ANL/MCS-TM-382 Rev 0.10
Argon neé

NATIONAL LABORATORY

SICOPOLIS-AD: Quick-Start Manual

Revision 0.10

Mathematics and Computer Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, lllinois 60439. For information about Argonne

and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free at OSTI.GOV
(http://www.osti.gov/), a service of the US Dept. of Energy’s Office of Scientific and
Technical Information.

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

www.ntis.gov

Phone: (800) 553-NTIS (6847) or (703) 605-6000

Fax: (703) 605-6900

Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831-0062

www.osti.gov

Phone: (865) 576-8401

Fax: (865) 576-5728

Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-382 Rev 0.10

SICOPOLIS-AD: Quick-Start Manual

Revision 0.10

prepared by
Liz C. Logan', Sri Hari Krishna Narayanan?, Ralf Greve?®, Patrick Heimbach'’

'Institute for Computational Engineering and Sciences, University of Texas at Austin
2Mathematics and Computer Science Division, Argonne National Laboratory

3Institute of Low Temperature Science, Hokkaido University

January 2019

Contents

1 Introduction 5
2 Building SICOPOLIS-AD 6
2.1 Building the source code SICOPOLIS 6
2.2 Building OpenAD e e 7
2.3 Optional: Suggestions for building LIS, if simulating Antarctic ice shelves 7
3 Running SICOPOLIS-AD 7
3.1 Execution time e 8
4 Making changes to the code 9
4.1 Default adjoint settings e e e e e e e e 9
4.2 Creating your own adjoint test case e e 11
5 General advice for changing the source 12
6 Tested architecture and compute times 12
7 Acknowledgements 13

1 Introduction

SICOPOLIS-AD is a version of the ice sheet model SICOPOLIS (originally [1]: www.sicopolis.net)
used to produce adjoint sensitivities of chosen control variables. It can be used to assess the sensitivity of
some quantity of interest to perturbations in variables that may affect that quantity of interest. For example, it
can be used to comprehensively and quantitatively assess exactly how the volume of the Greenland Ice Sheet
is sensitive to changes in surface temperature at each point on the ice sheet. This document provides basic
startup and troubleshooting methods, as well as some best practices for making changes in the code for the
purposes of adjoint production.

What is an adjoint model and how did we make it?

The idea of the adjoint may be best understood in terms of the forward, original code construction and
execution. If you wish to know the sensitivity of some quantity of interest (e.g., the volume above floatation
of the Antarctic Ice Sheet) with respect to some model control variable (e.g., the geothermal heat flux applied
to the bottom side of the ice), one method of pursuing such a sensitivity might be by perturbing the control
variable, in sequence, at each point within the domain and propagating the perturbation forward in time.
The perturbation to the control variable (likely) results in a change in the quantity of interest, and you can
calculate the sensitivity of the quantity of interest to the control variable everywhere in the domain. These
are finite differences of the quantity of interest, or cost function, with respect to the control variable that
approximate the derivatives of the same quantity. After such a sensitivity map is calculated, you can take the
analysis further, for instance, by leveraging the sensitivities against some initial guess in model parameters
(e.g., the initial or boundary conditions) and approaching some acceptable estimation of their best value
given the discretized physics of the numerical model in the form of an optimization problem. Herein lies
the greatest advantage of the application of time-dependent adjoint modeling: the reconstruction of impor-
tant model parameters subject to observations and constrained by the discretized physics of a numerical model.

However the construction of a nonlinear adjoint model often presents a formidable task when solved
analytically and hand-coded, e.g., in [2]. As an alternative, in order to approach the ultimate goal of providing
the adjoint of a nonlinear ice sheet model, the use of algorithmic differentiation has become increasingly
popular [3, 4, 5]. The adjoint of the ice sheet model SICOPOLIS is largely generated by the algorithmic differ-
entiation (AD) tool OpenAD (developed at Argonne National Laboratory; www.mcs.anl.gov/OpenAD).
It is a source transformation AD tool that differentiates a given model’s source code to generate a derivative
code which computes derivatives. Algorithmic differentiation (AD) exploits the chain rule of calculus for
the computation of derivatives of a function with respect to a set of input variables. Any forward numerical
model can be conceived of as a sequence or composition of operations, with a single line representing a single
algorithmic step. Via AD methods, then, the derivative of a (often nonlinear) numerical model is provided by
exhaustive application of the chain rule, line by line, to the model. The forward or reverse mode (adjoint) of
the model may be thought of as the composition in forward or reverse order of the Jacobian matrices of the full
forward code’s line-by-line algorithmic elements. The derivative SICOPOLIS code is approximately 50,000
executable lines, depending on preprocessor options that are enabled or disabled. By pairing SICOPOLIS
with OpenAD, the adjoint of the ice sheet model is provided without the need for hand-coded adjoints, and
the adjoint changes automatically following any change made in the source code of the original model.

www.sicopolis.net
www.mcs.anl.gov/OpenAD

2 Building SICOPOLIS-AD

Because SICOPOLIS-AD is woven into the source files of SICOPOLIS, downloading from the trunk of the
repository is done in the same way as if downloading SICOPOLIS for plain, forward execution. All that
you need to produce adjoint sensitivities from SICOPOLIS-AD is (1) a working copy of SICOPOLIS; (2)
OpenAD; and (3 - optional) a built version of the Library of Iterative Solvers (LIS), if simulating Antarctic
domains with ice shelves.

2.1 Building the source code SICOPOLIS

First, you build the code SICOPOLIS. The QuickStart manual for SICOPOLIS, which can be found at
www.sicopolis.net, gives excellent and more detailed instructions on how to build the code. Here, we
give only a few brief steps.

1. Check out version 5-dev (developmental, latest version) of the trunk using source control Subversion:
svn checkout -username anonsvn —-password anonsvn \
https://swrepol.awi.de/svn/sicopolis/trunk sicopolis
This places the source code in your local directory sicopolis/ .

2. Go to the new directory sicopolis and execute the bash script copy_templates.sh:
./copy_templates.sh

3. Set up your environment:
Go to sicopolis/runs/sico_configs.sh and edit the following flags and their appropriate
directory:

e NetCDF: for forward runs, NetCDF is the best file format to view output results. If using, set
NETCDF_FLAG = "true" and supply the appropriate location of the NetCDF installation.

e LIS: if simulating Antarctica with ice shelves, you will need LIS installed. Set LIS_FLAG =
"true", and supply the location of your LIS installation. LIS can be downloaded and installed
from http://www.netlib.org/misc/lis.

e For high-resolution simulations (e.g., Greenland at 5 km or Antarctica at 10 km) you will also
need to set LARGE_DATA_FLAG = "true" .

e If using the LIS in parallel, you will want to set OPENMP_FLAG = "true".

4. Test the code by executing a template simulation of the Greenland Ice Sheet (this will minimize chances
of encountering problems with installations of the bullet-point dependencies above). To do this, copy the
template from sicopolis/runs/headers/templates/ into headers/, and from the directory
runs/ type the following.

(./sico.sh -m v5_grl20_ss25ka) >out_001.dat 2>&1 &

The options "-z" is used if you compiled SICOPOLIS manually, via the bullet points above. See the
SICOPOLIS Quick Start Manual (from sicopolis.net) if compiling using GNU Autotools, which is also
an option.

5. To see whether the test run was successful, change into the directory sicopolis/sico_out/v5_grl20_ss25ka
. In it should be several output NetCDF files, a log (.log) of the execution, and a time series ASCII file
(.ser) to which various important quantities (ice volume, grounded and floating ice area, etc.) have been
written.

www.sicopolis.net

2.2 Building OpenAD

While the SICOPOLIS source files are prepared to generate adjoint sensitivities, they will not be able to do so
without an operable installation of OpenAD. Fortunately the OpenAD build procedure is straight forward.

1. Download the OpenAD source at http://www.mcs.anl.gov/OpenAD/.
2. Change into the source directory, OpenAD/ .
3. If using bash, type source ./setenv.sh . If using c-shell, type source ./setenv.csh .

4. Copy the files IntrinsicXlationTable.cxx and inlinable_intrinsics.xaif from your
SICOPOLIS trunk directory src/subroutines/openad to the OpenAD
directories OpenAD/OpenADFortTk/src/lib/support/ and OpenAD/xaif/schema/examples/
, respectively. These two files handle the differentiation of the atan2 () function invoked in several
places in SICOPOLIS, which is not widely distributed in the larger OpenAD src package.

5. Build all components by invoking make in that same directory (it takes a few minutes).

6. NOTE: Every time you wish to use the adjoint capability of SICOPOLIS-AD, you must re-source the
environment, as in Step 3. We recommend that this be done automatically in your bash or c-shell profile
upon login.

You should now have a working copy of OpenAD.

2.3 Optional: Suggestions for building LIS, if simulating Antarctic ice shelves

The adjoint code of SICOPOLIS can differentiate models of Antarctica, including ice shelves. Ice shelves
are simulated by using a simplified form of the Stokes equation, called the shallow shelf approximation
(termed SSA in parts of the source code). To solve the momentum equation for the SSA, SICOPOLIS uses an
external library of solvers, LIS (https://www.ssisc.org/1lis/). The quick start documentation to
build and install this library is nicely detailed on that site. But we suggest that, if you use LIS, you enable the
fortran-facing options in the configuration of the installation. That is, after downloading and unzipping the
package, you run the following in the lis-<version> directory:

[lizlogan %] ./configure -prefix=<optional/installation/destination> \
—enable-fortran —-enable-£90

[lizlogan %] make

[lizlogan %] make check # to check that tests have passed

[lizlogan] make install

3 Running SICOPOLIS-AD

If both SICOPOLIS and OpenAD are installed and built, you are ready to generate adjoint sensitivities.
The adjoint code is compiled and invoked from the directory sicopolis/src/ by using the script

regression_test.sh

Everything (except for the MakefileOpenAD) pertaining to the adjoint code of SICOPOLIS is located
in the subdirectory src/subroutines/openad/ and comes bundled in the trunk. Here are the steps to
take to compile and execute the adjoint code from source files, without your own modifications.

http://www.mcs.anl.gov/OpenAD/
https://www.ssisc.org/lis/

1. Copy src/subroutines/openad/regression_test.sh,
src/subroutines/openad/preprocessor.py to src/.

2. Copy the appropriate headers (sico_specs_ant20_shelves.h for Antarctic simulation or sico_specs_new_r
for Greenland) from src/subroutines/openad/ into the subdirectory

runs/headers/ .
3. Change directory to src .
4. Invoke the script using the command . /regression_test.sh.

The regression_test.sh script does several things:

1. Selects a simulation to produce adjoint and finite difference values
Runs a "gradient check” to produce finite-difference-based sensitiviites
Compiles and runs the adjoint code

Compares outputs of both (2) and (3)

A

Writes result of comparison to a file, regression_log.txt thatremainsin src/ , and moves all
other output items to sico_out/<name of your simulation>/

Adjoint values must be checked against their corresponding finite differences, in what is termed here the
gradient check. Since adjoints offer the sensitivity of a quantity of interest versus a control variable, this can
be done by selecting a control variable and perturbing it in the positive and negative direction at a certain
location. For example, if we wish to know how the Greenland Ice Sheet volume is sensitive to changes in
surface temperature, we might run the original, forward code SICOPOLIS twice to completion to generate the
ice sheet volumes for a positive and negative epsilon in surface temperature, and then calculate the sensitivity
via

AV V(zH4e)—V(r—e)

Az 2e
In this case, V() is the "cost" function, or the volume of the Greenland Ice Sheet, and x is the control variable,
or temperature, ¢ is the perturbation in temperature (usually lel works for temperature), and % is the finite
difference-based gradient. This is the value we compare with the adjoint-generated sensitivity to assess
whether the adjoint code is producing reasonable values.
The script regression_test.sh generates these finite differences along a single line throughout the
domains of both Greenland and Antarctica and writes these finite differences to a file that is ultimately moved
to sicopolis/sico_out/<name of your simulation>/
The default control variable against which the adjoint code is compared is H_c , or the thickness of cold (as
opposed to temperate) ice.

3.1 Execution time

The time for adjoint runs of SICOPOLIS to complete are not equal to the length of time for completion of
a single forward code sweep. The Quickstart manual for SICOPOLIS (www.sicopolis.net) details
the completion time of SICOPOLIS for the pre-designed simulations that are contained in the trunk of the
SICOPOLIS repository. The defining difference for SICOPOLIS-AD execution time depends essentially on
whether or not shallow-shelf dynamics are included in the simulation. In this case, the external solver library
LIS is invoked and the completion time of any execution greatly increases.

www.sicopolis.net

4 Making changes to the code

We expect that you may wish to make changes to the adjoint source code. This section gives a brief overview
of what comes standard in the trunk and where you can make changes. We also present some "best practices"

for making changes.

4.1 Default adjoint settings

The adjoint code supplies the sensitivities to multiple control variables in one execution. The default control

variables are as follows.

H ¢

c_drag

c_slide

VX_C
temp_ma_present
sigma_c
vis_int_g
dzs_deta_g
dzs_dxi_g

Q_bm

Q_tld

acc_fact
calv_grounded
temp_c (surface)
temp_c (basal)
c_drag
precip_present

g_geo

cold ice thickness

basal drag parameter

basal sliding parameter

horizontal velocity in the cold ice in the x-direction
mean annual temperature

effective stress in the cold domain

depth-integrated ice viscosity (ANT only)

surface topography derivative of y-coord

surface topography derivative of x-coord

basal melting rate

water drainage from temperate layer

multiplying factor against current precipitation
calving rate of grounded ice

temperature of the (upper) cold layer

temperature of the (lower) cold layer (only certain simulation options)
quantity related to computation of basal drag
present-day mean monthly precipitation rate
geothermal heat flux

If you wish to calculate sensitivities for variables not specified by default, you will have to modify three
different files, and sometimes multiple parts of one file. Following are the places where customizing the

control variables takes place.

1. In src/preprocessor.py

!#ifdef ALLOW_OPENAD
! Sopenad INDEPENDENT
! Sopenad INDEPENDENT
! Sopenad INDEPENDENT

! Sopenad INDEPENDENT (vx_c)
! Sopenad INDEPENDENT (temp_c)

drag)
c_slide)

: independent (control) variables are supplied with the syntax

!Sopenad INDEPENDENT (temp_ma_present)

!Sopenad INDEPENDENT (sigma_c)

!Sopenad INDEPENDENT (q_geo)

! $openad INDEPENDENT (vis_int_g)
!$openad INDEPENDENT (dzs_deta_g)
!'$Sopenad INDEPENDENT (calv_grounded)
!'Sopenad INDEPENDENT (dzs_dxi_g)

! Sopenad INDEPENDENT (Q_bm)
! Sopenad INDEPENDENT (Q_tld)
acc_fact)

!$openad INDEPENDENT
l#endif

(H_
(c
(
(
(
(
(
! Sopenad INDEPENDENT (precip_present)
(
(
(
(
(
(
(
(

Simply replace H_c or or add new lines using the same syntax with the variable of your choice.

2. In sicopolis/src/subroutines/openad/ modify ctrl_m.F90 in the following two subrou-

tines.

(a)

(b)

In subroutine ctrl_init () add lines following the syntax used for xxH_c or xxtemp_c .

! CHOICE OF CONTROL VARIABLE IS MADE HERE:
double precision, dimension (0:JMAX,0:IMAX) :: xxH_c

and

! 3D controls:

do k=0, KCMAX

do j=0, JMAX
do i=0, IMAX

xxtemp_c (k,j,1) = 0.0d0
xxvx_c(k,Jj, 1) = 0.0d0
xxsigma_c(k, j,1) = 0.0d0
end do
end do
end do

Note the changes in syntax for two and three dimensional arrays. Arrays are initialized by
nested do-loops, setting each array xxvar (k,i,3,...) = 0.0d0, as shown above for the
3D controls. xxH_c shown above is a 2D variable, and thus is initialized first by declaring it,
including its dimension, and assigning each element in the array to zero, using a nested do loop
over the 2 indices.

In subroutine cost_independent_init () add lines following the syntax used for xxH_c or
xxtemp_cC.

subroutine cost_independent_init ()

implicit none

integer(idb) :: i, Jj, k
double precision, dimension (0:JMAX,0:IMAX) :: xxH_c
and

! 3D controls:
do k=0, KCMAX
do j=0, JMAX
do i=0, IMAX

temp_c(k, j, i) = temp_c(k,j, i) + xxtemp_c(k,Jj, 1)
sigma_c(k, j,1) = sigma_c(k,j, i) + xxsigma_c(k,], 1)
vx_c(k,j,1) = vx_c(k,3j, 1) + xxvx_c(k,3, 1)
end do
end do
end do

3. In openad_m.F90 are three subroutines to modify.

(a)

(b)

()

In subroutine grdchk_main () search for the strings

! store original value that will be perturbed

! and then perturb it (note: direction(l) = 0)

! —— H_c

orig_val = H_c(j,1)

H_c(j,i) = orig_val * (1 + direction(d)*perturb_val)

and replace H_c with the variable of your choice.

In subroutine print_output () , search all locations of H_c and copy and paste accordingly for
your chosen control variable. The default location of the output of that file is in sicopolis/src/
, which is where the executable operates.

For OpenAD to parse SICOPOLIS and retain adjoint values for your chosen control variable,
it must be "active". In this case, go to the subroutine var_transfer () . Search for the line
with your control variable, and ensure that a $v follows it in the declaration. For example, if
you decided to include foo_bar as a control variable, then search for the line foo_bar =
a_foo_bar and change it to foo_bar%v = a_foo_bar . An example of the syntax for an
active variable followed by an inactive variable is as follows.

calv_grounded%v = a_calv_grounded
calv_grounded_apl = a_calv_grounded_apl

10

WARNING: Making changes to the source code can be fraught with error! In the process you likely will
encounter some error messages because of the changes you made. Proceed with extreme deliberation and
caution. If you run into errors send contact to: liz.curry.logan@gmail.com .

4.2 Creating your own adjoint test case

We expect that you will want to create your own adjoint scenario. In regression_test.sh are a number
of "header" files that can be selected; to create your own case, you make your own header files (2 files) and
place them in sicopolis/runs/headers/ . Currently, the regression_test.sh has several different
scenarios that can be run by declaring the header file names to be tested. Here is an example.

SRC_PATH=$PWD

OUT_PATH=$SRC_PATH/../sico_out/OAD

HEAD_PATH=$SRC_PATH/../runs/headers

OAD_PATH=$SRC_PATH/subroutines/general/openad

Default header file options to be tested (if you wish to test a custom one,

modify the header string here):

#declare —a HEADER_FILE=("v5_ant64_b2_spinup09")

declare -a HEADER_FILE=("ant20_shelves_100y")
#declare -a HEADER_FILE=("grl20")

This means that the regression_test.sh will search for two different header files with the string
ant20_shelves_100y and compile two different executables based on them to be run in sequence: first
the gradient check (executable HEADER_FILE_GRDCHK.exe) and second the adjoint code (executable
HEADER_FILE_OAD.exe). To compile the gradient check executable, regression_test.sh searches
for the header file in headers/ thatis prepended by "sico_specs_v5_" and appended by "_GRDCHK.h ",
or in this case

sicopolis/runs/headers/sico_specs_v5_ant20_shelves_100y_GRDCHK.h

This file is just like a normal part of the SICOPOLIS development trunk except that at the end it contains
the C-preprocessor macro definitions:

#define ALLOW_GRDCHK
#define ALLOW_COST

Similarly, in the second half of the regression_test . sh, the adjoint executable HEADER_FILE_OAD.exe
is compiled with the analogous file:

sicopolis/runs/headers/sico_specs_v5_ant20_shelves_OAD.h
that, instead of the ALLOW_GRDCHK preprocessor option at the end contains the option

#define ALLOW_OPENAD
#define ALLOW_COST

The two files must match each other exactly except for two lines: in their RUNNAME and at the end where
either ALLOW_OPENAD or ALLOW_GRDCHK is defined. When you are ready to make your own adjoint test
case, simply copy any header file in sicopolis/runs/headers/templates/ to the directory headers/
two times, once with _GRDCHK.h and once with _OAD.h as file name suffixes, and at the bottom of each
header file insert the appropriate #define <MACRO> .

Then, in regression_test.sh, replace (or add) to the HEADER_FILE variable your file name. If your
test case’s header is sico_specs_v5_foo_barx.h, then you will insert

declare —-a HEADER _FILE=("foo_bar") .

11

Once you have your two header files created and appointed in the regression_test.sh, you are ready
to test your own case. Simply run the shell script.

5 General advice for changing the source

The adjoint code of SICOPOLIS was created by algorithmic differentiation: basically, OpenAD (the source
transformation tool) parses the source files of SICOPOLIS and differentiates, line by line, to collect and
output adjoint sensitivities. This means that, in the trivial case where your source code is simply the line

Y=2.0 X
and your independent and dependent (or control and cost function) variables are X and Y , the adjoint
sensitivity is 2.0 .

You should try not to insert anything non differentiable into the code. If you do, OpenAD will likely
complain and fail to compile. Worse, it may silently generate derivative code that is incorrect. Examples of
non differentiable functions are
abs (X) , or absolute value;
sgrt (0) , or square roots evaluated at zero;
exit ;
go to;
modulo ;

if (X.1t.0) then
Y = X

else
Y =2.0 « X

For the piecewise linear example given, the slope is 1 for X less than 0, and 2 for X greater than zero, but
not defined at X. Another common source of errors is the assumption that the AD tool understands algebraic
simplification. For example

if (a .eq. 1.0) then

y = Db

elseif (a .eq. 0.0) then
y =0

else
y = axb

The intention may have been to compute y=a xb+b«4a, but the simplification prevents it.

6 Tested architecture and compute times

SICOPOLIS-AD has been built successfully on computers at the University of Texas, Argonne National
Laboratory, and the Massachusets Institute of Technology.
These are the following CPU specifications:

CPU architecture
Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz | x86_64
Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz | x86_64

12

The following compute times have been calculated for Antarctic (with ice shelves) and Greenland simula-

tions at different resolutions:

Domain | resolution (km) | time step (years) | compute time (per 100 yr) (minutes)
ANT 64 1 20

ANT 40 04 75

ANT 20 0.2 600

GRL 40 2 5

GRL 20 1 10

GRL 10 0.5 140

While SICOPOLIS has the ability to calculate the dynamic and thermodynamic equations at different time

steps, we found that calculating the thermodynamics at the same frequency yielded the most stable results.

7

Acknowledgements

This work was funded in part by support from the National Science Foundation and the U.S. Department of
Energy, Office of Science, under contract DE-AC02-06CH11357.

References

(1]

(2]

(3]

[4]

[5]

Ralf Greve. A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical

Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
355(1726):921-974, 1997.

Tobin Isaac, Georg Stadler, and Omar Ghattas. Solution of nonlinear stokes equations discretized by high-
order finite elements on nonconforming and anisotropic meshes, with application to ice sheet dynamics.
SIAM Journal on Scientific Computing, 37(6):B804-B833, 2015.

Patrick Heimbach and Veronique Bugnion. Greenland ice-sheet volume sensitivity to basal, surface and
initial conditions derived from an adjoint model. Annals of Glaciology, 50(52):67-80, 20009.

E. Larour, J. Utke, B. Csatho, A. Schenk, H. Seroussi, M. Morlighem, E. Rignot, N. Schlegel, and
A. Khazendar. Inferred basal friction and surface mass balance of the northeast Greenland ice stream

using data assimilation of icesat (ice cloud and land elevation satellite) surface altimetry and issm (ice
sheet system model). The Cryosphere, 8(6):2335-2351, 2014.

Daniel N Goldberg, Sri Hari Krishna Narayanan, Laurent Hascoet, and Jean Utke. An optimized treatment
for algorithmic differentiation of an important glaciological fixed-point problem. Geoscientific Model
Development, 9(5):1891-1904, 2016.

13

SICOPOLIS-AD is free and open-source software. It can be redistributed and/or modified under the terms
of the GNU General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at the user’s option) any later version.

SICOPOLIS-AD is distributed WITHOUT ANY WARRANTY and the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

14

Argonneé

NATIONAL LABORATORY

Mathematics and Computer Science Division

Argonne National Laboratory
9700 South Cass Avenue, Bldg.
Argonne, IL 60439

www.anl.gov

b, U.S. DEPARTMENT OF

@ ENERGY

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

	Introduction
	Building SICOPOLIS-AD
	Building the source code SICOPOLIS
	Building OpenAD
	Optional: Suggestions for building LIS, if simulating Antarctic ice shelves

	Running SICOPOLIS-AD
	Execution time

	Making changes to the code
	Default adjoint settings
	Creating your own adjoint test case

	General advice for changing the source
	Tested architecture and compute times
	Acknowledgements

