denoted by o1 and G3.

In this work we will examine two sets of basis states, the first set is based on the eigenstates of
the force-free Hamiltonian, defined as Ho|p; u) = ep|p; u) and Hy|p; d) = —e,|p; d) with energy

e, = [c* + c?p?]'/2. The second set is generated by the instantaneous eigenstates of the full

p=

Hamiltonian, as discussed further below. For momentum p the spatial representation of the first
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set is given by the two-component spinors, (x|p;u) = N {[e, + c*]'/2, [e, — ¢?]*/?p/
Ip|} exp[ipx] and (x|p; d) = N {—[e, — c?]*/?p/|pl, [e, + c?]*/?} exp[ipx], where N is the
corresponding normalization factor. As the canonical momentum P is conserved, i.e. [P, H] = 0,
the external field can couple only states with the same momentum. In other words, only the
pairs|p; d) and |p; u) are coupled at any time such that in this case the entire pair creation
dynamics is equivalent to the collective dynamics of a set of infinitely many mutually
independent two-level systems. We can therefore rewrite H as a sum of independent

Hamiltonians over the momenta
H = Y [ep [p; uXp; ul — eplp; d)Xp; d| — A(D) Vgia — A(D) Vo] (2.2)
where the on- and off-diagonal couplings are given by

Vaia(©)= (p; uloy|p; w) |p; u)p; ul + (p; d|oy|p; d) |p; d)(p; d| (2.3a)
Vore(D)= (p; d|oy|p; u) |p; d){p; ul + {p; uloy|p; d) |p; u)p; d| (2.3b)

Using the functional form of the energy eigenstates, the four matrix elements take the form
(p; ulos|p; w) = cp/ep =ap, (p; dlo|p; d) = —a;, and (p; d|o:|p; u) = (p; uloy|p; d) =
c?/e, =b,. For a given momentum p, the state is a superposition of the lower (subscript d) and

upper (subscript u) level, I‘Pp (®)) = Cp,a(t) [p;d) + Cp,u () |p; u). The time-dependent

. A,
amplitudes follow from the equation = H|‘{fp (t)) as
. dCp,u(t)
! I;t = [ep —A® ap] Cp:u(t) —A(t) by Cp;d(t) (2.4a)
. dCp.q(t)
1—‘;’:‘ = —A(t) b,Cp.u (V) — [e, — A(D) ap] Cpa (D) (2.4b)

As we will need it for below, let us perform a unitary transformation to another basis set [15],
that is based on the instantaneous lower (D) and upper (U) energy eigenstates |p; D) and |p; Uy).
These are defined based on the full Dirac-Hamiltonian, H(t) |p; Uy) = e, (t)|p; Uy) and

H(t) |p; Dy) = —ep (1) |p; D), where the instantaneous energy eigenvalue takes the form e (t) =
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[[e, — A(D) ap]2 +[A®® bp]z]l/z. For a fixed momentum p, the state ['¥ (1)) = Cp,a(t) [p; d) +
Cp,u (D) [p; u) can be equally expressed based on the superposition |le ®) =Cyp(0) |p; Dy +
Cp,u(®) |p; Up). The corresponding expansion coeffcients Cp;p and Cp;u are given by the solution

to

1220 = (0 Cpu(®) + B, Cpp(® (2.52)
1220 = B (1) Cpy (1) — tp(8) Cpp (D) (2.5b)

where the two matrix elements are given by

o, (D) = [[ep —A(D) ap]? + [A(D) bp]z]l/2 (2.5¢)

B ® = 1—c /12 ap(D?] (2.5d)

2.2 Definition of particles during the interaction

We can use any complete basis set to represent the electron-positron field operator ¥(x,t) by
introducing the positronic (electronic) annihilation operators bp (dp). The particular choice of the
basis states automatically defines the meaning of these fermionic operators. For example, if we
arbitrarily choose the field-free eigenstates |p;u) and |p;d) of Ho introduced above, then, when
acting on the field-free vacuum state, the operator b," would create an excitation of the mode
Ip;u), while de would create an excitation of the mode |[p;d). The conceptual problem [16] is to

split this operator into two portions in order to represent its positronic and electronic parts, i.e.,
Y(x,t) = Wpos(X,t) + el (%, t). Before and after the external field is present, this separation is
undisputed, for example, the positronic portion can be obtained by projecting the full operator
Y(x,t) onto the sub-space of positive energy states via ‘ngs (x,0) = Xplp; u)p; ul| Y(x,t), leading
to ) pos(X,£) = X, by (O(x|p; u). In this case, the resulting total number of created positrons after
the interaction can be calculated from the quantum field theoretical expectation value as

NO (1) = (P () Pins (1), leading to N (p, t) = (b, ()T by (1)) = | Cppu ()| and, for the total

number of positrons, to N© (t)= Y by by(1)) =X, | Cp.u(D)|?. However, to interpret
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(‘{’SQST ‘PSQQ with the number of positrons during the interaction is not unambiguous, as we could
have equally chosen a different sub-space for the corresponding projection.
For example, we could have also defined the positronic portion as ‘Pg,lo)s (x, D= Xplp; Upp; Uyl

Y(x,t) based on the instantaneous eigenvectors of the full Dirac-Hamiltonian H(t) as introduced

in Sec. 1.1. In this case, the corresponding particle numbers would be calculated differently, i.e.,
N (1) = (P (O ¥ (1), leading here to N (p, ©) = (B, () B, (1)) = | Cpuy (V]2 and, for
the total number of positrons, to NV (t) = Y | Co.u(®]* . One of the main goals of this article is

to compare the different predictions based on ‘Pl(o%)s (t) and ‘I’I(,lo)s (t)We suggest that the type of

turn-off determines which projection is physically more meaningful during the interaction to

predict the final outcome after the interaction.

3. The two-level system dynamics and the relationship to the long-time pair creation rate
In Section 3.1 we examine the time-evolution for N@ (p, t) and N (p, t) for a constant
electric field. In Section 3.2 we will discuss the relationship between the temporal growth of the

particle density N(p,t) for a positron with momentum p and the resulting total number of all

positrons N(t), obtained by summing over all momenta.

3.1 Analysis of NO(p,t)
From now on we assume that the electric field strength is constant in time and denoted by Eo,

i.e. A(t) = —c Ejtand it is switched on at t=0. Here it is important to note that due to the

nonvanishing diagonal terms A(t) a,, in Eq. (2.4), the particular interaction shifts the energies *e,,
to their instantaneous diagonal elements +[e, + ¢ Ejtap]. As the sign of the coefficients ap is

determined by the sign of the momentum p, we expect that the manifolds for positive and
negative momentum will show entirely different responses to the field. This symmetry breaking
is, of course, directly associated with the orientation of the electric field vector that was chosen
positive, such that positrons are accelerated to the right. Positrons with positive energy and
positive momentum would be accelerated, while those that move initially to the left (p<0) would

be slowed down, brought to rest and then gain a positive velocity.
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For states with negative energy —ep the sign of the canonical momentum p is opposite to the
. . dH : . :
actual velocity v, i.e. v = 3= P /ep. In this case the speed of states with negative momentum

is increased even further by the field, while states with positive momentum (moving initially to

the left) would be slowed down first.

This asymmetry has interesting implications. For negative momenta p, there is a
characteristic time duration, denoted by Tp, after which the two instantaneous energies Tep(t)
become equal to each other, i.e., e, — A(Tp )ap = —[e, —A(T,) ap]. Using A(t) = —c Eot, we

obtain

2
Ty = —gi—=—(m’c? +p?)/(Eo p) 3.1

During time intervals centered at time Tp we will have a momentary degeneracy and we would
expect a maximum transfer of the population from the lower to the upper level to occur at those

times. This expectation for N(O)(p,t) is confirmed by the numerical data as we show in Figure 1

for four different electric field strength Eo.

Eo=0.1
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Figure 1 The population of the upper level |Cp;u(t)|2 as a function of time during the interaction
with four different electric fields with amplitude Eo (in units of ¢ ). For comparison, the open circles
for each case correspond to the analytical formula given by Eq. (3.2). The four dashed vertical lines
are the times of perfect energy degeneracy Tp. [The time is in atomic units, and we chose
momentum p =-200 (2n/L), with L = 1 a.u.] ) Note the circles and the straight lines correspond to
different quantities (actual pair creation in the "free" particle representation and the "free" particle
content of an "adiabatic" state).

Here the four vertical lines point towards the predicted center of the population transition

windows according to Eq. (3.1) for each Eo. The agreement between Tp and the true transition

time is excellent.

For large values of p, the pair-creation time approaches T, = —p/(Ey ). This has interesting

implications with regard to the velocity the particles take at their very birth moment. In the
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temporal gauge, the (relativistic) velocity of the particles is given by % =c?*(p+Eyt)[c* +

c?(p + Eo t)?]7/2, which, when being evaluated at t = Tp, is identical to zero. This suggests that
it is most likely that, in a spatially homogeneous electric field, the particles are born at rest, before
they get accelerated consecutively by the same field.

Furthermore, the data suggest that there are two distinct regimes depending on the magnitude
of the electric field Eo. For small amplitudes, we enter the adiabatic regime [17-19]. Adiabaticity
assumes in general that the external field changes slowly enough, such that the instantaneous
eigenvectors of the time-dependent Hamiltonian, defined as H(t) |p; Uy) = e, (t)|p; Uy), become

dynamically meaningful. In other words, if the initial state happens to agree with an eigenstate of

H(t=0), then the truly time-evolved state is (up to an irrelevant overall phase) identical to the
instantaneous eigenvector. In our case, the initial state {Cp;u(t=0), Cp;d(t=0)} = {0,1} matches one
of the two eigenvectors of H(t=0) (with energy —ep). If we take the square of the upper

component of the state |p;Ut), we obtain

2

1
| Cpu(D]2 = A(D)?b,%/[b,2A(0)? + {ep —a,A(D) + [e,% — 2 ey a, AD) + A(t)Z]E} 1 (2
This function begins at zero and approaches asymptotically the final population

| Cpu(t > 00)|2 = —2— = (1 -2 (3.3)

Zap+2

This expression allows us to determine the efficiency of the adiabatic population transfer for each
two-level system. As the amount of the (negative) momentum increases, this final population
grows monotonically from | Cp,,, (t = o0)|*> = 0.5 (for p=0) to | Cp., (t = ©)|*> = 1 for very large
(negative) momenta. If we introduce a dimensionless time 1 = E t/c, then the upper population is
solely a function of 1, i.e., A(t) = —c E,t = —c? 1, in this adiabatic regime. The open circles in
Figure 1 represent the predictions of Eq. (3.2), which agree perfectly with the actual data for
sufficiently small Eo. The non-adiabatic regime is analytically less accessible. It is characterized

by a heavily oscillatory long-time behavior of the population in the upper state.
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3.2 From N(p,t) to N(t)
For sufficiently long times, we would expect that, during the interaction, the total number of
created (quasi) particles should increase linearly with time, permitting us to describe the yield by

a single rate constant, i.e. N(t) =" t. In this section, we will show how this linear growth rate I

can be derived from the asymptotic values for N(O)(p,t) and N(l)(p,t) associated with each two-

level system. We will show that the rate [associated with NO(t)] amounts to I'® = L i—i for

small Eo and the rate [associated with N(l)(t)] amounts to a substantially smaller amount, o=
L i—;’r Exp[—nc3/E,]. The linear increase of the total number of created particles with the
physical extension of the system L in each case is expected for the one (spatial) dimensional
dynamics.

In Eq. (3.3) we saw that for long times and sufficiently small Eo, N(O)(p,t) approaches a value
close to unity, corresponding to a nearly complete transfer of population to the upper state.
However, for larger electric fields, the asymptotic behavior for N(O)(p,t) was oscillatory and with
maxima that were smaller than 1. At first, this seems to contradict with the intuitively expected

behavior that the final yield should increase monotonically with the strength of the electric field.

However, we will show now that the total yield (for which we expect a linear increase in time for
long times), does indeed grow with increasing Eo as well.

If we assume that the time duration required for the population transfer is very short, neglect
the actual couplings facilitated by the off-diagonal terms A(t) bp, and furthermore assume that the
entire population is transferred completely at Tp, to the upper level (see Figure 1 for small Eo),

then the total population for all momenta can be very crudely approximated by
Zp I Cp;u(t)l2 = Zp e(t - Tp ) (34)

where the summation extends over all negative momenta that can be labeled by p =n Ap (n=0, —1,
-2, -3 ..) with an effective mode spacing Ap that depends on the extension L of the system, Ap =
2n/L.

We therefore arrive at the following interesting physical picture for the Schwinger pair-

creation mechanism viewed from the perspective of a set of two-level systems. Each positron

11 3/3/20



with a given momentum p is created only at unique time given by T, = —(m?c? + p?)/(Eq p).

As this time is shortest for p = —mc, those positrons are created first and after a delay time T =
(2mc)/Eo. For positrons with large momenta we have T, = — EL = —n Ap/E,. Therefore the
0

momenta are created consecutively in time. Using Y., 8(t — kn) =~ t/x we can approximate Eq.

(3.4) as

ol Cpu®P = () =L 2 ¢ (3.5)

Ap 2n

leading to the expected linear growth in time. Our simplified model based on lP(O)pos(t) therefore

predicts a pair-creation rate per unit length given by y = z—i

A very similar analysis can also be performed for the solution to the two-level system of Egs.

(2.5) based on the instantaneous eigenstates. Here the off-diagonal couplings are given by Bp(t),
which are also time-dependent, but in contrast to A(t)bp, they vanish in the limit of infinite times.
However, they take their maximum value at precisely the same time Tp [see Eq. (3.1)] when the
diagonal elements ep—A(t)ap in Eq. (2.4) vanish. In other words, both projections predict
consistently that quasi-particles with momentum p are solely created close to the time Tp.

While the transition to the upper level happens at precisely the same time window as given by
Eq. (3.1), here the population transfer based on cp(t) and Bp(t) is not complete. In fact, we find
that the asymptotic value for N(l)(p,t) is numerically indistinguishable from N(l)(p,t) — Exp[—
ch3/Eo]. This (in Eo) non-perturbative expression can also be derived from the corresponding

Landau-Zener transition rate [17], as reported, e.g., in the excellent article by Wittig [18], or, from
an alternative approach based on the asymptotic properties of the Weber functions (parabolic

cylinder functions). As a result, here prediction of corresponding rate for the total number of

created particles would amount to 'V = L, Z—‘; Exp[-mc3/Ey ]. The linear part is therefore

associated with the scaling of the birth moments with Eo, while the exponential cofactor reflects

the incomplete adiabatic transfer.

To avoid a possible confusion, we should point out that I'® = L ];—‘T’r is strictly correct only for

small Eo, while T takes (coincidentally) the same form only in the limit for very large Eo.
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Figure 2 The time-dependence of the total number of created positrons with momentum between p
=-250 (2n/L) and 250 (27/L) based on the projections leading to N(O(t) and N"(t). For
comparison, the dashed lines have the slopes L Eo/(2n) and L Eo/(27) Exp(—=n c3/Eo). [Eo=1 ¢, the
time is in atomic units and L = 1 a.u.]

In order to test these theoretical ideas, in Figure 2 we have computed N(O)(t) and N(l)(t) by
summing over the contributions of 500 two-level systems with momenta ranging from p =-250
(2n/L) to 250 (2n/L) (for L=1). For early times, both graphs grow quadratically, associated with
the abrupt turn on of the vector potential at time t=0. After a characteristic time interval of the
order of To = 27/(2¢?), which is about 1.67x107* a.u., both graphs evolve into the expected linear
growth regime. For comparison, we have indicated by the dashed lines the corresponding slopes
L Eo/(2n) and L Eo/(27) Exp[—nc3/Eo]. The agreement is superb. After a time of about 6x107
a.u. the linear growth stops, as this time corresponds to Tp for the largest momentum that we have
included in the calculation for N(t).

To examine the importance of positive momenta, we have repeated the simulation by
excluding their contributions. As expected, these momenta contribute only to the early time

behavior of N(t) for both projections and have no impact on the final rate.

4. Quantum Kkinetic transport equations for N(O)(p,t) and N(l)(p,t)

As numerous studies in the literature of spatially homogeneous electric fields use the quantum
Vlasov equation [13,20-25] for the total number of created particles NU(p,t), we point out here
briefly that a similar equation can also be derived for NO(p,t). The time-evolution of both

projections can be obtained equivalently from either the corresponding two-level equations based
on complex amplitudes, see Eq. (2.4) and Eq. (2.5) in Section 2, which have formally the same

general structure
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i % = D(V) ¢, (©) + B(Y) c_ (©) (4.12)

i =8O =B®c, ) —D® c_ (1) (4.1b)

In order to eliminate the diagonal couplings, we introduce C+(t) = c+(t) exp[—i 6(t)] and C(t) = c-

(t) exp[i O(t)], where the phase is defined as 0(t) = [ ' dt D(t). This leads to the equations,

i <=0 = B(t) Exp[i 20(t)] C_ (t) (4.22)
i <=0 = B*(t) Exp[—i 20(t)] C, () (4.2b)

The main quantity of interest is the population in the upper level, p(t) = |c+(t)|> = [C+(t)]%. Since
dp/dt=d [ C+(t)* C+(t) [/dt = d C+(t)*/dt C+(t) + C+(t)* d C«(t) /dt, we may use (4.2a) and its
complex conjugated form to show that dp/dt = 2 Re{B(t) exp[i20(t)] C+*(t) C(t)}. To relate the
right-hand side with the left-hand side, we need to find the equation of motion for C+ C- and to
see how it varies with p. Since d [ C+ (t) C_(t) }/dt = dC+ (t)/dt C_(t) + C+ (t) dC(t)/dt, we use
the complex conjugated form of Eq. (4.2a) and Eq. (4.2b) and C_"(t) C_(t)=1— C+(t) C+(t) to
obtain d/dt[C+*C_] = B*(t) exp[—i20(t)](1-2p). This equation can be integrated in time, leading to
C+*C_(t) =[tde B*(r) exp[—i20(7)][1-2p(1)], where we have incorporated the initial condition
[C+*C_](t=0) = 0. Finally, we insert C+*C_(t) back into the differential equation for p. As B is

either a real or purely imaginary function of time, B(t) B*(7) is real, the real part of the remaining
expression is easily found. As a result, we obtain

L =2B() ["drB*(x) cos[20(t) - 20()][1 — 2p(D)]. (4.3)

The factor 1-2p on the RHS of Eq.(4.3) reflects the fact that the kinetic equation contains

contributions of both the "gain" (pair creation from the vacuum itself) as well as the "loss"
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(inverse process of pair annihilation into vacuum) represented by the factors 1—p and p,
respectively.

If p in Eq. (4.3) is equal to |cp,u|2, then the couplings are B(t) = — bp A(t) and 0(t) = | ' dt [ep—
ap A(t)]. For the special case of a homogeneous electric field this leads to BOt)y=-c bp Eo t and
0Oty = [tdt [eptapcbpEot]=ept+apcbpEo t2/2. On the other hand, if p is equal to |cp,U|2 ,
then B(t) =i dA/dt ¢*/ [2 [ep—A(t)ap]H[A(t)bp]*] and O(t) = |t dt [[ep~A(r)ap]* + [A(T)bp]?] V2.
For the homogeneous field this leads to B)(t) = —i Eg ¢*/ [2[eptEotc ap]2 +[Eotc bp]z] and
o)(t) = ¢*/(2E) {(Eo t/ct+p/c)[1+( Eo t/c+p/c)2]1/ 2+ Sinh™'(Eo t/c+p/c)}.

The two associated phase factors 9(0)(‘[) and 9(1)(t) evolve rather differently. For short
interaction times, 8)(t) grows linearly in time with rate ep, while the other phase 0D t) starts
with the non-zero value 9(1)(t=0) =[pept ¢ Sinh‘l(p/c)]/(2Eo), which diverges (for non-zero
momentum) in the limit of small electric field amplitudes Eo. It then grows linearly with the same
rate ep. This possible divergence suggests that for short interaction times the corresponding
kinetic transport equation for N(O)(p,t) might be computationally easier to handle than the
traditional one for N(l)(p,t). In the long-time limit, both phases grow quadratically in time, i.e.,
6(t) > Eo p t2/2 (cz/ep) and 8(t) > Eo p t2/2 (cz/ep)z, respectively.

As solving the integro-differential equation directly for p(t) is difficult, it is customary to
introduce two auxiliary functions G and H, with G(t) = [tdr B*(T) cos[20(t)-20(t)] [1-2p(t)] and
H(t) = | ' dr B'(7) sin[260(t)-26(1)] [1-2p(t)]. With these functions, Eq. (4.3) can be equally

expressed as three coupled ordinary differential equations

% = 2 B(t) G(t) (4.42)
‘;—f =2B@®) [1-2p(®)] - Z%H(t) (4.4b)
=26 (4.4c)

These equations are solved with the initial condition p(0) = G(0) = H(0) =0. The two projections

correspond to the same Eq. (4.4), except for the different functions of B and 6.
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5. Comparison of both projections including the turn-off of the field

We should note that the analysis above has examined the time-evolution during the interaction
and we have seen that the two projections of the electron-positron field operators lead to rather
different predictions. While it is interesting to note that both descriptions predict the identical
birth moments for the corresponding quasi-particles, they predict entirely different rates for the
asymptotic growth of the particles yield and the important question arises which approach has
more predictive power with regard to the real particles after the interaction.

As the field was assumed to be spatially homogeneous, the created particles cannot be
accelerated out of the interaction zone and we therefore can only examine this question by turning
the field off in time. Except a few special temporal pulse shapes for which the quantum Vlasov
equation can be solved exactly [26], the determination of the final yield after the interaction is
more difficult to predict based on solely analytical approaches. In our computational analysis we
have turned the field off after a plateau time (denoted by Tplat) during which the electric field was
constant, i.e. A(t) = —c E, t, by multiplying the vector potential with the exponential decaying
factor Exp[-(t-Tplat)/Toff), for Tplat <t. The turn-off duration Toff was varied from zero
(corresponding to an abrupt turn-off) to arbitrary long intervals. As during the turn-off period, the
particles continue to be created (even though with decreasing rates), we should mention numerous

works [27-29] that have shown that any truly adiabatic turn-off (corresponding to an infinite Toff)

can lead to an infinite number of created particles.
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Figure 3 The time-dependence of the population of the upper level |Cp;u(t)|2 (based on H©, dashed
line) and |C10;U(t)|2 (based on HV, continuous line) for three different turn-off durations Toff. The
field was turned on abruptly and the turn-off begins after a (in-field) plateau time Tplat =15 To,
where To = 27t/(202). To guide the eye the vertical arrows are the mismatch between the (in-field)
plateau and final population after the turn-off. The total interaction time displayed was T =35 Tp.
[Momentum p =-200 (27/L) and the electric field amplitude was Eo = 0.5¢’]

In Figure 3 we graph the populations N(O)(p,t) and N(l)(p,t) as a function of time for three
different turn-off durations Tofr. In each of the six cases, the field was constant (Eo=0.503) for a
time Tplat = 15 To, with the unit of time To = 21t/(2¢?). As both projections are identical when the
field vanishes, the final populations corresponding to the real particles are identical for both
approaches, N(O)(p,t—>00) = N(l)(p,t—>00). However, the particular approach to this final particle
number is drastically different. For short turn-off times, the final yield is much better predicted
by N(O)(p,t) than by N(l)(p,t). For example, for Toff= 0.1 To, the plateau value N(O)(p,t) =0.997
during the interaction reduces only to NO(p,t—o0) = 0.985, whereas as the plateau value for
N(l)(p,t) =0.00186 (a value close to Exp[—nc3/E0] =0.00187) has to increase by a huge factor of

547 to predict the same asymptotic value. As in our opinion the number of particles should not be

able to grow so drastically during the ramping off of the field, we suggest that the projection
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leading to N©(p.t) is physically more meaningful to describe the dynamical features such as the

yield and spatial probability distributions during the interaction.
0
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Figure 4 The final population of the upper level as a function of the turn-off duration Toff. The
field was turned off after a time Tplat = 15 To, where To= 27r/(2c2). (a) p=-100 (2n/L) and (b) p =
—200 (2n/L). [Electric field Eg = 0.5¢and L =1a.u.]

In order to examine in more detail how the duration of the turn-off can be used to control the
final population, we have graphed in Figure 4 the final values N(O)(p, t—o0) = N(l)(p,t—>00) asa
continuous function of Toft for two different momenta. We chose an electric field Eo= 0.5¢>, for
which the final population in the special case of Toff = 0 was close to unity. The plateau time was
chosen sufficiently long such that the asymptotic value during the interaction was reached for
each momentum, i.e. Tp<Tplat. We find that the final population decreases non-monotonically
with Tofr, but approaches a final value that is close to Exp[-nc®/Eo], independent of the
momentum. Furthermore, the required turn-off time to actually reach this "truly adiabatic" turn-

off yield seems to increase with the momentum p.
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6. Summary and open questions

For the case of a constant electric field we have compared the temporal growth of the created
number of positrons during the interaction for two approaches based on different projections of
the electron-positron field operator. Both approaches predict consistently that for a given
momentum the positrons are produced only during a short time window, which is determined by
the electric field and the momentum of the positrons. Together with the observation that for a
positive electric field only positrons with negative momenta contribute to the long-time yield, this
has interesting consequences. It turned out, that particles are born most likely at rest (with energy
mc?) and they accumulate higher energies only as they get accelerated by the field.

In order to examine which of the two projections is in general more meaningful to illuminate
the dynamics during the interaction, we have compared their extrapolated predictions for the yield
after the interaction. If we adopt the view that due to the additional interaction time provided by
the turn off process, the pair creation yield should always continue to increase from its particular
plateau value (before the turn-off begins), then the projection based on the instantaneous
eigenvectors of the full Dirac Hamiltonian seems to be more physical. On the other hand, for
nearly abruptly turned off fields, the yield predicted by the projection based on the field-free
states evolves much more smoothly to the final value and is therefore more beneficial.

We noted that for small electric fields, the growth pattern of N(O)(p,t) was numerically well
described by a simple analytic adiabatic model according to Eq. (3.2). It turns out that if we

subtract this analytical prediction from the exact numerical data, the difference is remarkably
close to the prediction based on the other projection, leading to N(p,t). This is advantageous as
it suggests that for each momentum the data for N(O)(p,t) and N(l)(p,t) can be related to each other
through Eq. (3.2), but certainly more systematic studies for wider parameter ranges are required.

While (at least for small Eo) the adiabatic analysis permitted us to predict N(O)(p,t) with good
accuracy, using a similar adiabatic approach to approximate N(l)(p,t) was not so helpful. In fact,
expanding the two-level amplitudes with regard to the instantaneous eigenvectors of the
Hamiltonian given by {{cp(t), Bp(t)},{Bp(t),—cp(t)} } led to predictions qualitatively similar to
those of N(O)(p,t).

For conceptual and computational simplicity, the analysis was performed for a one-
dimensional geometry, in other words, we limited the canonical momenta to a direction that was

(anti-) parallel to the applied electric field. The inclusion of other momenta along a direction that
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is perpendicular to the E-field does not affect any general conclusion of this work nor does it
provide new insight, even thought the final rates have a functionally different form due to the
required additional integration over those neglected degrees of freedom. In a realistic 3+1
dimensional analysis one can also account for both spin directions.

While the study of an infinitely extended and temporally constant electric field led to the
pioneering work of Schwinger [14], from an experimental point of view, explorations on external
field with space-time dependencies are more advantageous. If the field is oscillatory then the
actual differences between the two projections leading to the two different Vlasov equations
might be much less significant and therefore a description of the dynamics inside the supercritical
interaction zone might be less controversial. But it certainly remains an open theoretical

challenge for future work.

Acknowledgements

S.D. and R.F. would like to thank ILP for the nice hospitality during their visits to Illinois State.
R.F. acknowledges the support by the exchange program of Illinois State University and ITESM
of Mexico. S.D. acknowledges the China Scholarship Council program. We acknowledge
stimulating discussions with Drs. Q. Wang, L.B. Fu and J. Liu about the quantum Vlasov
equation for periodic fields. This work has been supported by the NSF, NSFC (Grants No.
11529402 and No. 11721091) and Research Corporation.

20 3/3/20



References

[1]

[2]
[3]

[4]
[5]
[6]
[7]

[8]

[9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]
[19]

For a comprehensive review, see A. Di Piazza, C. Miiller, K.Z. Hatsagortsyan and C.H.
Keitel, Rev. Mod. Phys. 84, 1177 (2012) or a more recent one, see, B.S. Xie, Z.L. Li, S.
Tang, Matter and Radiation at Extremes 2, 225 (2017).

G.A. Mourou, T. Tajima and S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

For recent advances in high power laser systems, see, for example, the websites of the
following labs: ELI (Paris), diocles (Lincoln), xfel (Hamburg), sparc (Darmstadt), Vulcan,
HiPER and Astra Gemini (Oxfordshire), polaris (Jena) or Shenguang III (Mianyang),
LCLS (Stanford), TPL (Austin) or numerous references in https://eli-laser.eu/.
Narozhny & Nikishov, Sov. J. Nucl. Phys. 11, 596 (1970).

E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191(1970).

V. S. Popov, JETP Lett. 13, 185 (1971); Sov. Phys. JETP 34, 709 (1972).

W. Greiner, B. Miiller, and J. Rafelski, “Quantum Electrodynamics of Strong Fields
(Springer-Verlag, Berlin, 1985).

A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, “Vacuum Quantum Effects in Strong
Fields” (Atomizdat, Moscow, 1988) (republished by Friedmann Laboratory, St. Petersburg,
1994).

E. S. Fradkin, D. M. Gitman, and Sh. M. Shvartsman, “Quantum Electrodynamics with
Unstable Vacuum” (Springer-Verlag, Berlin, 1991).

C.C. Gerry, Q. Su and R. Grobe, Phys. Rev. A 74, 044103 (2006).

R. Dabrowski and G.V. Dunne, Phys.Rev. D90, 025021 (2014) and Phys. Rev. D 94,
065005 (2016).

Q.Z. Lv, J. Unger, Y.T. Li, Q. Su and R. Grobe, Euro. Phys. Lett. 116, 40003 (2016).

A.M. Fedotov, E.G. Gelfer, K. Yu. Korolev and S.A. Smolyansky, Phys. Rev. D 83,
025011 (2011).

J.S. Schwinger, Phys. Rev. 82, 664 (1951).

G.R. Mocken, M. Ruf, C. Miiller and C.H. Keitel, Phys. Rev. A 81, 022122 (2010).

P. Krekora, Q. Su and R. Grobe, Phys. Rev. A 73, 022114 (2006).

C. Zener, Proc. Royal Soc. London, 137 (6): 692 (1932).

C. Wittig, J. Phys. Chem. B 109, 8428 (2005).

S. Teufel, “Adiabatic Perturbation Theory in Quantum Dynamics”, (Springer, Berlin,
2003).

21 3/3/20



[20]

[21]
[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]

S. Schmidt, D. Blaschke, G. Ropke, S.A. Smolyansky, A.V. Prozorkevich and V.D.
Toneev, Int. J. Mod. Phys. E 7, 709 (1998).

Y. Kluger, E. Mottola and J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998).

J.C.R. Bloch, V.A. Mizerny, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A.
Smolyansky and D.V. Vinnik, Phys. Rev. D 60, 116011 (1999).

R. Alkofer, M.B. Hecht, C.D. Roberts, S.M. Schmidt and D.V. Vinnik, Phys. Rev. Lett. 87,
193902 (2001).

C. Kohlfiirst, M. Mitter, G. von Winckel, F. Hebenstreit and R. Alkofer, Phys. Rev. D 88,
045028 (2013).

C. Kohlfiirst, Master’s thesis, Graz University (2012), arXiv:1212.0880.

For a nice review, see, e.g., G.V. Dunne, “Heisenberg-Euler effective Lagrangians: Basics
and extensions: Lectures Notes”, in “From Fields to Strings: Circumnavigating Theoretical
Physics”, M. Shifman et al (ed.), 445-522 (Ian Kogan Memorial Collection, 2004), also
published in hep-th/0406216.

G. Nenciu, Commun. Math. Phys. 76, 117 (1980).

P. Pickl and D. Diirr, Commun. Math. Phys. 282, 161 (2008) and Phys. Lett. 81, 40001
(2008).

F. Beck, “Adiabatic pair creation”, Thesis (2013), see also, http://www.mathematik.uni-

muenchen.de/%7Ebohmmech/theses/Beck Franziska BA.pdf

22 3/3/20



