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Abstract—The fabless business model has given rise to many
security threats, including piracy of intellectual property (IP),
overproduction, counterfeiting, reverse engineering (RE), and
hardware Trojans (HT). Such threats severely undermine the
benefits of the fabless model. Among the countermeasures devel-
oped to thwart piracy and RE attacks, logic locking has emerged
as a promising and versatile solution that is being adopted by
both academia and industry. The idea behind logic locking is to
lock the design using a “keying” mechanism; only the rightful
owner has control over the locked design. Therefore, the design
remains non-functional without the knowledge of the key.

In this paper, we survey the evolution of logic locking over
the last decade. We introduce various ‘“cat and mouse” games
involved in logic locking along with its novel applications—
including, processor pipelines, graphics-processing units (GPUs),
and analog circuits. We aim this paper to be a primer for
researchers interested in developing new logic locking techniques
and employing logic locking in different application domains.

Index Terms—Design for security, Intellectual property pro-
tection, Hardware supply-chain security, Logic locking, Boolean
satisfiability

I. INTRODUCTION
A. Design-for-trust (DfTr) Techniques

The increasing cost of integrated circuit (IC) manufac-
turing has forced many companies, such as Qualcomm and
Broadcom, to operate fabless: i.e., outsource the expensive
fabrication process to offshore foundries such as TSMC and
Samsung. Today, there are approximately 1350 fabless design
companies [11]. While this outsourcing has provided many
benefits such as reduction in cost and time-to-market, the in-
creased accessibility of valuable assets to potentially untrusted
entities has led to many security vulnerabilities [12]. Hardware
security threats include IP piracy by rogue agents in integra-
tion houses, unauthorized overproduction of ICs at offshore
foundries, counterfeiting of ICs at recycling facilities [13], RE
by untrusted end-users [14], and insertion of hardware Trojans
at multiple avenues in the IC supply chain [12], [14]-[16].
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TABLE 1
PROTECTION OFFERED BY DFTR TECHNIQUES AGAINST UNTRUSTED
ENTITIES IN THE IC SUPPLY CHAIN. v/ DENOTES THAT A TECHNIQUE CAN
PROTECT PIRACY CONDUCTED BY AN UNTRUSTED ENTITY. X DENOTES
THAT A TECHNIQUE CANNOT PROTECT PIRACY CONDUCTED BY AN
UNTRUSTED ENTITY.

DfTr Technique 3PIP SoC Foundry Test End-
vendor | integrator facility | user
Watermarking [17], [18] X X X v v
Camouflaging [21]-[23] X X X X v
Split manufacturing [25], [26] X X v X X
Metering (passive) [19], [20] X X X v v
Logic locking [1]-[10] v v v v v

Over the last decade, researchers have developed a plethora
of defense solutions to enforce security and trust in the IC
supply chain. Collectively referred to as DfTr techniques, these
defenses include: 1) watermarking that embeds a designer’s
signature into the design [17], [18], 2) metering that enables
tracking of individual ICs throughout their lifetime [19], [20],
3) camouflaging that introduces look-alike structures at the
layout-level [21]-[24], 4) split manufacturing that involves
partial fabrication at two separate foundries [25], [26], and 5)
logic locking that locks a design with key-controlled protection
logic [1]-[10], [27].

Logic locking can protect against potential attackers located
anywhere in the IC supply chain. This can include a rogue
system-on-chip (SoC) integrator, an untrusted foundry, an
untrusted test facility, or a malicious end-user. As illustrated
in Table I, most of the other DfTr techniques, such as cam-
ouflaging or split manufacturing, can only protect against a
limited set of malicious entities. Consequently, logic locking
has garnered significant interest, not only from the research
community but also from industry and government agencies.
Mentor Graphics, a major computer-aided design (CAD) tool
provider, has launched TrustChain, a framework that sup-
ports logic locking and camouflaging [28]. Defense Advanced
Research Projects Agency (DARPA) has recently started the
Obfuscated Manufacturing of GPS program to develop locking
techniques against an untrusted foundry [29].

B. Logic locking

Logic locking modifies the target design-to-be-protected by
locking the original design with a secret key; the resulting
design is then called the locked design. As illustrated in Fig. 2,
in addition to the functional inputs, the locked design also
has key inputs. These key inputs carry the secret key to the
the locked design. Only upon applying the correct values to
the key inputs, which collectively form the key, the locked
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Fig. 2. An illustration of a locked design. Only on applying the correct key,
the design is functional [30].

Fig. 3. An illustration of logic locking with the original and locked circuit [1],
[31]. The correct key value is 100.

design becomes functionally equivalent to the original design.
The key is stored in a secure, tamper-proof memory, whose
contents cannot be tampered with or accessed outside the chip.

As shown in Fig. 1, the locking procedure is carried out
in the trusted design house. The locked netlist passes through
the untrusted design and manufacturing phases. Without the
secret key, the attacker cannot obtain the original design. Thus,
locking prevents the attackers from reverse engineering (RE)
or overproducing the design. Moreover, it makes it harder
to identify safe places to insert hardware Trojans [30], [32].
Upon fabrication, a chip is activated by loading the secret key
onto the chip either 1) in a trusted facility or 2) remotely via
a secure key exchange protocol (see Section II-D), thereby
making the chip functional [1], [33].

Example. Fig. 3 shows an original netlist and its locked
version, which is obtained by inserting three XOR/XNOR key-
gates into the original netlist. The correct key for the netlist is
100, which effectively turns all key-gates into buffers, leading
to the correct output. For an incorrect key, however, errors are
introduced in the circuit output.

C. Evolution of logic locking

Over the years, many locking techniques have been devel-
oped. In the earliest ones, locking is facilitated by inserting
XOR/XNOR gates [1]-[3] or look-up tables (LUTs) [34].
Later, techniques based on VLSI testing principles have been
proposed to increase the effectiveness of locking techniques,
i.e., an incorrect key should result in incorrect output [35],
[36]. This has also led to many key-recovery attacks that
exploit the vulnerabilities of logic locking techniques [2],

[33], [36]-[38]. A powerful attack that has broken all the
aforementioned techniques is the Boolean satisfiability (SAT)-
based key-pruning attack, referred to as the SAT attack. The
research in the post-SAT era focuses on defending against
the SAT attack through the use of primitives such as point-
functions [4], [5], [39]. The emphasis on a specific class of
security primitives has spawned newer classes of attacks such
as removal attacks [10], [40], [41] and approximate attacks [8],
[9]. Traditional, as well as newer side-channel attacks such
as differential power analysis (DPA) attack [36], template-
based power analysis attack [42], and test-data mining (TDM)
attack [33] have also been mounted on logic locking. This
“cat and mouse” game continues until today with the SAT
attack being the most notable attack and the point-functions
being the most widely adopted security primitive [4], [5], [7],
[39]. Besides combinational logic locking, sequential locking
techniques that lock/obfuscate finite state machine (FSM) have
also been developed [19], [43], [44].

Beyond the traditional use in locking the functionality of
a circuit, recent research also reveals unconventional appli-
cations of logic locking. Logic locking is now being de-
ployed to lock the parametric behavior, e.g., timing and
performance, of not only general processing units (GPUs)
and processors [45] but also analog and mixed-signal (AMS)
circuits [46]. Application-specific logic locking in the context
of digital signal processing (DSP) circuits and microfluidic
biochips is also being explored [47], [48]. These diverse
developments span more than a decade of research. The
increasing interest in logic locking and its applications have
given rise to the need for a systematization-of-knowledge in
this emerging field.

D. Contributions

The primary goal of this paper is to survey the research in
logic locking, systematizing the knowledge, trends, and future
research directions. We aim that this paper can be used as
a primer for logic locking by electronic design automation
(EDA) researchers, VLSI engineers, security experts, circuit
designers, and others interested in the general realm of hard-
ware security. The contributions of the paper are:

« Surveying the major logic locking techniques and attacks
published in the literature.

« Classifying the existing attacks and defenses to elucidate
which defense techniques are resilient against what attacks.

« Elaborating the new applications of logic locking, which are
beyond just protecting the functionality.

« Summarizing the trends in the field of logic locking and
highlighting future research directions.
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Fig. 4. Classification of logic locking attacks and defenses. Random Logic Locking (RLL) [1], [31], Fault-analysis-based Logic Locking (FLL) [3], Strong Logic
Locking (SLL) [2], [49], Stripped Functionality Logic Locking (SFLL) [30], One Way Function-based lock (OWF-lock) [49], Sensitization attack (Sens.) [2],
Boolean SATisfiability (SAT) [38], Cyclic SAT (CycSAT) [50], Satisfiability Modulo Theories (SMT) [51], Signal Probability Skew (SPS) [41], Approximate
SAT (AppSAT) [8], AppSAT-Guided-Removal (AGR) [40], Sensitization-Guided-SAT (SGS) [40], Differntial Power Analysis (DPA) [36], Structural Analysis
using machIne Learning (SAIL) [52], De-synthesis (de-synth) [53], Double Distinguishing Input Pattern (2-DIP) [9], HARdware Protection through Obfuscation

Of Netlist (HARPOON) [43], Strongly Connected Component (SCC) [54]-[56], and Bounded Model Checking (BMC) [57], [58].

The paper is organized as follows. Section II presents the
threat model utilized by logic locking, the protocol used
for activating locked ICs, and classification of logic locking
attacks and defenses. Sections III-VI focus on combinational
logic locking. Specifically, Section III discusses the pre-SAT
logic locking techniques, while Section IV focuses on the
SAT and other oracle-guided attacks. Section V highlights
various post-SAT defenses. However, it should be noted that
many of these defenses are vulnerable to the removal and
approximate attacks, as detailed in Section VI. In Section VII,
we elaborate on the sequential logic locking defenses and
attacks. Section VIII highlights how traditional logic locking
has found new applications in innovative ways. Section IX
summarizes the challenges and future research directions and,
finally, Section X concludes the paper.

II. LoGIiCc LOCKING IN IC SUPPLY CHAIN

In this section, we describe how logic locking is used in an
IC supply chain to protect a design from the untrusted entities.
To this end, the threat model is explained, detailing the capa-
bilities of the defender and the attacker, and more importantly,
their constraints. This is followed by a classification of logic
locking defenses and attacks.

A. Threat model

The de-facto threat model, followed by the latest logic
locking research, assumes that only the IP owner has access
to the proprietary design details and the secret key within
the trusted design regime [1], [2], [8], [9], [36]-[38], [42],
[50], [57], [59]. The attacker could be an untrusted: 1) SoC
integrator, 2) foundry, 3) test/assembly facility, or 4) end-user.
The attacker’s objective is to pirate the valuable IP either
through theft or RE, overbuild or counterfeit the IC design.
Since the core of IP piracy is complete/partial RE, we describe
it in more detail in the following section.

Reverse engineering (RE). A malicious end-user can ob-
tain the locked gate-level netlist by utilizing state-of-the-art
RE techniques [60]. RE of an IC is a process of identifying
its structure, design, and functionality. RE is a multi-step
process involving de-packaging an IC, delayering it, imaging
individual layers, and analyzing the collected images to extract
the netlist [14]. Companies such as Chipworks [61] and Silicon
Investigation [62] provide RE services. Degate [63] offers tools
to aid RE. There are many tutorials available for RE [64].
Technology node scaling has not hampered RE [65].

The standard logic locking threat model assumes that the
attacker has access to the following:

1) Locked netlist. An end-user can obtain the locked netlist by
RE an IC. An attacker in the untrusted foundry can extract
the same information from the GDSII files containing the
layout delivered to an untrusted foundry for fabrication.

2) Activated chip. The attacker can buy an activated chip
(ak.a. functional IC) from the market. A functional chip
serves as an oracle to an attacker who can apply inputs
of his/her choice and can observe the correct outputs. The
presence of oracle enables oracle-guided attacks.

Logic locking assumes that the attacker cannot insert probes
into a logic-locked IC to read the secret key. While this
straightforward attack can quash logic locking, it also leads to
a wider security problem of leaking secrets from the chip [66].
However, protection mechanisms, such as analog shields, exist
to prevent such attacks [67]. Logic locking (as well as other
DfTr countermeasures) typically assume that such protection
mechanisms are in place to prevent probing attacks.

B. Practical concerns: Unique keys for each IC

Logic locking, by itself, locks all fabricated circuits with
a common key. If this common key is directly given to a
malicious user, she/he can leak it to the untrusted foundry.
The foundry can then use this key to unlock the overproduced
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chips. To defeat this type of attack, the designer must have
unique keys for every chip. In this way, a user cannot distribute
the keys she/he obtained for one chip to unlock other chips.
To facilitate this mechanism, one needs a device-specific ID.
Circuits such as physical unclonable functions (PUFs) or
true random number generators (TRNGs) can be utilized to
generate unique keys for each IC.

PUFs leverage process variations to generate unique
challenge-response pairs for each fabricated device [68]. Upon
power-up, a PUF is supplied with a challenge; the unique PUF
response can serve as the secret key for the chip, which is
loaded to the on-chip tamper-proof memory. Upon recording
the PUF response, read access to PUF output is disabled.
As explained in the next subsection, with the availability of
on-chip crypto infrastructure, the designer may deliver the
common key remotely to the chip [1], [19]. PUF circuits
can themselves be error-prone, leading to erroneous responses
and thus generating erroneous common keys. To alleviate
this problem, researchers have developed coding schemes to
correct the errors generated in PUFs response [68].

C. Tamper-evident memories

Semiconductor companies, such as Maxim Integrated [69]
and Altera [70], have been designing tamper-proof memory
designs. In fact, such memories are used not only for logic
locking, but also to store cryptographic keys in access-control
systems, network-storage servers, set-top boxes, etc. [71].
DS3660 chip from Maxim Integrated is an example of tamper-
proof memory. A directive from the U.S. Department of
Defense enforces that systems should have anti-tamper prop-
erty [72].

Anti-tamper memories that are equipped with sensors,
interlocks, and anti-tamper meshes offer protection against
physical-tampering attacks and can have a storage capability
of at least a few kilobytes. On detecting an attack, they have
provisions to erase internal data; in case of logic locking,
the secret keys are erased, rendering probing attacks ineffec-
tive [73].

Logic locking techniques can leverage an on-chip instance
of such memory designs. The size requirement (few hundred
bits) will be substantially less than the size of memories (few
Kbytes at least) offered by companies. Such memories can be
either on-chip or off-chip but in the context of logic locking,
on-chip memory is preferred, as an attacker can snoop on the
wires carrying the keys. While this can be prevented by using
a secure communication link, this approach may prove cost
prohibitive.

D. Remote activation protocol

A locked chip can be activated in a secure facility by
the IP owner, which requires shipping of fabricated chips
to the trusted facility. An alternative is to activate the chips
at the foundry itself by making use of on-chip public key
cryptography. As previously mentioned, unique keys for each
fabricated chip may be generated by making use of PUFs or
TRNGs. The EPIC — ending piracy of integrated circuits

— protocol for remote activation of a locked chip is as
follows [31]:

Step 1: As illustrated in Fig. 6, the designer locks the design
with a common key (CK). She/He also embeds her/his public
key MK-Pub in the design. The target chip contains a public-
key cryptographic algorithm (e.g., RSA) and a PUF/TRNG.
The locked design is sent to the untrusted foundry, where
the chip is manufactured and tested for defects. Note that
during the testing process, the key need not be loaded onto
the chip [33].

Step 2: Upon first power-up, the chip generates a random
number using the PUF/TRNG, which is consequently used to
generate a public-private key pair, RCK-Pub and RCK-Pri,
respectively. The foundry reads RCK-Pub and sends it to the
designer.

Step 3: The designer encrypts CK with RCK-Pub and signs
it with MK-Pri to obtain the user key (UK).

Step 4: The designer provides UK to the user of the chip,
who then applies it and activates the chip. The RSA module
within the chip decrypts UK with MK-Pub and RCK-Pri to
obtain CK, enabling activation of the chip.

E. Classification of logic locking

We classify logic locking broadly into combinational and se-
quential categories. As shown in Fig. 4, in each category, there
are multiple classes of attacks and defenses. The combinational
locking techniques can be divided into pre-SAT and post-SAT.
The pre-SAT defenses, which lock a circuit using XOR/XNOR
or MUX key-gates, include random (RLL) [1], [31], fault-
analysis-based (FLL) [3], strong (SLL) [2], [49], and LUT-
based [34] logic locking. The post-SAT defenses branch off
into four sub-categories: point-function-based locking [4], [5],
[39], [74], stripped-functionality logic locking (SFLL) [30],
cyclic locking [50], [75]-[80] and one-way function-based
locking (OWF-Lock) [49] (see Section V).

The combinational locking attacks fall into four classes: 1)
algorithmic, 2) approximate, 3) removal, and 4) side-channel
attacks. The algorithmic attacks exploit the algorithmic weak-
nesses of logic locking techniques to retrieve the exact correct
key. These attacks include the sensitization [2], SAT [38],
cyclic SAT (CycSAT) [50], and satisfiability modulo theory
(SMT) attack [51]. The approximate attacks, e.g., approximate
SAT (AppSAT) [8] and double-distinguishing input pattern
(double-DIP) [9], are variants of the SAT attack that recover
only an approximate key. The removal attacks [40], [41] (see
Section VI-A) utilize the structural properties of a netlist
to distinguish the protection logic from the original circuit.
The side-channel attacks include power side-channel attacks
(DPA [36], [81] template-based [42]), test data attacks [33],
[37], the de-synthesis attack [53] and the structural analysis
using machine learning (SAIL) attack [52].

The sequential logic locking research focuses on locking
(holding) the FSM in a set of obfuscated states until the
correct input sequence (key) is applied. In boosted FSM
(BFSM) [19] and HARPOON — hardware protection through
the obfuscation of the netlist [43], there is a distinction
between obfuscated and normal states. This distinction is
minimized in subsequent techniques [44], [82], [83].
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Fig. 6. EPIC protocol for remote activation of the locked chip [1], [31].

There are only a handful of attacks on sequential locking.
The first class of attacks aims at RE a netlist, identifying
the state registers, and reconstructing the FSM [44], [54]-
[56]. These attacks are based on Tarjan’s strongly connected
component (SCC) identification algorithm. The second class
of sequential locking attacks is based on bounded-model-
checking (BMC) [57], [58].

III. PRE-SAT LoGIc LOCKING

This section focuses on the logic locking techniques intro-
duced prior to the advent of the SAT attack. These techniques
are the earliest attempts at thwarting IP piracy conducted by
either an untrusted foundry or an untrusted end-user. None
of these techniques are secure against SAT attack and are
provided to explain the evolution of logic locking techniques.

A. Random logic locking (RLL)

EPIC introduced the first protocol and methodology for
logic locking [1], [31]. EPIC locks a design by inserting
XOR/XNOR gates at k& random locations in a netlist while
simultaneously meeting the timing constraints. For example,
k = 3 key-gates are inserted randomly in the netlist in Fig. 3.
To eradicate simple one-to-one between mapping the key-gate
type (XOR/XNOR) and the key values (0/1), EPIC introduces
additional inverters at the output of selected key-gates and
bubble-pushes the inverters around the netlist.

B. Look-up table (LUT)-based locking

Instead of using XOR/XNOR gates as key-gates, LUTs
can also be deployed [34]. The contents of the LUTs act as
the secret key and thus as the logical barriers. Correct LUT
programming ensures that the information flows within the
design as desired. Modifications to the information flow lead

to incorrect output, as illustrated in Fig. 5. The LUTs may be
strategically placed using observability don’t cares, such that
incorrect keys will result in an optimal output corruptibility of
50% [34]. The output corruptibility represents the Hamming
distance (HD) between the correct outputs and the incorrect
outputs, obtained on applying random incorrect. An HD value
of 50% results in the maximal ambiguity for the attacker.
Subsequent research suggests that lightweight and secure
implementation of LUTs can be generated by 1) entangling
smaller LUTs together [84], or 2) utilizing emerging technolo-
gies such as spin transfer torque to construct LUTs [85]-[87].

C. Fault-analysis-based logic locking (FLL)

RLL does not guarantee that an incorrect key leads to an
incorrect output for all/most the input patterns. This causes the
output corruptibility to remain relatively low (< 50%) [3]. FLL
utilizes the principles of VLSI testing to insert key-gates at
locations that lead to the optimal output corruptibility of 50%.
FLL characterizes the influence of a gate location G on the
output using the notion of fault impact (F'I) that encapsulates:

1) How many input patterns can activate a stuck-at-x, x €

{0,1} fault at the output of the gate G (NoP,)?
2) Given a stuck-at fault at location GG, how many primary
outputs are affected (NoO,)?

Flg = (NoPy x NoOg) + (NoPy x NoOy) (1)

By inserting XOR/XNOR key-gates at the output of the
gates with the highest F'I, an invalid key likely has the most
impact on the outputs. This enables FLL to achieve an HD
value of 50% [3]. XOR/XNOR key-gates can also be com-
bined with MUX key-gates to achieve the same objective [88],
[89].

Variants of FLL. The FLL algorithm is iterative; fault
simulation is re-conducted upon insertion of each key-gate,
leading to a large execution time. Centrality-indicator-based
locking reduces the computational effort of FLL by travers-
ing the circuit graph only once to compute metrics such
as closeness-centrality and between-centrality [90]. Candidate
locations are sorted based on the metric of interest, and
the key-gates are inserted at the best k& locations. Weighted
logic locking (WLL) achieves a higher corruptibility with a
fewer key-gates [91]. A traditional XOR gate, with the key
input connected directly to a key-bit, introduces an error with
50% actuation probability. In WLL, an XOR key-gate is
fed by multiple key-bits through additional AND/OR gates,
which increases the actuation probability and leads to a higher
output corruptibility. As simulating faults is computationally
expensive, FLL can be significantly accelerated through field
programmable gate array (FPGA) emulation [92]. This tech-
nique inserts key-gates at all candidate locations and loads the
design to an FPGA, enabling faster fault simulation through
the dynamic assignment of key values.

D. Strong logic locking (SLL)

RLL and FLL can be broken using the sensitization attack
(see Section IV-A), which can leak the secret key, one bit at
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Fig. 7. A circuit locked using SLL [2]. Neither K1 nor K2 can be propagated
to the output without controlling the other key-bit [2], [49].

a time, through the primary outputs. SLL hampers the attack
by ensuring interdependence among key-gates and making it
infeasible to sensitize the key-bits one at a time [2], [49]. As
shown in Fig. 7, the attacker can control the value of both nets,
A and B, by applying inputs of her/his choice. However, to
determine the final output Ol1, she/he needs to know both K1
and K2 simultaneously. K1 and K2 are pairwise secure since
neither of them can be sensitized to O1, without knowing or
controlling the other key-bit.

Another similar countermeasure to the sensitization attack
is key-inter-dependency-based locking (KLL) [93]. This tech-
nique iteratively inserts a key-gate GG using FLL and then
inserts key-gates in the logic cone of G to hamper sensiti-
zation. It also introduces a key-dependency block, comprising
multiple layers of XOR/XNOR gates. Thus, the key-bits are
fully mixed before being fed to the subsequent key-gates [93].

IV. ATTACKS ON PRE-SAT LOGIC LOCKING

In this section, we present attacks launched against pre-
SAT logic locking. The most notable among these attacks is
the SAT attack, which has altered the field of logic locking.

A. Sensitization attack

The sensitization attack is the first oracle-guided attack.
It determines individual key-bits by generating and applying
patterns that sensitize them to the primary outputs of a
functional IC [2]. For the locked netlist in Fig. 3, the key-
bit K3 can be sensitized to the output O if the upper input to
the gate G4 is set to O (its non-controlling value). This can
be achieved by setting 13 = 0 and /2 = 0, regardless of the
value of K1 and K2. Thus, when the input is set to 000, the
output O will be equivalent to K3. To propagate K1 to the
output, K3 is set with the value determined from the previous
step. Likewise, K2 is found by setting K1 and K3 with the
predetermined values. This attack circumvents RLL and FLL;
however, it cannot break SLL [49].

B. Logic cone analysis (LCA) attack

A circuit can be divided into sub-circuits (a.k.a. logic
cones), each consisting of the gates in the transitive fan-in
of a primary output [88]. For RLL and FLL, the number of
key inputs in individual logic cones may be relatively small,
enabling brute-force attacks. A similar divide-and-conquer
approach is adopted by the DPA attack [36], [81].

T S Get functional K
: t'-::'l-“:-p 2 IC output % 2

Return correct
key

Fig. 8. Flowchart of the SAT attack [38].
Ky ; O
Netlist copy 1 Il Y ; diff
K, Netlist copy 2
0.
Fig. 9. Miter circuit to compute DIPs [38].

C. Boolean Satisfiability (SAT) attack

The SAT attack is the most effective of all logic locking
attacks [38]: it can easily circumvent all the techniques dis-
cussed in Section III. The attack iteratively rules out incorrect
keys using DIPs [38]. A DIP X, is an input value for which
(at least) two different keys, K1 and K2, produce differing
outputs, O1 and O2, respectively. Since O1 and O2 are
different, at least one of the key values is incorrect. In practice,
a single DIP can eliminate multiple incorrect keys.

The DIPs are computed by constructing a miter circuit
shown in Fig. 9. The primary inputs are common to the two
copies of the locked circuit, while the key inputs are left
independent. The corresponding outputs of the two circuits
are XORed and then ORed to generate the diff signal. The
conjunctive normal form (CNF) of the miter circuit is passed
to a SAT solver, which computes a DIP X; such that diff=1.
Xg is applied to a functional IC (which serves as an oracle)
and the correct output Oy is obtained. The input-output (I/O)
pair (X4, O4) eliminates a subset of incorrect keys from the
search space. To rule out the remaining incorrect keys, a new
I/O pair is added to the SAT formula in each iteration, as
illustrated in Fig. 8. The attack is successful when no further
DIP is found, which implies that all incorrect key values have
been pruned.

Example. Let us apply the SAT attack to the locked netlist
shown in Fig. 3. Table II presents the output of the original
circuit in column O and the output of the locked circuit for
different key values (kO, kl,..., k7) in the following eight
columns. In iteration 1, the DIP 000 is applied, for which
four key values: k1, k3, k5, and k7 produce incorrect output,
leading to the elimination of these key values from the search
space. In iteration 2, two key values kO and k2 are pruned
using the DIP 001. In iteration 3, kb6 is pruned using the DIP
010, identifying k4 as the correct key. This analysis also shows
that the larger the number of incorrect key values ruled out
per DIP, the fewer the DIPs needed for the attack, resulting
in a smaller execution time. The SAT attack can also be used
to de-obfuscate camouflaged circuits using incremental SAT
solving [94], [95]. The camouflaged cells are modeled as
programming vector, which are equivalent to the key inputs
to the miter circuit. Based on the value of the key input, the
camouflaged cell will represent a particular gate.
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TABLE 11
ANALYSIS OF THE SAT ATTACK AGAINST LOGIC LOCKING [38].
COLUMNS K0-K7 SHOW THE LOCKED CIRCUIT’S OUTPUT FOR DIFFERENT
KEY VALUES. RED ENTRIES IN EACH ROW DENOTE AN INCORRECT
OUTPUT. THE CORRECT KEY IS K4. NOTE THAT THE ATTACK DOES NOT
EXPLICITLY PRUNE INDIVIDUAL KEYS.

Inputs | Original | Output O for different key values
I1[12[I3 | Output O [KO0 [KI[K2 [K3[K4 [K5[K6 [K7|Pruned Keys
0[0[0 0 O 1|[O0|[1|O0]1]| 0|1 |iteration I: KI, K3, K5, K7
001 1 10|11 ]0] 1 |0 [iteration 2: KO, K2
0f1]0 1 1 700 [1] 1 ]0] 0|1 [iteration 3: K6
011 0 1]0]JOj1T][O]IL]1]O
110]0 0 Oj1[o|1]O]1[O]1
110]1 0 1 ] 0O[1]O0O]JO]1[O]1
1[1]0 1 1 ]0[O0 1|1 ]O0[O0]1
1[1]1 0 I jojfo|1]Oo]1[1]O

D. Oracle-less attacks

Unlike the afore-mentioned attacks, the following attacks do
not need an oracle. Thus, a malicious foundry can use these
attacks to find the key without buying the golden chip from
the market.

1) Test-data attacks: Test data is provided to the
foundry/test facility for use in the manufacturing test. For
logic-locked ICs, information about the secret key may be
embedded in the test data if care is not taken during automatic
test pattern generation (ATPG) [33]. These oracle-less attacks,
i.e., the hill-climbing attack [37] and the test-data-mining
(TDM) attack [33], use test data instead of the functional IC.

The hill-climbing attack simulates the locked circuit with 1)
an initial key guess and 2) a key derived by flipping a bit in the
initial key. The bit flip is retained, i.e., the derived key becomes
the subsequent initial key, if it reduces the HD between the
circuit output and the test response. The TDM attack uses test
stimuli and responses as constraints and conducts ATPG to
extract a key. In addition to satisfying the test data constraints,
the key also maximizes the fault coverage. By considering
the fault coverage, the TDM attack can outperform the hill-
climbing attack.

2) De-synthesis attack: The de-synthesis attack is an
oracle-less attack that recovers the secret key using only a
locked netlist [53]. The attack uses a hill-climbing approach
to re-synthesize the locked netlist for different key guesses.
The key guess that yields the maximum similarity between
the locked netlist and its re-synthesized versions is considered
as the correct key. When launched on RLL, the attack can
recover around 65% of key-bits correctly.

Another impact of incorrect keys is to introduce logic
redundancy in a netlist, rendering certain faults untestable [96].
The redundancy elimination attack identifies the most likely
value for a key-bit by comparing the changes to the number
of untestable faults for a key-bit value of zero and a key-bit
value of one [96].

3) Machine learning-based attacks: The SAIL attack is an
oracle-less attack that uses machine learning to guess the secret
by characterizing the impact of key-gate insertion on structure
of a locked netlist [52]. A key observation is that insertion
of a key-gate and the subsequent re-synthesis involves only a
handful of local structural transformations encompassing three
or fewer levels of logic. SAIL trains a neural network on
examples of pre- and post-synthesis netlists. The trained model

can revert a target netlist to its pre-synthesis stage, extracting
key values from the key-gate types. When launched against
RLL, the attack can retrieve up to 94% key-bits for one-level
changes and only about 49% key for three-level changes [52].

BOCAnet, another machine learning-based “black-box™ at-
tack, trains a neural network only on input/output pairs [97].
The attack essentially tries to learn a Boolean function from
a set of I/O pairs. It can be configured to find the secret key
from a set of I/O pairs, the output for a given input, or even
the input for a given output.

V. PosT-SAT LoGICc LOCKING

The effectiveness of the SAT and other attacks against pre-
SAT locking techniques mandates defenses that can resist
these attacks. Section V-A presents the first class of such
defenses that use point-functions to render the number of SAT
attack iterations exponential in the key size. These defenses,
however, exhibit weakness against approximate and removal
attacks. SFLL overcomes these limitations. Section V-B elab-
orates on the three variants of SFLL. Section V-C and V-D
introduce cyclic logic locking and one-way function-based
locking (OWF-Lock), respectively, that are alternative attempts
to defeat the SAT attack.

A. Point-function-based logic locking

The SAT attack is successful against the existing logic
locking techniques as the number of DIPs needed to break
these techniques is quite small: 90% of the circuits studied
by [38] can be broken with 250 or fewer DIPs. SARLock,
Anti-SAT, and ATD, all make use of point-functions such as
AND-trees to control the distinguishing ability of DIPs. Point-
functions are Boolean functions that produce a one for only
one input pattern (i.e., minterm); the output is zero otherwise.
Point-function-based locking techniques push the SAT attack
towards its worst-case scenario. This happens when the attack
can rule out at most one incorrect key value per DIP [4], [5],
[39]. Table III illustrates such a scenario for a circuit with
three primary inputs and three key inputs. In each row, there
is at most one key value that generates an incorrect output.
The SAT attack would require 22 — 1 = 7 DIPs to succeed in
this case; in general, the number of DIPs ~ 2k,

1) SAT attack resilient logic locking (SARLock): SARLock
comprises a comparator (constituted using XNOR gates and an
AND-tree) whose output is XORed with the original circuit, as

TABLE III
RESISTING THE SAT ATTACK BY CONTROLLING THE DISTINGUISHING
ABILITY OF DIPS [4]. AT MOST ONE INCORRECT KEY CORRUPTS THE
OUTPUT FOR ANY DIP. K4 IS THE CORRECT KEY.

Inputs Original Output O for different key values
M[IR2TI3 || Output O || KO [KTI[K2 [K3[ K4 [K5 | K6 | K7
ojJof] o 0 1 0 0 0 0 0 0 0
010 1 1 1 0 1 1 1 1 1 1
011 0 1 1 1 0 1 1 1 1 1
0|1 1 0 0 0 0 1 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
1]10] 1 0 0 0 0 0 0 1 0 0
1 1 0 1 1 1 1 1 1 1 0 1
111 1 0 0 0 0 0 0 0 0 1
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Fig. 10. A SARLock circuit [4]. The flip signal is asserted upon a match
between the primary inputs and the incorrect key. The blue area shows the
logic cone under protection and blocks in green represents the protection logic.

shown in Fig. 10. The comparator generates a flip signal that
is asserted when the input pattern matches the key value [4].
To prevent the flip signal from being asserted for the correct
key value, which is 100 in Table III, a mask logic is inserted.
This logic masks the flip signal whenever the correct key is
applied. The number of DIPs for the locked circuit is 2¥ — 1.
The protection logic consists of k + 1 two-input XOR/XNOR
gates and 2k + 1 two-input AND gates, ensuring minimal
implementation overhead. On increasing the key size, k, the
area overhead grows linearly, while there is an exponential
increase in the number of DIPs.

While SARLock thwarts SAT attack, a removal attack (refer
to Section VI-A) can identify the comparator from its unique
structure and remove the SARLock circuitry, revealing the
original circuit from its silicon implementation. Another fun-
damental shortcoming of SARLock and other point-function-
based techniques is the low output corruptibility.

2) Anti-SAT: The Anti-SAT block integrates two comple-
mentary Boolean functions (e.g., an AND and a NAND)
to deliver maximal security against the SAT attack in a
configurable fashion [5]. Fig. 11 illustrates one configuration
of the Anti-SAT with two logic blocks ¢g and g, which share
the same set of inputs X. Two sets of key-gates, denoted as
K1 and Ko, are inserted at the inputs of the two blocks. The
output of g and g are fed into an AND gate to form the final
output Y. Consequently, Y = g(X @ K1) A g(X @ Kj2). The
correct key (which can be achieved by setting K;; = Kj)
makes Y = 0 for all input patterns. For an incorrect key
(K1 # Kp2), Y = 1 for specific input patterns, resulting
in an incorrect output. Then,

Let us assume a Boolean function g with n inputs and p

;

XM | ,
: Kn[1]\ : g(x® K”) -

Kis[n]

Y

XIn]

B

Y

Kaltl : J(X®Kp) —

Kiz[n]

y

Fig. 11. Anti-SAT consists of two complementary blocks [5].

denoting the cardinality of its on-set. Note that on-set is the
set of input vectors that make g equal to one. Then,

22n —_9n
p(2" —p)
When p is sufficiently close to 1 or sufficiently close to
2" — 1, the lower bound is exponential in n, resulting in 2"
DIPs. Compared to SARLock, Anti-SAT allows a designer to
configure the security level by varying p, albeit at a slightly
higher overhead.

Strong Anti-SAT inherits the complementary structure of
Anti-SAT and increases the number of incorrect keys that
cause the error to certain critical input minterms [98]. This en-
sures high application-level error for inherently error-resilient
applications (e.g., machine learning) while maintaining the ro-
bustness against SAT attack. Anti-SAT and SAS are vulnerable
to removal attacks (see Section VI-A).

3) AND-tree Detection (ATD): ATD finds and locks
AND/OR trees that already exist in the original circuit with the
objective of reducing the implementation cost [39]. However,
large trees rarely exist in typical circuits, mandating the use
of large dummy trees that are susceptible to removal. Similar
to SARLock and Anti-SAT, ATD has low output corruptibility
and is also vulnerable to removal attacks.

4) Diversified tree logic locking (DTL): DTL is an ex-
tension of point-function locking. It resists the approximate
attacks by replacing a point-function with a Boolean function
of higher on-set, similar to that in Anti-SAT [74]. DTL gener-
ates the desired Boolean function by systematically replacing
selected gates inside an AND-tree with NAND/NOR/OR gates.
DTL is not secure against removal attacks unless combined
with other techniques such as SFLL-Flex or SFLL-fault.

#DIPs > (2)

B. Stripped-functionality logic locking (SFLL)

To overcome the vulnerabilities of point-function-based
locking, i.e., vulnerability to removal attack and low out-
put corruptibility, SFLL adopts the philosophy of stripped-
functionality. It modifies the original circuit and later restores
the functionality by applying the correct key. The locked
circuit comprises a functionality stripped circuit (FSC) and
a restore unit.

1) SFLL-HD: Functionality-stripping can be implemented
in various flavors. In one flavor, the original circuit is modified
by introducing built-in errors only for the input patterns
that are of HD h from the secret key, i.e., O_locked #
O,if(HD(IN, Kgecret) # h) where kseerer is known only
to the designer. Such input patterns are referred to as the
protected input patterns (PIPs). Naturally, the restore operation
is also based on the HD between the input pattern and the
secret key; the FSC output is restored (flipped back) only when
HD(K,IN) = h.

For the special case of h = 0, illustrated in Fig. 12 and
Table IV, there is only one PIP 100, which is the same as
the secret key [7]. The output of the FSC is inverted for the
pattern 100. Only upon the application of the correct key K4=
100 to the restore unit. For a given £ and h, the removal
attack resilience is (Z) which denotes the number of PIPs. The
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Restore
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signal

K [ Hoang)Zo

Restore unit

Fig. 12. An SFLL-HDO circuit with n = k = 3 and IN = 100 being the
protected input pattern. The FSC hardcodes the secret key K4. The blue area
shows the FSC and the blocks in green represent the protection logic [30].

TABLE IV
THE FSC IS MINIMALLY DIFFERENT FROM THE ORIGINAL FUNCTION:
THEY PRODUCE A DIFFERENT RESPONSE FOR ONE PROTECTED INPUT
PATTERN (IN = 100). THE RESTORE UNIT CANCELS THIS ERROR FOR THE
CORRECT KEY K4 [30].

Inputs Original Output O for different key values
O3 01 O_locked [KOTKTTK2ZTKITKATKS K6 [ K7
0Jo] O 0 0 1 olofofofofofo
oJo] 1 1 1 1 0 1 1 1 1 1 1
of1] 0 1 1 1 1 0 1 1 1 1 1
0]1 1 0 0 ofofo 1 ofofof]o
1Jo] o 0 1 1 1 1 1 0 1 1 1
110] 1 0 0 ofofofofo 1 010
1J1]0 1 1 1 1 1 1 1 1 0 1
1]1]1 0 0 ofofofJoJoJo]o 1

security-level attained against SAT attack is k—[log, (}')]. The
resilience against approximate attack in terms of the output
k

: h
€rTor rate 1S ok +

2) SFLL-Flex: While SFLL-HD is suited for protecting a
large number of arbitrary PIPs, SFLL-flex is more suited for
applications where a designer wants to protect a few PIPs of
his choice [30]. SFLL-flex takes the user-defined initial cubes
(PIPs with don’t care bits) as input and compresses them to
into the final cubes. Functionality-stripping is then affected
on the final cubes using simulated annealing. The restore unit
consists of the final cubes and the flip vectors stored in a LUT.

3) SFLL-Fault: SFLL-HD and SFLL-Flex utilize existing
logic synthesis tools to perform functionality-stripping. The
FSC is obtained by hard-coding the secret key/final cubes
in the circuit, which is susceptible to removal attacks [99].
SFLL-fault uses fault injection to affect the functionality-strip
operation, essentially subtracting logic from the original circuit
without leaving any traces in the netlist [99]. The other SFLL
variants operate by adding logic to the original circuit, which
the current synthesis tools fail to merge with the original
circuit.

C. Cyclic logic locking

A new approach to SAT-resiliency based on graph-theory,
known as cyclic logic locking, is being heavily investigated
recently [50], [75]-[80]. Cyclic locking thwarts SAT-based
adversary by exploiting the directed acyclic graph (DAG)
representation of the combinational circuits [38]. The first

14 01

Inserted cycle

Fig. 13. By inserting backward edges in the DAG, CycLock introduces cycles
in a circuit, rendering the SAT attack infeasible [75].

v

Locked netlist
K One way K

function

Fig. 14. An illustration of OWF-lock [49]. The probability of computing K
from K’ is negligible.

cyclic locking technique, which we refer to as CycLock [75],
inserts key-driven cycles into a circuit to render its graph
cyclic. This is illustrated in Fig. 13. The basic assumption
is that cycles are hard to resolve for SAT solvers. However,
CycLock can be easily circumvented by the CycSAT attack
and its improved version BeSAT [78] (see Section VI-C).
CycSAT adds additional clauses to the SAT formula to return a
key that renders the circuit acyclic [50]. Another similar attack
breaks CycLock by pruning out keys that form cycles [100].

A wave of CycSAT-resistant techniques such as Cross-Lock
[80], SRCLock [79], and others [76], [77] have been proposed.
Cross-Lock integrates cycles with a cross-bar of programmable
vias [80]. SRCLock introduces feedback paths in a way that
renders the number of cycles exponential in the number of
feedback paths [79]. It forces CycSAT to add an exponential
number of clauses to break all the cycles. Similarly [76]
and [77] also increase the number of cyclic configurations ex-
ponentially in the key size, by utilizing different reconfigurable
structures.

D. One-way function-based locking (OWF-Lock)

Resilience against the SAT attack can also be achieved
by utilizing structures that are hard to resolve for an SAT
solver [49], [101]. As shown in Fig. 14, OWF-lock synthesizes
a one-way function along with RLL/FLL-locked circuit [49].
The one-wayness of the OWF renders it computationally
infeasible to determine K from O or even K’. The diffusion
property leads to a high output corruptibility. OWF-Lock,
however, relies on the synthesis of the OWF and the locked
netlist to be secure against removal attacks.
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VI. ATTACKS ON POST-SAT LOGIC LOCKING

Attacks have also been launched on the SAT-attack-resilient
techniques discussed in the previous section. The structural
and functional properties of point-functions make them vulner-
able to removal attacks, which are presented in Section VI-A,
as well as approximate attacks, which are presented in Sec-
tion VI-B. Cyclic locking techniques are vulnerable to CycSAT
and its derivative attacks, as elaborated in Section VI-C.
In Section VI-D, we introduce the SMT attack, which can
incorporate the SAT attack and its different variants. In the
context of side-channels, only power-side channel has been
exploited for attacks; we discuss these attacks in Section VI-F.

A. Removal attacks

A removal attack identifies the protection logic and removes
it from the locked netlist, recovering the original design [40],
[41]. As discussed earlier, removal attacks are effective on
defenses that retain the original design and the protection logic
separable. The existing removal attacks focus on removing
point-function implementations.

The signal probability skew (SPS) attack analyzes the bias in
the signal probabilities to locate point-functions whose output
is highly skewed towards O [41]. The AppSAT-guided-removal
(AGR) attack uses AppSAT to differentiate the Anti-SAT
key-bits from the obfuscation key-bits, followed by structural
post-processing to remove obfuscated Anti-SAT block [40].
The sensitization-guided SAT (SGS) attack circumvents the
protection in ATD by identifying the dummy trees [40].
The Bypass attack builds a functionally-correct netlist by
identifying input patterns for which a randomly selected key
generates incorrect output. A bypass circuit is added to restore
the circuit output [10].

A recent attack, referred to as the FALL attack [102],
combines structural and functional analysis to locate and
remove the comparator and HD units inside SFLL-HD circuits,
recovering the original circuit. The attack is applicable when
the cube-stripper (i.e., the HD-unit with a hard-coded secret
key) is left as is in the circuit during logic synthesis. Apart
from the structural analysis, the FALL attack relies on the
unateness and HD properties of the HD-unit to locate it.

B. Approximate attacks

While the SAT attack terminates only upon retrieving the
correct key, the AppSAT [8] and Double-DIP [9] attacks
terminate earlier returning an approximate key, which results
in an approximate netlist. The termination criteria for AppSAT
is dictated by an error rate set by the attacker. Double-DIP
terminates when it can no longer find 2-DIPs that eliminate at
least two incorrect keys. Both attacks mainly target compound
logic locking techniques, wherein a high-corruptibility locking
technique (e.g., FLL) is integrated with a low-corruptibility
technique (e.g., SARLock). The approximate attacks reduce a
compound logic locking technique (e.g. SARLock+FLL) to its
low-corruptibility constituent (i.e., SARLock).

C. CycSAT

The CycSAT attack targets cyclic logic locking [50]. It mod-
ifies the SAT attack to operate on a cyclic graph. The attack
has a pre-processing step that computes additional clauses to
be added to the SAT formula. These clauses help extract a
key that renders the retrieved circuit acyclic. Alternatively,
the retrieved circuit may be cyclic, but none of the cycles
are sensitized under the extracted key. The behavioral SAT
attack extends CycSAT to consider the functional behavior of
the locked circuit. This modification helps tackle the issue of
statefulness, where the locked circuit may produce different
output for a given key and input combination [78].

D. Satisfiability modulo theory (SMT) attack

Unlike SAT solvers, SMT solvers can handle non-Boolean
variables, which makes the SMT attack a superset of the
SAT attack [51]. SMTs targets a more general class of
constraint satisfaction problems, such as decision problems
with constraints specified using first-order theories that include
real numbers, arithmetic, and bit vectors. The SMT attack
can realize the SAT attack and its different variants, such as
the approximate attacks. It also assimilates an independently
developed version of the TimingSAT attack [103] that breaks
delay locking (see Section VIII-D).

E. Attacks against SFLL

Certain instances of SFLL, such as SFLL-HD and SFLL-
flex, perform the functionality-stripping operation by adding
logic to the original function. The added logic is expected
to be blended into the rest of the design, hiding any traces
for a RE attack; yet, the use of traditional security-agnostic
synthesis tools still leave traces behind. Consequently, at-
tacks can analyze the netlist structure to trace signals of
certain characteristics, identify the added logic and remove
it to recover the original functionality/design, circumventing
these defenses [102], [104], [105]. To withstand such attacks,
security-aware synthesis tool should be developed and used
to affect the functionality-stripping operation without leaving
any traces in the locked netlist.

Alternatively, the functionality-stripping operation can be
performed by truly removing logic from the original function
in line with the notion of stripping; a recent version of SFLL,
SFLL-fault [99], [106], injects faults to the original function
for this purpose. This way, not only no traces are left but also
the attacker is forced to reconstruct the removed logic that
could be implementing one of a very large number (22k) of
functions. Here, k is the size of the key.

F. Power side-channel attacks

The differential power analysis (DPA) attack is a side-
channel attack that utilizes the correlation between power
consumption and the key value to extract the secret key [107].
The DPA attack on logic locking can be launched in a divide-
and-conquer fashion by targeting individual logic cones [36],
[81]. The attack applies several input patterns to a functional
IC and records the power traces and as well as the circuit
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Fig. 15. An illustration of BFSM [82]. Upon power-up, the PUF response
to the given challenge is 0100, making S4 as the power-up state. To traverse
from Sy to the initial functional state Sg, the FSM may traverse the following
path: S4 — S1 — S3 — S11 — Sé.

output. It classifies power traces into a zero-bin and one-bin,
based on the locked circuit output for a different key. The
difference of the power values in two bins exhibits a spike for
the correct key.

The template-based power analysis attack also deciphers the
key through power measurements. Based on the location of
key-gates at different logic depths, it enables the attacker to
unlock the circuit functionality level-by-level [42].

VII. SEQUENTIAL LOGIC LOCKING

Having completed the discussion on the combinational logic
locking techniques, we turn our attention to the sequential
logic locking attacks and defenses. With only a handful
of attacks and defenses, a meaningful classification of the
sequential locking techniques could not be developed. Most
of these techniques add obfuscated states to an FSM (see Sec-
tion VII-A— VII-C). These techniques are vulnerable to FSM
reconstruction and BMC-based attacks, which are discussed
in Section VII-D and Section VII-E, respectively. Mode-based
obfuscation, presented in Section VII-G, protects a circuit by
locking it in one of the non-functional modes.

A. Boosted FSM (BFSM)

In BFSM, an exponentially large (in the key size) number of
obfuscated states are introduced [19]. The state upon power-
up is determined by applying a challenge to an on-chip PUF
and loading the PUF responses into state FFs. The probability
that the FSM is initialized into an obfuscated state (and not a
functional state) is very high since the number of obfuscated
states is much larger than the number of functional states. To
unlock the FSM, i.e., traverse to the initial functional state .S;,,,
an input sequence must be provided that initiates the required
state transitions. With the full knowledge of the BFSM, a
designer can construct the input sequence that takes the FSM
to Si, from any of the power-up states. An attacker without the
knowledge of the BFSM cannot compute the desired sequence.

Example. In the BFSM shown in Fig. 15, the PUF response
is 0100, indicating that the power-up state is Ss. To traverse
to the first functional state Sg, the FSM may follow the path
S4—>Sl—>33—>511—>56.

The brute-force attack effort required to break BFSM is
exponentially high in the number of state elements. BFSM can
also circumvent RE asthe extraction of an FSM is computa-
tionally intractable. The security of BFSM against brute-force
attacks can further be enhanced by incorporating the blackhole
states from where there return to the functional states [19].

B. HARPOON

Similar to BFSM, HARPOON also introduces obfus-
cated states; however, the number of added states is much
smaller [43]. The locked design can be considered to have
two FSMs: the obfuscated FSM and the functional FSM. Upon
powering up, the FSM enters a pre-defined reset state S,.. The
circuit is then in the obfuscated mode and produces incorrect
outputs. Only upon supplying the correct input sequence K.,
the FSM transitions to the functional state S;,,. All subsequent
transitions are between the functional states. An attacker
without access to K., cannot make the circuit functional.

Example. Consider the FSM in Fig. 16(a). The functional
FSM comprises the states {Ss, - ,S10}; Sin = S5 is the
initial functional state. The obfuscated FSM comprises the
states {Sg, S1,- - ,S4}. To reach the state Ss, the obfuscated
FSM may follow either the path: Sp — S; — S5 — S5 or
the path: SR — 83 — Sy — 5] > S5y — 55.

C. FSM convolution

In HARPOON, there exists a distinct boundary between the
functional and the obfuscated states, which an attacker can
exploit. Multiple locking techniques increase the resilience by
“convoluting” the two FSMs. State interlocking blurs this FSM
demarcation by increasing the number of transitions among
the two sets of states [82]. Even upon applying an incorrect
key, the FSM may transition from Sk to a functional state.
To keep track of the state transitions, the transition logic
embeds a virtual “code-word” that dictates both subsequent
state transitions and circuit output.

Example. Let us consider Sg as the current state
in Fig. 16(b). From this state, the FSM can transition to either
S7 or Sg, depending on the path it took to enter Sg, which
is encoded in the code-word. For a k-bit code-word, N state
elements in the obfuscated FSM, and ¢ states in the original
(unobfuscated) FSM, the number of brute-force attempt for
state interlocking is estimated to be gﬁk (N,jk) x q. A
similar interlocking approach is proposed in [55].

State entanglement thwarts the FSM separation attacks (see
Section VII-D) by further obliterating the boundary between
the two sets of states [44]. As shown in Fig. 16(c), there is no
clear distinction between obfuscated and functional states.

Dynamic state deflection (DSD) introduces multiple black-
hole FSMs to hide the boundary between the obfuscated
and the functional states. It ensures that the circuit deflects
dynamically to different blackhole FSMs upon application of
different incorrect keys [83]. In Fig. 16(d), there are three
black-hole FSMs with no return to a functional state.

While the aforementioned sequential locking techniques
modify the topology of the FSM, hidden transitions can be
introduced into an FSM based on the physical parameters such
as the operating frequency, coupling capacitance, or temporal
profile of the clock [108]. For example, a glitch can be
leveraged to enact a state transition at a particular frequency;
such transitions cannot be recovered from the FSM structure.

D. FSM reconstruction and separation attacks

An essential step in circumventing sequential locking is to
extract the high-level FSM of from the gate-level description of
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Fig. 16. HARPOON and its derivative FSM logic locking techniques. a) HARPOON introduces an obfuscated FSM [43]. b) State interlocking adds extra
transitions between the normal and obfuscated FSM [82]. ¢) State entanglement further obliterates the boundary between normal and obfuscated FSMs [44].

d) DSD introduces multiple blackholes FSMs [83].
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Fig. 17. PUF-FSM binding [109]. The PUF responses lock the FSM in a
“binding” state. Only the supplying the license, the FSM transitions into the
normal mode. Each chip/FPGA can have a unique license.

a netlist. Multiple research efforts [54]-[56] utilize heuristics
to identify the state registers, build Boolean expressions for
the state transitions, and extract the FSM. These FSM recon-
struction steps (initially postulated in REFSM [54]) are the
backbone of three independently-developed FSM separation
attacks [54]-[56] that use Tarjan’s SCC algorithm to bifurcate
obfuscated and functional states.

The three attacks differ in terms of the heuristics utilized.
While [54] and [55] focus on retrieving the correct input
sequence, [56] notes that the SCC algorithm may not scale
well to FSMs with a large number of states. Thus, an initial
state patching procedure is developed that can bypass the
obfuscated FSM by resetting the state FFs to S;,,. The value
of S;,, is determined either by SCC or by analyzing the output
function of a circuit.

Hardware nanomites defend against the SCC-based attacks
by leveraging partial dynamic reconfiguration of FPGAs [56].
The FSM is partitioned into sub-FSMs, which are withheld
and loaded dynamically onto the FPGA only at runtime.
Eliminating the need to load the entire FSM onto the FPGA
at once helps thwart attacks that analyze the FSM structure.

E. Bounded model checking (BMC)-based attacks

In BMC-based attacks, the sequential circuit is unrolled p
times and model-checking queries are applied [57], [58]. An
attack terminates when a unique key is recovered or when
the locked circuit becomes combinational equivalent of the
original circuit. The runtime of these attacks can be improved
by combining iterative SAT solving with the dynamic simpli-
fication of complex conditions (SAT clauses) that pile-up over
successive attack iterations [58]

F. PUF-FSM binding

The PUF-FSM binding scheme, which targets FPGAs, is
similar to BFSM. The scheme uses a PUF to lock each FPGA
instance with a unique key [109]. It adds several layers of
binding states. Upon power-up, the FSM initializes to the
state Sg, from where it traverses to one of the binding states,
based upon the PUF responses. In Fig. 17, the PUF response
01 induces the transition Sr — S7. For transitioning to the
functional state Sy, the correct input sequence a.k.a. license
for the chip must be provided. The license is computed by
XORing the PUF response R = 00 with the FSM key K = 10
that is required for the transition S7 — Sy. In our example,
the chip license is 10 @ 00 = 10. This scheme has an added
advantage over the traditional binding methods: It does not
require storing the key on an FPGA. By using only a PUF,
the scheme can enable pay-per-use licensing mechanism.

G. Mode-based functional obfuscation

Several classes of circuits can be reconfigured to operate in
different modes. For example, certain implementations of DSP
circuits, such as digital filters, allow the same circuit to behave
as a third-order filter, a sixth-order, or a ninth-order filter in a
time-multiplexed manner [48]. In certain applications, not all
the modes may be desired; the undesired modes thus imply
an incorrect behavior. Mode-based obfuscation can be realized
by implementing the “switches” used in the digital filters in
a programmable fashion, e.g., by replacing each switch with
a key-controlled MUX that provides the correct configuration
data at runtime.

Fig. 18 elaborates on mode-based obfuscation [48]. The
key has two parts: the initialization key and the configuration
key. The obfuscating FSM is the same as in HARPOON [43];
only upon entering the correct initialization key, the FSM
enters a functional state. The reconfigurator and the ring
counter control the function (mode) of the DSP circuit by
generating the configuration data for each configurable switch
in the design based on the configuration key. An incorrect
configuration key leads to non-meaningful modes.

Mode-based obfuscation can be static or dynamic in nature.
In static obfuscation, the circuit output depends solely upon the
key value, which is fixed and loaded at the time of activation of
the chip. In dynamic obfuscation, however, the circuit output
is dictated by the key, the mode, and the trigger signal, as
depicted in Fig. 19. When the trigger circuit is activated,
the chip produces an incorrect output [47]. Upon applying
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Fig. 18. Mode-based static obfuscation for digital signal processing (DSP)
circuits [48]. The obfuscating FSM is controlled by the initialization key.
Upon entering the normal mode, the reconfigurator generates control signals
for a ring counter, which produces the correct configuration data for each
switch.
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Fig. 19. Mode-based dynamic obfuscation [47]. The initial value to the ring
counter is provided by an on-chip random number generator (RNG). The
trigger signal is asserted rare conditions in a periodic manner.

random keys to a system, a time-varying/dynamic response is
observed. The occasionally incorrect circuit output, obtained
upon activation of the trigger, helps to thwart SAT and other
oracle-guided attacks. The estimated lower bound on the
number of brute-force attempts is given as L x K x 25 Here K
and L are the key size and the activation period, respectively.
The activation period denotes the number of cycles required
to complete an operation, e.g., computation of the FFT. The
advantage of dynamic obfuscation over static is increased
security with even smaller key sizes. For example, the brute-
force attack on dynamic obfuscation requires 3.3 x 10%* cycles
for K = 32, compared to the 2.1 x 10° cycles required for
static obfuscation [47].

VIII. BEYOND FUNCTIONALITY LOCKING

While logic locking techniques have traditionally focused
on protecting the circuit functionality, researchers have found
novel applications for it in the last few years. This section
discusses such applications of logic locking in newer contexts,
such as analog circuits and microfluidic biochips. There also
exist non-digital ways of locking a circuit, which not only
protect the functionality but also the parametric behavior, such
as performance and timing. We also present innovative use-
cases, where a locked digital circuit protects a larger system.

A. Logic locking in actual silicon

SFLL-HD is the first logic locking technique to be demon-
strated in actual silicon. The chip contains an ARM Cortex
MO-based microcontroller, whose program counter (PC) is
locked with FLL+SFLL-HD". Hence, upon applying incorrect
key values, a program is halted [30]. Another chip implements
multiple locking techniques on a biomedical processor, which
predicts the heart attack events from the electrocardiogram
signal [6]. This chip also generates its own unique key from
the electrocardiogram signal.

B. Logic locking to defeat hardware Trojans (HT)

Insertion of HT by manipulation of the netlist without
affecting the main functionality of the design has been of

major concern to fabless semiconductor companies as well as
government agencies. Logic locking can help defend against
such threats by making it harder for the attacker to identify
the covert locations for Trojan insertion. For example, [110]
proposes the introduction of AND/OR gates to judiciously
alter signal probabilities in a netlist, resulting in the reduction
in the number of signals with low controllability. However,
if inserted successfully, the Trojan circuits are triggered in
very rare conditions making the HT detection process within
a limited time an extremely challenging problem. In [111], an
approach which leverages logic locking to facilitate path-delay
based HT detection has been outlined. The proposed technique
masks the circuit logic (by introducing fake short paths) such
that every net in the modified design belongs to a short-enough
path so that path-delay analysis can be successfully performed.

C. Performance locking

In certain Intel processors such as the Clarkdale and Sandy
Bridge series, additional cache or hyper-threading features
can be activated with extra payment [112], [113]. Recently,
logic locking techniques have been applied to offer similar
performance-locking features, albeit with provable security
guarantees [45]. The chip is designed to deliver both high
and low performances, as dictated by the key. Fig. 20 depicts
the business and threat model of performance locking.

To degrade performance, additional LOCK states are in-
serted into the FSM. There is no useful computation carried
out in these states, leading to a reduction in performance [45].
Superior performance can be unlocked with the correct key,
which bypasses the LOCK states. Performance-locking can
be implemented using the functionality-strip and restore oper-
ations. For example, the stall signal in a pipelined processor
can be perturbed for a performance-degrading input pattern
(PDIP). For an incorrect key (Key # PDIP), the stall signal
may be asserted, locking the circuit in LOCK states for NV
cycles and degrading performance, as shown in Fig. 21. The
correct key restores the perturbation and unlocks superior
performance.

D. Delay-based logic locking (DLL)

DLL renders a circuit’s functionality as well as the timing
dependent on the key [114]. The correct key recovers the
original functionality as well as the timing profile that satisfies
the pre-defined timing constraints. The delay of a circuit is
manipulated using a tunable delay key-gate (TDK), which
comprises of conventional key-gate (e.g., XOR/XNOR) and
a tunable delay buffer [115]. Each TDK has two key inputs.
The functional-key k; dictates the behavior of XOR key-gate,
whereas, the delay-key ko determines whether the TDK delay
is dg or d.

A new attack called TimingSAT [103] has been proposed
to unlock DLL circuits. The attack models the timing char-
acteristics of various gates present in the design as Boolean
functions to build timing profile embedded SAT formulations.
The proposed attack operates in two stages. In the first stage,
the adversary finds the functional-key using conventional SAT
attack. In the second stage, he/she utilizes timing information
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Fig. 21. The state transition graph of the inserted FSM. NN indicates
the number of stall cycles. Normal execution indicates the design is in
NORMAL/UNLOCK state. Lock indicates the design is in LOCK state [45].
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Fig. 22. Tunable delay key-gate (TDK) [114].

embedded in the locked netlist to retrieve the correct delay-
key. Similar SAT-based attack has also been demonstrated
against camouflaged netlists protected using timing-based
parametric camouflaging [116]. The SMT attack discussed in
Section VI-D can also circumvent DLL.

E. Graphics-processing unit (GPU) obfuscation

Apart from being applied to the traditional benchmarks and
processors, logic locking has also been studied specifically in
the context of GPUs. The objective is to lock the performance
of a multi-cycle GPU, by locking its memory controller that
implements the cache block replacement policy [117]. A
locked controller design severely impacts the hit rate of cache
memory. In [117], it was shown that naive implementation of a
locked GPU remains susceptible to an oracle-less approximate
attack. This attack translates the multi-cycle GPU core netlist
to a functionally-equivalent single-cycle netlist and utilizes the
GPU instruction set architecture to compute DIPs. This attack
can be thwarted by modifying the cache block replacement
policy such that the locked cache judiciously generates cache
hits for the incorrect keys. This degrades the performance
of the applications running on the locked GPU and thwarts
approximate attacks [117].

F. Analog and mixed-signal (AMS) locking

The relatively low transistor count and distinct layout pat-
terns in analog circuits make it easier for malicious entities
to reverse engineer the layout and pirate the circuit. Recent
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Fig. 23. Configurable current mirrors to thwart IP piracy of analog cir-
cuits [119].

research deploys logic locking to prevent overproduction of
AMS ICs [46]. The idea is that only a correct key makes the
AMS circuit to operate as per the specifications.

1) Analog circuit locking: The specifications of an analog
circuit such as the center frequency, bandwidth, oscillation
frequency, etc. depend on the precise value of the bias current
as well as the width-to-length ratio (W/L) of the transistors.
In [118], a single transistor is replaced with a series of key-
controlled transistors to lock analog circuits such as differential
amplifiers and bandpass filters. An SMT-based combinational
locking technique is proposed in [119]. The current mirror,
providing the required bias current I,,; is made configurable.
As illustrated in Fig. 23, the copying transistor M, in the
current mirror is replaced by a transistor matrix of size (Rx N)
with each of the transistor gates connected to one of the k key
lines. I,,; is as the sum of currents in individual branches. The
SMT formulation is such that for a specific R, N, and k, there
is only one key @ = (q1gs---qi) that produces the desired
I,y¢. For all other key combinations, I,,; will either be above
the specified upper-bound or below the lower-bound set by the
designer, making the circuit non-functional.

2) AMS circuit locking: As shown in Fig. 24, the digital
section of an AMS circuit can be locked using SFLL [30].
Only on applying the correct key, the optimizer tunes the
passive components in the bandpass filter (e.g., resistors (R)
and capacitors (C)) to compensate for the effect of process
variations. Hence, the filter operates within the desired speci-
fication. For all incorrect keys, the specifications are violated.
For cost-effective locking, a sensitivity analysis is conducted
to determine the most influential tuning knobs (R and C’s)
to be locked. This delivers maximal performance degradation
with minimal implementation overhead.

MixLock is another lightweight and non-intrusive approach
for locking AMS circuits [120]. Here, the digital part of the
circuit is locked using existing locking techniques such that
the attained security level is maximized from both analog and
digital perspectives. The security level in the digital domain
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Fig. 24. Logic locking of the BPF circuit. Only on applying the right key,
the optimizer sets the resistor value by considering the effect of process
variation [46].

is measured as the resiliency against SAT attack. The security
level in the analog domain is quantified as the error rate, i.e.,
the percentage of incorrect keys that result in the violation of
the performance specifications, e.g., the signal-to-noise ratio.

G. Locking digital microfluidic biochips (DMFBs)

Another interesting area where logic locking has found
application is the protection of biochemical assay protocols in
DMFBs. DMFBs are also vulnerable to supply chain attacks,
such as the assay manipulation attacks, which can jeopardize
the clinical diagnostics [121]. By locking a DMFB assay with
microfluidic multiplexers, the DMFB access can be restricted
to the authorized users in possession of the correct key [122].

H. Locking at different abstraction levels

Thus far, we have focused on gate-level and register-transfer
level (RTL) locking. Locking can also be extended to other
abstraction levels such as high-level synthesis and transistor-
level.

1) High-level synthesis (HLS)-based locking: Recently,
logic locking has been demonstrated using high-level synthesis
tools [123], albeit under a restrictive (oracle-less) threat model.
The only untrusted entity is a foundry that does not has access
to the functional IC. HLS can lock the arithmetic operations,
constant values, and the control flow of a design to protect
against oracle-less attack. Such a threat model is useful in
scenarios where the fabricated chips are used by a few clients
and are not available in the IC market.

2) Locking at the transistor level: Locking can also be
effected at the lowest level of abstraction, i.e., the transis-
tor level.In TRAP [124], individual transistors are locked
by introducing transistor-specific programmable fabric, which
is programmed post-fabrication. Such a low-level locking
scheme enables multi-faceted locking of individual gates, on-
chip interconnect, and even FSMs. TRAP also allows a netlist
to be updated on a dynamic basis, thereby hampering the
extraction of a “fixed” locked netlist, which is required by
all existing attacks [124].

L. Scan locking

Existing oracle-guided attacks assume scan chain access.
This access allows a sequential circuit to be treated as a
combinational one by converting the scan-cell outputs (inputs)
to pseudo-primary inputs (outputs). Scan locking aims at

locking the scan chain responses, effectively revoking oracle
access. One approach is to modify the scan cell architecture so
that it can hold previous values on-demand. The test protocol is
such that key values are not captured into the scan-cells during
the test mode, debilitating oracle-guided attacks [125]. A
similar approach combines functional and scan locking, along
with dynamically generated keys (using a linear feedback shift
register) to remotely test locked chips before activation [126].
Another scan locking approach referred to as Encrypt-
Flip-Flip (EFF) inserts key controlled MUXes at the outputs
of selected scan-cells [127]. Each MUX selects either @)
or @ output of the scan-cell as dictated by the key value.
During scan-in and scan-out, the values loaded into the scan-
cells and the responses observed are corrupted by the key.
This operation prevents an attacker from loading patterns
of his/her choice or inferring the data captured into scan-
cells. However, EFF can be circumvented using the ScanSAT
attack [128], which unrolls the locked scan-chain, modeling it
as a combinational circuit. The SAT attack can then be applied
on this unrolled circuit even with obfuscated responses. The
BMC-based attacks [57] also challenge the effectiveness of
scan locking by extracting secret keys without scan access.

IX. DISCUSSION

In this section, we discuss several important aspects of
logic locking. Section IX-A sums up the logic locking re-
search presented in the paper, highlighting the relationship
between different classes of attacks and defenses. Section IX-B
summarizes the major challenges faced by logic locking
research. Section IX-C spotlights future research directions.
Section IX-D points to the related survey papers and other
relevant resources in the field of logic locking.

A. An overview of attacks and defenses

The handful of sequential locking techniques focus on
introducing obfuscated states, which exhibit susceptibility to
FSM separation and BMC attacks [57], [58]. We, therefore,
solely elaborate on the relationship among different classes
of combinational locking attacks and defenses in Table V.
The table also depicts the threat model of each attack and
defense. An attacker may have access to a locked netlist (o), a
functional IC (e), test data (), or a combination of these items.
The most common threat model (represented as oe) assumes
that an attacker has both a locked netlist and a functional IC.
The oracle-less attacks, e.g., SGS [40] and de-synthesis [53],
do not require a functional IC (o). HLS [123] is the only
defense with this threat model. The threat model for test-data
attacks require access to a locked netlist and test data (ox).

All pre-SAT locking techniques are vulnerable to the SAT
attack as well as various side-channel attacks. Each point-
function-based locking technique can be broken with one or
more removal attacks. For the same techniques, an approxi-
mate key (represented as ~) may be recovered using the ap-
proximate attacks. SFLL-HD exhibits strong resilience against
all traditional attacks but is rendered insecure due to current
logic synthesis techniques. The recent FALL attack [102]
exploits this vulnerability to break SFLL-HD. SFLL-fault
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TABLE V
A SUMMARY OF COMBINATIONAL LOGIC LOCKING ATTACKS AND DEFENSES WITH THE CORRESPONDING THREAT MODELS. TM STANDS FOR THREAT
MODEL. © DENOTES A LOCKED NETLIST. ®« DENOTES A FUNCTIONAL IC/ORACLE. * DENOTES TEST-DATA. v' DENOTES THAT A DEFENSE IS SECURE
AGAINST THE ATTACK. ~ DENOTES APPROXIMATE KEY RECOVERY. NA DENOTES THAT THE ATTACK IS NOT APPLICABLE UNDER THE DEFENSE TM.

Algorithmic Removal Side-channel Approx.

= S
— hos =
2 _ _ o | _ c - == =
= 2 g ¢ 5|5 8§ 7 S|E g £ 8 T|lg Elg
Attack i 5 g8 2 Sz 8 8 2 2 2 =z 2 2 I|%& 2| f
ac g 8 & ¢ 5|5 2 2 & £|E E & & &|F a|cE

Defense
TM oce oce ce oe oe ce o} oe oe oce O% O% oce oe (o} oce ce oe
RLL [1], [31] oe X X X X X v v NV NV v X X X X X X X X
LUT-based [34] oe X X X X X v v v v v X X X v v X X X
: FLL [35] oe X X X X X v v v v v X X X X X X X X
(:-i WLL [91] oe X X X X X v v v v v X X X X X X X X
5 Centrality [90] oce X X X X X v v v v v X X X X X X X X
SLL [2], [49] oe v v X X X v v v v v X v v v v X X X
KLL [93] oe v v X X X v v v v v X v v v N X X X
SARLock [4] oe N v v v ~ X X % X v v Ve v v v ) ~ v
Anti-SAT [41] oe v v v v =~ X X X X v v v v v v ~ v v
= ATD [39] oe v v v v ~ v v X X v v v v v v ~ ~ v
£ | DTL [74] oe v v v v oV X  x x v v v v v VY v v
Compound [4], [5] oe v v v v ~ v v v X v v v v v v ~ ~ v
] SFLL-HD [7] oe v v v v v v v v v X v v v v v v v v
d SFLL-Flex [30] oe v v v v ~ v v v v X v v v v v ~ v v
n SFLL-Fault [99] oe v v v v v v v v v v v v v v v v v v
2 CycLock [75] oe v v v X X v v v v v v v v v v v v v
S Cross-Lock [80] oe v v v v v v v v v v v v v v v v v v
© SRCLock [79] oe v v v v v v v v v v v v v v v v v v
- OWF-Lock [49] oe v v v v v v v v v v v v v v v v v v
g | DLL[114] oe v v v v v v vV v o vV VA e v x
s TRAP [124] oe v v v v v v v v v v v v v v v v v v
HLS [123] o NA NA NA NA NA |[NA Vv NA NA NA | NA NA NA NA vV | NA NA | NA

is resilient to FALL, but as it protects only a handful of
input patterns, it is prone to the approximate attacks. As
CycLock was quickly broken using CycSAT [77], the other
variants of cyclic locking that are relatively recent must be
subjected to further scrutiny. OWF-Lock is not vulnerable to
any known attack, however, its implementation overhead can
be prohibitive (10x —20x) [49]. The oracle-less threat model
assumed by HLS renders most attacks inapplicable to it [123].
However, most practical scenarios violate this assumption.

B. Challenges and roadblocks

The discussion in the previous section indicates that both
combinational and sequential logic locking techniques exhibit
specific weaknesses that impede the widespread adoption of
logic locking. Logic locking is still in its infancy compared to
other fields, such as PUFs and side-channel analysis. Accord-
ingly, the precise notions of security in logic locking and the
relevant metrics are still a work in progress [30], [120], [129].
Most defenses, e.g., point-function-based and cyclic locking,
address only specific attacks and are consequently broken
by the next generation of more sophisticated attacks [40],
[50]. Often there is a trade-off between resilience against
different attacks. Similar to the case of many cryptographic
algorithms, provably-secure locking algorithms (e.g., SFLL-
HD or Anti-SAT) may exhibit security vulnerabilities when it
comes to the implementation [41], [102]. Cost-effectiveness
and security have always been at crossroads, which also
applies to logic locking. Many existing techniques protect only
selected parts of a circuit. Nevertheless, this emerging field

has seen significant growth since its inception, and there is
potential for further research to find novel solutions to the
problems mentioned above.

C. Future research directions

In the light of the discussion on challenges faced by logic
locking, we envision the following future research directions:

1) Integrated combinational+sequential locking: The se-
quential and combinational logic locking may be integrated
for increased security and cost-effective implementation. The
BMC attacks are the first attempt in this regards [57], [58].
This line of research can also help develop a common threat
model that unifies the assumptions about scan access.

2) Leveraging program obfuscation: A much-needed
paradigm shift in the area of logic locking is to curtail the
current practice of attack-specific defenses. Logic locking has
many similarities with the program obfuscation problem [130].
Accordingly, locking can benefit from the developments in
the field of program obfuscation. The well-defined notions
of security, such as indistinguishable obfuscation, as well as
results on the (im)possibility of obfuscating different classes
of Boolean functions [131], [132] can be used in the context
of locking.

3) Leveraging EDA: One of the major impediments to
the adoption of logic locking techniques is the overhead
incurred by these techniques. The power of EDA tools can be
harnessed to build lightweight implementations, making logic
locking more desirable for IC designers. Another challenge is
to ensure the security properties offered by a logic locking
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technique remains intact post-synthesis. For this purpose,
existing verification tools need to be reinforced with security-
relevant properties. Newer logic synthesis techniques should
be developed to offer provable security against attacks that
rely on the structure and functionality of a netlist. Finally,
logic locking techniques are now getting morphed to secure
system-wide applications [106], [117], [133]. Since EDA tools
can now operate at different abstraction levels with a global
perspective of the system and design goals, they can be re-
purposed to ensure the security of system-wide applications
with logic locking as security primitive.

4) Business-oriented security: In Section VIII, we dis-
cussed novel applications of logic locking beyond functionality
locking. For adoption of logic locking by the broader industry,
the business model must be as lucrative as the security
advantages obtained under a given threat model. The additional
effort invested in locking, activating ICs, and the expensive
silicon footprint dedicated to locking circuitry must be com-
pensated well in financial terms. Digital rights management
using sequential locking [20] and performance locking [45]
are the earliest attempts in addressing the economic benefits.
There is a strong need for discovering further applications of
logic locking that make sense from a business standpoint.

D. Related survey and resources

The increasing interest in logic locking and circuit obfusca-
tion research have led to a number of survey papers and books
in this area. Some are listed below for interested readers.

1) A recent (2018) survey on the use of formal methods in

IP protection is provided in [134].

2) A shorter survey on combinational logic locking is per-
formed in [135].

3) A survey on supply chain risk and mitigation approaches
is given in [136].

4) A larger set of IP protection methods are discussed
in [137].

5) For a primer on hardware security problems in general,
readers may refer to [12]

6) A detailed introduction to DfTr techniques including logic
locking, camouflaging, and split manufacturing, up to
2014, is given in [138].

7) There are several books highlighting different obfuscation
techniques [139], [140], [141]. [141] sheds lights on the
security primitives utilized in the context of IP protection,
and [142] emphasize IP trust and validation methods.

X. CONCLUSION

Logic locking started as a solution to thwart piracy and
RE in a globalized supply chain. The last decade has seen
tremendous progress in this field, ranging from attempts to-
wards developing provably-secure locking techniques to novel
applications in microfluidic biochips. The earliest locking
techniques locked a circuit to maximize the error rate for
incorrect keys. These techniques did not build upon well-
established security principles and remain vulnerable to SAT
and other attacks. In the post-SAT era, researchers developed

mathematically-secure locking techniques that rely on point-
functions to derive security properties. While mathematically-
secure, these techniques exhibit implementation vulnerabilities
and can be broken using newer classes of removal and approx-
imate attacks. A similar trend has been observed more recently
for the cyclic locking techniques.

Among various locking techniques, SFLL turns out to be a
promising solution that offers provable security against the
most classes of attacks; however, SFLL also suffers from
implementation vulnerabilities. A variant of SFLL mitigates
these vulnerabilities through fault-insertion-based logic syn-
thesis albeit on a small scale, i.e., protecting only a handful of
input patterns. Thus, there is a need to develop security-aware
logic synthesis to address these implementation issues.

Nevertheless, this emerging field has tremendous potential
for further progress. Logic locking can be strengthened to
offer increased security at the system-level by leveraging the
developments in program obfuscation and logic synthesis.
Applications in newer domains such as performance locking,
AMS circuits, and microfluidic biochips strengthen the busi-
ness case for logic locking, leading to its widespread adoption.
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