This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Thwarting Replication Attack against
Memristor-based Neuromorphic Computing System

Chaofei Yang, Beiye Liu, Hai (Helen) Li, Fellow, IEEE, Yiran Chen, Fellow, IEEE, Mark Barnell, Member, IEEE,
Qing Wu, Member, IEEE, Wujie Wen, Member, IEEE, and Jeyavijayan Rajendran, Member, IEEE

Abstract— Neuromorphic architectures are widely used in
many applications for advanced data processing and often
implement proprietary algorithms. However, in an adversarial
scenario, such systems may face elaborate security attacks
including learning attack. In this work, we prevent an attacker
with physical access from learning the proprietary algorithm
implemented by the neuromorphic hardware. For this purpose,
we leverage the obsolescence effect in memristors to judiciously
reduce the accuracy of outputs for any unauthorized user. For
a legitimate user, we regulate the obsolescence effect, thereby
maintaining the accuracy of outputs in a suitable range. We
extensively examine the feasibility of our proposed method with
four datasets. We experiment under different settings such as
activation functions and constraints such as process variations,
and estimate the calibration overhead. The security vs. cost
and performance vs. resistance range trade-offs for different
applications are also analyzed. We then prove that the defense
is still valid even if the attacker has the prior knowledge of
the defense mechanism. Overall, our methodology is compatible
with mainstream classification applications, memristor devices,
and security and performance constraints.

Index Terms—Neuromorphic computing, learning attack, se-
curity, memristor, obsolescence effect.

I. INTRODUCTION
A. Motivation

On one hand, machine learning has been widely used in data
processing applications to help users understand the underly-
ing property of the data [1]. As a popular type of machine
learning model, neural network [2] processes input data by
multiplying them with layers of weighted connections. Many
embedded hardware engines, including FPGA and System-
on-Chip (SoC), have been developed to implement neural
networks with high speed and efficiency, e.g., Qualcomm’s
cognitive computing platform [3].

On the other hand, memristor has been discovered as a
device whose resistance depends on the historical profile
of the voltage applied on it. The similarity between the

C. Yang, H. Li, and Y. Chen are with Department of Electrical and
Computer Engineering, Duke University, Durham, NC 27708, USA (e-mail:
chaofei.yang @duke.edu, hai.li@duke.edu, yiran.chen@duke.edu).

B. Liu is with Department of Electrical and Computer Engineering, Uni-
versity of Pittsburgh, Pittsburgh, PA 15260, USA (e-mail: bel34 @pitt.edu).

M. Barnell and Q. Wu are with Air Force Research Laboratory, Rome, NY
13441, USA (e-mail: mark.barnell.1 @us.af.mil, qing.wu.2@us.af.mil).

W. Wen is with Department of Electrical and Computer Engineer-
ing, Florida International University, Miami, FL 33199, USA (e-mail:
wwen@fiu.edu).

J. Rajendran is with Department of Electrical and Computer Engineer-
ing, Texas A&M University, College Station, TX 77843, USA (e-mail:
jv.rajendran @tamu.edu).

Manuscript received March 21, 2019.

programmable resistance state of memristors and the variable
weight connection in neural networks simplifies the structure
of circuit realization of a neural network. The compact struc-
ture, high energy-efficiency, and low power consumption of
memristor-based learning systems greatly improve the data
scale and computation capacity of learning applications in
embedded systems [4].

Running learning models on an embedded device, though
advantageous because of reduced processing times and high
energy-efficiency, introduces security challenges. The learning
model is exposed to the risk of being attacked by malicious
users who have physical access to the device. Consider the
following scenario: Assuming there is a drone carrying an
image processing system, which is being used for its nav-
igation and guidance systems. This system implements the
proprietary learning algorithms on a memristor-based neuro-
morphic computing system (MNCS). If the drone is captured
by an unauthorized third party, say, an attacker, he/she may
apply inputs to the system, observe the outputs, and “learn”
the proprietary algorithm implemented by the system [5].
Consequently, they can design a pirated system.

B. This Work

In this paper, we demonstrate how an attacker can learn and
replicate the proprietary algorithm. Our analysis is independent
of the learning model (e.g., support vector machine (SVM) [6],
random forest [7], K-nearest neighbors [8]). We then propose
a secure MNCS design to thwart such replication attacks
by leveraging memristors obsolescence effect. While many
architectures are designed to mitigate this usually undesirable
phenomenon, we harness this effect to resist security threats. In
the drone example, the embedded system will be periodically
calibrated to ensure its usability. Once the drone is captured
by attackers, the calibration mechanism will no longer work.
The resistance of the memristors in the crossbars, i.e., the
weights of the model, will gradually shift, thus aggravating
the accuracy of the embedded system. Therefore, the attack-
ers will not learn useful information for model replication,
which guarantees the model privacy. Furthermore, our analysis
demonstrates that the attacker will not achieve a reasonable
accuracy of the replication model even under the best-case
scenario.

A naive implementation of this idea will incur perfor-
mance overhead. Hence, we develop device-, circuit- and
architectural-level techniques to balance security and perfor-
mance overheads. Experimental results show that our design

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

provides excellent usability as well as resilience to replication
attack of the MNCS, without increasing calibration over-
head. Previously, memristor devices are used to build security
primitives such as physical unclonable functions [9], public
physical unclonable functions [10], and motifs to prevent side-
channel attacks [11]. Here, we focus on using them to prevent
replication attacks on MNCS, which none of these primitives
can thwart.

II. PRELIMINARY
A. Memristors

The resistance of a memristor can be programmed by
applying appropriate current or voltage pulses. With proper
combinations of programming voltage amplitude and duration,
the resistance of the memristor can be programmed to an
arbitrary state between the low resistance state (LRS) and the
high resistance state (HRS) [12]. The resistance of a memristor
can be read (sensed) by a small current or voltage pulse.
However, for most types of memristors, even a small read
signal can disturb the resistance of the memristor, since the
only difference between the read and write operations is the
amplitude and/or the duration of the applied signal.

B. Obsolescence Effect of Memristors

The resistance of a memristor gradually changes on ap-
plying voltage pulses, eventually leading to either the ON
state or the OFF state. We call this effect as the obsolescence
effect of a memristor, as the original resistance value “van-
ishes” on applying a voltage pulse. The obsolescence effect
happens because of two phenomena: 1) the intrinsic retention
property of the device [13] and 2) the read-induced change
in resistance. The first type of resistance change is hard to
control since it is related to the material relaxing mechanism.
The read-induced change is depicted in [13]. A memristor is
constantly stimulated by short minor voltage pulses, and its
resistance change (reflected by the sensed current) is recorded
for every input pulse. This experiment is designed to mimic
the impact of the small sensing signal applied to the memristor
during read operations. It shows that the resistance of the
memristor keeps increasing with the stimulation. Therefore,
the obsolescence rate (i.e., changing rate of its resistance)
can be controlled by choosing the amplitude and duration
of the sensing current/voltage. In general, the resistance (or
conductance) change of a memristor is a continuous procedure
that can be described as:

AR = f(v,1). (1)

Here, AR is the resistance change. v and ¢ are the sensing
voltages and operation time of the memristor, respectively.

C. Memristor-based Neuromorphic Computing Systems

In this paper, we define a neuromorphic computing system
as the hardware specifically designed to accelerate neural net-
works or machine learning algorithms. We also constrain our
research object to supervised learning systems. Several such
systems have been proposed by different research groups: As

two major examples, IBM recently released their SRAM based
neural chip, namely, TrueNorth [14], and Micron demonstrated
Automata Processor [15] based on CMOS technology. A
simple neural network that can be directly mapped onto an
MNCS can be represented by two layers of neurons are fully
connected by one layer of synapses. The output neurons collect
the information from the input neurons through a network
of synaptic connections and process them with a transfer
function. The synapses multiply the signal transferring on them
with different synaptic weights. In general, the relationship
between the value of the input vector @, and the output vector
y can be described by [16]:

Yn = f(Winsn -). 2

Here, the connection weight matrix W, «, denotes the
synaptic strengths between the two layers of neurons, n and
m denotes the neuron number of current layer and previous
layer. The matrix-vector multiplication in Eq. 2 is one of
the fundamental operations in neural network and machine
learning algorithms. Due to the structural similarity, memristor
crossbars are time-efficient platforms to execute such matrix-
vector multiplications [17]. The operation defined by Eq. 2 is
the feedforward “evaluating” operation of a traditional neural
network. During the evaluating process of an MNCS, «x is
represented as a vector of voltage signals applied to the word-
lines (WLs) of the memristor crossbar while the bit-lines (BLs)
are grounded. The current sensed from the bottom of each BL
will be converted to output voltage vector y by a specially
designed sensing circuit. Here the sensing circuit can be a
CMOS analog module or a memristive device carrying the
necessary transformation function. The matrix W, «,, is often
implemented by two memristor crossbars, which represent
the positive and negative elements of W, x,, respectively.
“Training” on this system denotes the process of programming
the memristors to the conductance states representing W, x .
Open-loop and close-loop are two major training schemes. The
former directly applies a programming pulse on the targeted
memristor. The latter updates the W,,,, iteratively based
on the discrepancy between the generated and the expected
outputs.

III. THWARTING LEARNING ATTACKS
A. Target System

An MNCS consists of the following two proprietary infor-

mation:

e Training data denotes the sample set used for training
the MNCS. Each sample normally contains a vector of
features and a label. The feature vector serves as the input
of the learning model, and the label describes a property.

o Learning model denotes the model that has been trained
for the proprietary application using the training data. It
includes two parts: 1) the model info, say, the type (e.g.,
Hopfield or Naive Bayes models) and the topology, and
2) the model parameters, e.g., the weight on each synapse.

Without losing generality, we assume the function of the

original learning model g(w,x) is data classification, which
can be described as:

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Training data (D)

Original model
(g0 x))

Testing data for evaluation (7')

Fig. 1. Training and replication process of the learning model [18].

g(w,x) = maxp(y = y;|w,x),i =1,,n. 3)
Yi

Here, w represents the parameters of the original model.
x is the input vector of features. y; is the iy, target class
that a sample can be assigned to. The probability function
p(y = yilw,x) is defined by the structure of the original
model, e.g., a neural network. After the training completes,
the original model g(w, x) is ready to classify new evaluating
data.

B. Protocol

Fig. 1 shows a conceptual view of the concerned embedded
system and its usage model. A proprietary (classification)
algorithm is running on the hardware, e.g., an MNCS. The
model is first trained for an application, and then the drone
can submit the collected data for processing (evaluating), e.g.,
pattern recognition or classification.

The drone with the learning system executes the following
protocol:

1) Initially, the MNCS is not trained, and hence it does not
implement the proprietary algorithm.

2) The drone requests the base station for the training
samples.

3) After authenticating the drone, the base station estab-
lishes a secure session with the drone using conventional
cryptographic protocols.

4) The base station encrypts the training set and sends to
the secure session.

5) The drone decrypts the encrypted training set and trains
the MNCS to implement the proprietary algorithm.

6) The MNCS executes proprietary algorithm N times, after
which the weights erase due to memristor’s obsolescence
effect.

7) After applying N I/O pairs, repeat steps (2) through (6).

C. Threat Model

We assume that the attacker has the following capabilities:

o The attacker can apply inputs, e.g., images, body data
from patients, finger prints, to the originally trained
model and obtain the corresponding outputs without any
constraints, i.e., being granted with the same privilege as
a normal user or being able to physically get access to it.

o The attacker does not have access to the original training
set.

o The attacker has no knowledge about the parameters of
the original model.

o An attacker can reverse engineering to understand the
hardware implementation of the system.

The objective of the attacker is to replicate the function
of the original model g(w,x) by constructing a new model
h(w’,x), such that the h(w’,x) = g(w,x). To achieve this
goal, an attacker can perform the following attacks:

1) Eavesdropping attack. An attacker can listen to the
communication channel to obtain the training set. This
attack is not possible, because the training set is en-
crypted and sent across the channel, as stated in Step
(3) of the protocol.

2) Spoofing attack. An attacker can impersonate as a drone
and request for the training set from the base station.
This attack is not possible, because the base station
authenticates the drone before sending the training set,
as stated in Step (3) of the protocol.

3) Probing attack. An attacker can probe the memristors
and can try to learn the stored weights [19]. Since the
attacker already has the structure of the MNCS through
reverse engineering, in addition to the weights, he/she
can replicate the proprietary algorithm. This attack is
not possible, because memristors are highly dense and
can be compactly stacked in 3D structure, making them
difficult to probe without physically damaging the neigh-
borhood devices. Besides, countermeasures can be used
to prevent probing attack [18].

4) Chosen input attack. An attacker can apply inputs of
his/her choice, observe the corresponding outputs, and
infer the weights. In this proposal, we focus on this
attack and thwart it using the obsolescence effect of the
memristor in the MNCS.

D. Chosen-input Attack

In this proposal, we use D;,, to denote the inputs chosen by
the attacker to the MNCS. D,,; is the output of the MNCS.
[Din, Doyt] construct I/O pairs. Here the length of D;,, i.e.,
the number of inputs chosen by the attacker and the length of
Dout and [D;,,, D] are the same, say, m, which is decided
by the attacker.

Since the attacker has no knowledge about the type of
the original model, he/she needs to select a learning model
as a starting point for model replication. After the 1/O pairs
are constructed and the replicated model type is selected, the
attacker starts to use the I/O pairs to train the replicated model:
because the I/O pairs are generated from the original model,
the function of the replicate model will gradually approach to
that of the original model.

Since the attacker does not know the model implemented by
the MNCS, any arbitrary model may be selected. Besides the
original model, (e.g., neural network [2]), we could also use
other model (e.g., support vector machine [6]) as the replicated
model to learn the function of the original model. In addition,
it has been proved that although the selection of learning
model is crucial for replication efficiency and accuracy, it is
not necessary to select the same model type as the one of the
original model [20].

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

90%
- 80%
S 70% SVM-original
3 K-nearestneighbors-attack
< 60% ~==SVM-attack
-—Random forest-attack
50%
50 250 450 650 850
Number of I/O pairs

Fig. 2. Comparison of learning model between the original model and various
other learning models and parameters.

Security Metric. The performance of the MNCS is evalu-
ated by their accuracy, which is defined as:

number of true — positives

“4)

aeeuracy = number of all evaluating samples’

Here the number of true-positives is the number of predic-
tions that match the ground-truth labels. In this proposal, we
use accuracy as the security metric to quantify the effective-
ness of our attack.

To demonstrate the effect of different learning models on
accuracy, we use MNIST dataset as an example [21]. MNIST
is a handwritten digit dataset, which is widely used in machine
learning field and various image processing training. The
system implements the target application using SVM [6])
model. Other candidate learning models include: SVM [6]),
random forest [7], and K-nearest neighbors [8]. The attacker
does not know which of the four learning model is being
implemented in the system.

As we mentioned in Section III-B, the attack models take
the I/O pairs generated from the original model as their
training data. A normal model (e.g., a SVM model) trained
by original training labels is also evaluated for comparison.
Experimental results can be found in Fig.2. The replicated
model based on SVM shows a rate of increase in accuracy
w.rt. I/O pairs similar to that of the original one. Even if
the replication attack uses other learning models, the rate of
increase in accuracy w.r.t. I/O pairs is similar. And, their
accuracy’s both approach to the one of the normal model
(90%) after applying 900 I/O pairs.

This experiment shows that the model replication attack is
feasible and even if the replication model is different from
the original model (SVM, in this case), it still can achieve a
good enough accuracy. Thus, the proposed defense mechanism
should prevent the attacker from replicating the algorithm,
irrespective of the underlying learning model.

IV. SECURE MNCS DESIGN

A. Device Level: Memristors

Among all the device candidates such as memristor, phase
change memrory, and other non-volatile memories [22], we
use memristor because of its following attractive properties:

3.20E-04 1.20E-03
@ _ =
2) v=1.0V v=1.0V
: 240804 (77 9.00E-04 | o~ "
£ 1.60E-04 6.00E-04
=
g 8.00E-05 |5 5 aueidtosss 300E-04
Q - - PWWw
0.00E-+00 0.00E+00 La-a-aee
0 04081216 2 0 04081216 2
Time (s) Time (s)

() (b)

Fig. 3. Memristor model: (a) Conductance. (b) Derivative of Conductance.

1) Memristors are highly dense and can be stacked in 3D
structure, which makes it extremely difficult for physical
attacks.

2) Memristor is energy-efficient.

3) Memristor is programmable for online training.

In this paper, we adopt the memristor model from the work

of Miao et al. [23]. The memristance can be expressed as:

M(a)=a-Rp+ (1 —a)- Ry, 5)

where « is the relative doping front position which ranges
from O to 1. It can be obtained by solving the differential
equation of velocity:

Ry — /Ry ~2- (R — Rp) - (A+ B)
N Ry — Ry ’
where A = uv-%-f;\/(t)dt and B = Ry - ag + 5
(Ry — Ryp) - 2. g is the initial condition of c. Assume

to =0, ag = 0.3 and substitute A and B into « and then to
M (a), we have:

a(t) (6)

R
RH2—2'(RH—RL)'(M'}TQL'U¢ o

+0.255 - Ry +0.045 - Ry)

M(t) =

By using the ideal memristor parameters (h = 50nm, Ry =
16k, Ry, = 1009, p, = 107"m25~ 1V ~1 [23]), we can
have a simplified memristor model as (in conductance form):

G(t)=35-107*- (32— 15-v - £) 707 ®
and its corresponding derivative:

%it) =27-107%-(32—15-v-t)~'5. 9)

The conductance change over time can be found in Fig. 3.
Voltages of 1.0V and 0.5V are applied to the same memristor,
respectively, in our experiments. We made a observation that
the curve has a relatively flat portion, which we can utilize
to achieve a linear degradation speed, e.g., when applying a
small sensing voltage (e.g., 0.5V) or decreasing the duration
of the applied voltage pulses.

Our selected model is a general memristor model which
was originally proposed by HP Labs [24]. This model was
also adopted in many prior works [25], [26]. There are indeed
various implementations of memristors and thus many versions

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

/0 Calibration

pairs vectors Crossbar group M =
[10] [Network] 1 2
General purpose | m==) | | F
processing unit W=A(M,) — B(M,)

Fig. 4. Overview of MNCS structure.

of memristor models. However, our method should work on
one specific model as long as there is a “linear” region in
the g-t curve. Fortunately, this is true for most memristor
models [27]. In practice, we can design the system such that
the device works in the desired region. Later in Section V-E,
the robustness analysis also indicates that our method will
work under an imperfect situation.

B. Circuit Level

Fig. 4 depicts an overview of the MNCS structure. Since the
elements in the weight matrix W of a neural network can be
either positive or negative but the conductances of memristors
can be only positive, we split W into two matrices A and B
as:

A5 = J . ! (10)
0, if Wi <= 0,
0, ifw; >0

bij = L (1)

Wiy, if wi; <= 0,
where w;; denote the elements in W.

Matrices A and B are represented using one memristor
crossbar for each (M; and Ms, respectively) where the
conductance of every memristor g > 0. Then we have:

Yn :f(mm'Amxn_mm'Bmxn)- (12)

For simplicity, here we assume the conductance change of
memristors follows Eq. (8). In naive design, same inputs are
applied on both A and B during computation. If we use AA
and AB to denote the weight change represented by A and
B, respectively. Then the change of W can be expressed as
AW = AA — AB. According to Eq. (9)-(11), we have:

AW = sign(W) - dG(v, 1) - input. (13)

where sign() is sign function, dG(v,t) can be changed by
adjusting v and ¢, and input is target application specific.

As the conductance of the crossbar changes upon applying
an input, the accuracy of the system degrades over time, which
means the function of the model implemented by the system
is gradually changing. In order to control this property, we
propose to apply random voltage pulses to all memristors for
each I/O pair, so that the conductance can change linearly and
evenly, across all memristors.

In order to guarantee stable, correct outputs for authenti-
cated users, a calibration mechanism must be applied to such
a system with forgetting property. A naive way to calibrate

>o

(a) (b)

Fig. 5. Compare two proposed designs: (a) Naive design with positive
voltages applied on both crossbars. (b) Revised design with negative voltages
applied on second crossbar.

is to refresh the crossbars with initial conductance states
periodically, using the protocol listed in Section III-B. In
order to boost calibration efficiency, we may adopt various
techniques such as inline calibration [28].

When the accuracy of the MNCS is high, it offers a better
service quality to normal users, but aids the attacker in learning
the proprietary algorithm better because he can obtain outputs
with higher accuracy. Degradation of accuracy prevents an
attacker from accurately learning the model, but also reduces
the accuracy for a normal user. In order to solve the above
dilemma, in this paper, we propose to design a MNCS that
has a very nonlinear degradation in accuracy (Fig. 5 (b)).

We use a classification application as an example. When we
keep applying inputs, the classification accuracy of the MNCS
degrades. The degradation rate of the accuracy is low initially
so that it can provide accurate outputs to the authorized user.
The degradation then sharply accelerates when the number
of test operations exceeds a threshold to prevent the attacker
from replicating the model by obtained sufficient number of
I/O pairs.

We design the system by manipulating the input voltages
applied on the memristor crossbar. In the naive design, only
positive inputs are applied to memristor crossbars M; and
M, and the result from M5 will be deducted from the result
of M in the post-processing logic. In such a design, the
conductances of the memristors in both M; and M, are
changing in the same direction. In our revised design, as
shown in Fig. 5, the inverted negative inputs are applied to
M, while the inputs to M) still kept positive. The result of
M5, hence, needs to be added on top of the result of M;.
The conductances of the memristors in M7 and My are now
changing in the opposite directions, and the weight changing
function will change from Eq. (13) to

AW =dG(v,t) - input (14)

Fig. 6 shows the weight change difference between the
naive and the revised designs. For the naive design, because
of the sign function, positive weights are changing to higher
values and negative weights are changing to lower values. For
the revised design, everything is changing to higher value.
Changes in weight are represented by the shade in Fig. 6,
which follows our expectation according to Eq. (13) and (14).

The revised design with negative inputs demonstrates a
stronger nonlinearity than the naive design when the number
of test operations increases. Hence, we prefer to use the revised

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

e e T (e S
&
173

(@)

Fig. 6. Weight change in MNCS: (a) Original weight matrix. (b) Weight
matrix in naive design post-degradation. (c) Weight matrix after revised design
post-degradation.

design over the naive design. The comparison results will be
shown in Section V.

C. Architectural level: Depth of Neural Networks

Increasing the depth of neural networks is another way to
increase the nonlinearity of the MNCS. For example, a neural
network has intrinsic nonlinearity that arises from the error
diffusion across its layers. Considering a normal feedforward
network with one hidden layer, we have:

y = fa(fi(z - W7) - Wy)). (15)

where f;(i = 1,2) are the transfer functions, W is the weight
matrix between input layer and hidden layer, W5 is the weight
matrix between hidden layer and output layer, x is the input,
and vy is the output. Hence, the partial derivative of y respect
to W is:

dy _df ds
AW, df, dW;,

= fo(f1(z-W1)-Wo)- Wy fi(z-Wy)-W,.

(16)
For simplicity, we assume the second transfer function f;
is a linear function. Then the derivative can be re-written as:
dd—v""/l =W, - fl(z- W) - Wi.
The partial derivative of ddWyl respect to Wi has a high
degree (larger than 1) because the transfer function is usually
a nonlinear function, e.g., hyperbolic tangent, which explains
why neural network has intrinsic nonlinearity property.
Similar to the back propagation method, the errors generated
from the weight matrix at the first layer will pass onto all
the subsequent layers, and affect the accuracy. The deeper the
network is, the greater the influence introduced by the errors
will be. Similar conclusion can be drawn for the matrices at
other layers. By carefully selecting the depth of the neural
network used in the original model, we are able to control the
nonlinearity of the degradation curve of the accuracy (service
quality).

a7

D. New Challenge With Prior Knowledge on Defense Mech-
anism

To further evaluate the effectiveness of our defense mech-
anism, we endow the attacker stronger capability by letting

he know our defense mechanism in advance. This assumption
is practical, for that even if the attacker does not know in
advance, he will be able to know at least the basics of the
defense mechanism by collecting related information or learn
from the results. This means that before the attacker sends
inputs to our system, he already knows that this system is
going to degrade and the resistance of memristors will obsolete
according to input samples (voltage pulses). However, the
attacker can not access to the inside of the system, which
means he can not control the weights or change the structure.
Otherwise, it should be belong to what has been discussed
in Section III. The attacker can only play some tricks on the
input dataset, which is determined by himself, to slow down
the system degradation or at least to avoid the worst case.
There may exist the best way to do so and we will discuss it
later.

New attack model formulation. Here, we formulate the
above assumption as our new attack model. In general, the
attacker should obey the following claims based on our basic
attack model discussed in Section III:

1) The attacker knows the defense mechanism (system

degradation) prior to sending the inputs into the system.

2) The attacker can not change the weights or the structure

of the system.

3) The attacker can manipulate the inputs when attacking

the system.

4) The attacker can learn from the outputs to re-arrange the

inputs.

Mechanisms of defending-aware attack. We summarized
several mechanisms the attacker may adopt to manipulate the
inputs as follows, and we will evaluate their effectiveness in
Section V-G.

1) Random is a normal way of sending inputs to the
system. By doing this, the attacker should shuffle the
input samples in random order. The result usually varies
in a small range due to the randomness, meanwhile, the
system degrades at a moderate speed.

2) Sequence is to send the inputs in a sorted sequence,
e.g., send all samples in the Ist class and then send
samples in 2nd class, and so on. This technique brings
the fastest system degradation due to the accumulation
of obsolescence effect of similar memristor crossbar

Algorithm 1 Generate attack samples using difference tech-
nique

Initialize the network.

Randomly choose a starting input sample x;.

while not all input samples determined do

1) calculate the difference between x; and x;,j > 4
2) find x; with largest difference
3) swap ;41 and x;

4) i=i+1
end while

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

100% o 1

807 Error rate 0.8 -qg s

0 . w

e -o-Weight change £ &
g 60% 06 3 &
S S = fﬂ
S 40% 04 2°°3
= = 8 =

= < =

20% 0.2 =

g

0% Le o 2 =

0 100 200 300 400 500
Number of 1/0 pairs

Fig. 7. The relation between weight change and system degradation.

regions.

3) Difference represents the technique to send the inputs
with the largest difference. Here we use MSE to evaluate
the difference, i.e., the difference between inputs « and
yis D(z,y) = 23" (z; — y;)? Details of how to
generate input samples using difference technique can
be found in Algorithm 1. The sample with the largest
difference from the prior sample will be selected as the
next input sample.

4) Feedback is the technique manipulating input samples
by taking advantage of the softmax outputs. Details of
how to generate input samples using feedback technique
can be found in Algorithm 2.

V. RESULTS

In this section, we will demonstrate the effectiveness of
our proposed MNCS design to defend replication attacks. In
Section V-A, we will depict the obsolescence effect of mem-
ristor devices and its relationship with the system accuracy.
The proposed revised design, which has nonlinear degradation,
will be shown in Section V-B with the comparison to the
naive design that has linear degradation. In Section V-C, we
will show the security advantages provided by the revised
design. In our experiments, we choose two benchmarks from
UCI machine learning repository [29]: Image Segmentation
(Image), Steel Plates Faults (Faults), one benchmark from
Scikit-learn [30]: Hand-writtern digits (Digif) and popular
digit classification dataset MNIST [21]. All the details of the

Algorithm 2 Generate attack samples using feedback tech-
nique

Initialize the network.

Randomly choose a starting input sample x;.

while not all input samples determined do

1) send x; into the system and get softmax result;

2) find the least value of the soffmax result, which
represents class t;

3) randomly choose a sample x; from class ¢ and swap
with x;1;

4) i =1+ 1.
end while

TABLE I
SUMMARY OF BENCHMARKS.
Training #Evaluation #Attributes #Class
Image 1500 810 19 7
Faults 1500 441 27 7
Digit 500 300 64 10
MNIST 50000 10000 784 10

datasets are listed in Table I. These are all representative
classification tasks that can be realized on memristor-based
devices.

A. Number of I/O pairs vs. Degradation in Accuracy

To evaluate the impact of obsolescence effect on the accu-
racy of the MNCS, we simulate the degradation in accuracy
of MNCS when running different benchmarks. The memristor
crossbar is configured to implement a neural network with
two hidden layers for all the benchmarks. Each layer has
64 neurons. Compared with state-of-the-art models, such a
shallow fully-connected network is relatively simple but serves
as a good starting point. In Section V-B, we will also explore
the influence of the depth of the network, indicating the
proposed method will work on deeper networks. Furthermore,
current mainstream deep networks are not practically feasible
for memristor crossbars.

The simulation results are summarized in Fig. 7. Without
loss of generality, we take Digit for example as the curves
for all three benchmarks have very similar trend. X-axis
denotes the number of I/O pairs. The left y-axis denotes the
error rate of the system while the right y-axis denotes the
normalized summed absolute changes of weights (NSCW)
due to memristor obsolescence. We define the error rate and
NSCW as:

n

1
te = =S if(y; == t,), 18
error rate n;ﬂy) (18)
NSCW = M (19)

Ei, j [wis]

Here y; denotes the classification result, ¢; denotes the target
result, n denotes the size of I/O pairs, and w;j is the element
of weight matrices. As the weight change increases, the error
rate increases from less than 20% to over 60% gradually due
to the obsolescence effect of the memristors.

The low error rate region at the beginning provides the
usability for normal users. The average error rate within the
first 50 I/O pairs only increases by less than 2%. More details
on this will be provided in Section V-B.

B. Linear vs. Nonlinear Degradation

To provide better usability and increase protection against
replication attack, we compare the naive design and the revised
design. The naive design possesses a linear degradation curve,
leading to slower degradation. An attacker can apply more
I/O pairs with high accuracy and thus, learn the proprietary
algorithm better. The revised design has a nonlinear degra-
dation curve that degrades faster than the naive design. The

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

100 - 100 1000 1000
Nonlinear Nonlinear 100 Nenlinear 100 Nonlinear
10 |=o=Linear 10 “o-Linear ®-Linear -®-Linear
% 10 10
= 1 1
1 1
0.1 0.1 0.1 0.1
0.01 0.01 0.01 0.01
0 100 200 300 400 500 0 450 900 1350 0 450 900 1350 (1} 450 900 1350
Number of I/O pairs Number of 1/0 pairs Number of I/O pairs Number of 1/0 pairs
100% 100% 100% 100%
o 30% 80% 80% 80%
< Nonlinear
0, 0, 0, 0,
:5- 60% 60% 60% 60% “ Linear
: 40% Nonlinear 40% Nonlinear 40% Nonlinear 40%
= 20% - 20% ~¢-Linear 20% -®-Linear 20%
-®-Linear
0% 0% 0% 0%
0 100 200 300 400 500 0 450 900 1350 0 450 900 1350 0 300 600 900
Number of I/O pairs Number of I/O pairs Number of I/O pairs Number of I/0 pairs
(@ (b) (© (@)

Fig. 8.

comparisons between the naive and the revised designs are
summarized in Fig. 8, where x-axis represents the number of
I/O pairs and y-axis shows the mean square error (MSE) and
error rate, respectively, as:

1 n
MSE = = i —]2,
o=

=1

(20)

where o; denotes the final output obtained from the last layer
of the network.

The y-axis of the figure is in logarithmic scale for better
view. MSE is the absolute difference between target results
and classification results and hence, has a smooth monotonous
curve. Error rate does not necessarily linearly depend on the
system degradation, so the curve may contain many inflection
points that are caused by uncertainty in real classification task.

As we can see from Fig. 8, the degradation curve of the
revised design is much more nonlinear compared to the naive
design. The low error rate region at the beginning provides
the usability for normal users, and the rapidly increasing
portion guarantees the protection of the model. Take Digit
as an example. As we can see from Fig. 8 (a), the error
rate of the revised design keeps below 20% before obtaining
100 I/O pairs, and it increases to over 70% between 100 to
200 I/O pairs. At the same time, the error rate of the naive
design increases from below 20% to 60% gradually throughout
the whole process without showing significant nonlinearity.
For Digit, Faults, and Image, the average error rate increases
within 50 I/O pairs are less than 5%. For MNIST, the error
rate increases faster but still demonstrates the nonlinearity for
both normal users and model protection. Furthermore, one can
design the system to balance between usability and protection.

We also quantitatively analyze the nonlinearity using the
correlation coefficient:

Se-ny-5
Vi@ =P /- 9

T =

2L

Comparison between the naive and the revised designs using MSE and error rate: (a) Digit, (b) Faults, (c) Image, and (d) MNIST.

Here = denotes the evaluating operations and y denotes
evaluation index, i.e., error rate or MSE. r € (0,1) of
which 1 represents the highest linearity, and O represents the
highest nonlinearity. Then, we define the nonlinearity index
as 1 — r. We take the curve from initial error rate to 60%
of its maximum into consideration, because that is the part
reflecting the change in first-order derivative. The result is
shown in Table II. We can notice that the nonlinearity index
of the revised design is much higher than that of the naive
design. The average increase in degradation rate for MSE is
179.93% and for error rate is 288.99%.

We also investigated the influence of network depth on
the nonlinearity. We choose different neural networks with 1,
2, and 3 hidden layers to run on all the benchmarks. The
result of Digit is shown in Fig. 9. The x- and y-axis are
normalized to 0 to 1, respectively, for better observation of
nonlinearity. The nonlinearity indexes are 0.809, 0.897 and
0.971 for 1 layer, 2 layers and 3 layers, respectively. The
result confirms with our discussion in Section IV-C: The non-
linearity in degradation increases with the depth of neural
networks. Another similar observation is that if the number
of neurons in each layer is larger, the error rate increase is
faster. This is shown in Fig. 8 (d). Note that the dimension of
the first weight matrix of MNIST is “784 x64” , which is much
larger than other datasets. The error rate increase of the revised
design is significant compared with the naive design, with
almost the same summed absolute changes of weights. This
means that revised design does not introduce extra calibration

TABLE I
NONLINEARITY INDEX OF MSE AND ERROR RATE, BETWEEN NAIVE AND
REVISED DESIGNS.

Digit Faults ~ Image MNIST

MSE Naive 0.0320 0.0509 0.0294 0.0401
Revised 0.1015 0.1303 0.1010 0.0814

Error rate N aive 0.0250 0.0122 0.0243 0.0322
Revised 0.0923 0.0762 0.0954 0.0546

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

0.8 1 layer

0.6

2 layers
-#-3 layers

Normalized
error rate

0 0.2 0.4 0.6 0.8 1
Normalized 1/O pairs

Fig. 9. Impact of network depth, varying from 1 hidden layer to 3 hidden
layers.

cost, which is propotional to the summed absolute changes of
weights. Detailed discussion can be found in Section V-F.

C. Accuracy of Replicated Model

In this section, we will mimic the replication attack and
evaluate the effectiveness of our proposed design. In the
simulation, we assume the best-case scenario for an attacker:
1) All the I/O pairs chosen by the attacker are the same as the
one in the original training samples. 2) The model chosen by
the attacker is the one with the best replication performance,
e.g., SVM for Digit, Random Forest for Faults, similar to
the analysis in Figure 2. Other simulated models include K-
Nearest Neighbors and feedforward neural network. We show
that even under the best-case scenario, an attacker cannot
obtain the correct outputs due to the obsolescence effect of
the system.

Fig. 10 summarizes our results where the x-axis is the I/O
pairs and the y-axis is the accuracy. We compare the accuracies
of the replication model when attacking three systems:

1) The original system without obsolescence property
(Original in the figure). As the number of I/O pair
increases, the accuracy should increase monotonously.

2) The system with naive design (Linear in the figure). The
accuracy should not increase monotonously. Ideally, it
will increase to a peak and then decrease.

3) The system with revised design (Nonlinear in the figure).
The accuracy should decrease earlier.

In the initial phase, all three systems achieve a similar trend
of accuracy increase, because this period belongs to the low
error rate region as we can observe from the curve in Fig. 8.
The accuracies of the naive and revised systems then both
drop, while the accuracy of the original system increases. The
accuracy of the naive system drops more slowly compared
with the revised system. We also observe that the highest
accuracy of the revised system is always lower than that of
the naive system. For example, in Fig. 10 (a), the theoretical
maximum accuracy (the attackers will hardly achieve this
since they have no idea when to stop training) of the revised
design is 78.5% while the one of the naive design is 85.4%.
Considering the fast degradation rate of the accuracy after
reaching the maximum, the proposed revised design is the
most resilient one to replication attacks among all the three
designs.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

100% 100%
5, 80% - N\.\.\‘\. 5, 80% -
Q Q ~ rar “0“.._.‘“
g 60% |= £ 60% |+
g 400 g 400
% 40% ~#-Nonlinear é 40% +N.0nlinear
20% |*Linear 20% |-*Linear
0% Original 0% Original
25 125 225 325 425 50 350 650 950 1250
Number of I/0O pairs Number of 1/0 pairs
(a) (b)
100% 100%
M=C=C—~——o—9
. 80% —4-Nonlinear %80%
g 60% =0-Linear 260% | —*=Nonlinear
= B Original = -o-Li
2 40% £ £40% SRt
S S Original
< 20% <20%
0% 0%

10 70 130 190 250

Number of I/0 pairs
(©

50 250 450 650 850

Number of I/0 pairs
@)

Fig. 10. Replication accuracy comparison between nave and revised designs:
(a) Digit, (b) Faults, (c) Image, and (d) MNIST.

D. Ranges of Memristor Resistance

In the real design of MNCS, the resistance range of mem-
ristors greatly impacts on the performance of the system,
including the accuracy drop incurred by the limitation of the
precision, the change of the accuracy degradation rate due
to different memristor obsoleting speeds, and the change of
power consumption. The resistance levels of memristors can
be tens of kiloohms to hundreds of kiloohms based on different
models and techniques [31]. A higher registance levels leads to
a lower power consumption since p = “-, where v is normally
a constant for a chip, e.g., 1.2V. However, the low working
current incurred by the high resistance which is vulnerable to
the noise current generated from sneak path effect.

In this section, we include experiments with different mem-
ristor resistance ranges to show the impact of memristor
resistance on the robustness, effectiveness, and power con-
sumption of our proposed design. Experiments are performed
on MNIST with a fully-connected MLP (two hidden layers
with 64 neurons for each in order to be consistent with the
previous configuration) on our proposed revised design.

1) Resistance range analysis: To better demonstrate the
impacts introduced by resistance range, we carefully tune the
parameters to approximate the characteristics of real devices.
We select the relatively flat portion of the derivative of
conductance as shown in Fig. 3 (b) by applying a threshold of
ti, = 0.5. The time ranges from O to ;5 X t4.. We choose

TABLE III
COMPARISON OF POWER CONSUMPTION CONTRIBUTED BY MEMRISTOR.

settings Power (W) I/O pairs

1k/100k 0.71 1

1k/300k 0.70 523

1k/500k 0.90 326

1k/700k 1.13 231

0.5k/150k 1.39 513

2k/600k 0.35 527

3k/900k 0.23 585

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

70%

60%

o 0%

E 40%
5 30% == 100k
5 20% 300k
10% == 500k
700k

0%

0 200 400 600 800 1000
Number of I/O pairs

Fig. 11. System degradation comparison with different memristor resistance
ranges, Ry, = 1kQ.

to use Ry = 1k, Ry = 300k as our baseline. The parameters,
e.g., obsoleting speed, mapping scalar, are also chosen in the
baseline.

We first experiment on the accuracy degradation of the
MNCS with the increase of I/O pairs under different Ry
values, which is inverse proportional to the minimum al-
lowable network weights (minimum and maximum weights
are mapped to Ry and Ry, respectively). Fig. 11 compares
the accuracy degradation curves of the MNCS when the Ry
values ranges from 100k$2 to 700kQ2. Here Ry = 1kQ is
a constant value. When Ry = 100k, the system does not
function correctly even when the number of I/O pairs is small,
experiencing a high error rate. This is due to the nature that
the original weights of the model is majorly distributed around
zero (neural networks tend be very sparse because of the
regularization [32]). When small weights are forcely mapped
to relative large conductances (e.g., when Ry = 100k€),
it will break the model’s function. For other values, as Ry
becomes larger, the conductance curve goes steeper; The
memristors become obsoleted at a higher speed and the system
degrades faster.

We also experimented on different (R, Ry) pairs with the
same ratio. The ratio between the maximum and minimum
weights represents the range of the weight distribution. Fig. 12
shows the system accuracy degradation w.r.t. the number of
I/O pairs when the ratio I;—’Lf = 300. The result shows that the
accuracy degradation speed and nonlinearity varies very little
when the resistance range changes as long as the ratio stays
at the same level.

2) Power consumption analysis: The energy consumed by
a MNCS before its accuracy degrades to a certain level also
changes with different memristor resistance ranges, as shown
in Table III. Here we simulate the energy consumption of the
MNCS when its error rate increases 40%. The corresponding
numbers of I/O pairs that are needed to achieve such degra-
dation are also listed in the table.

The first 4 rows of the table correspond to the configurations
from Fig. 11 and the last 3 rows (including row 2) correspond
to the configurations from Fig. 12. Under each setting, we
analyze the power of the system when the error rate exceeds
40%, while all the wordlines are applied with 1V voltage.
When the resistance ratio is fixed, the power consumption
of the MNCS decreases as the memristor resistance range
increases. This is consistent with our previous discussion.

10

70%
60%
o 50%
g 40%
5 30% == (0.5k/150k
5 20% 1K/300k
0% —t— 2K/600k
=p==3k/900k
0%
0 200 400 600 800 1000
Number of I/O pairs

Fig. 12. System degradation comparison with different memristor resistance

ranges, g—fz = 300.

When the Ry is fixed, the power consumption of the MNCS
increases when the R increases. This is because the system
degrades faster with a larger resistance range. Therefore the
overall conductance is larger when the error rate exceeds 40%,
indicating a higher power consumption.

E. Robustness Analysis: Effect of Process Variation

In this section, we will evaluate the impact of memristor
process variation including the device surface area and thick-
ness [33]. We assume the memristor conductance follows a
Gaussian distribution in general. For illustration purpose, we
only include the results of digit in Fig. 13.

Process variation incurs the increase in the error rate of the
system. Take the revised design as an example. The initial error
rate when the number of I/O pairs is zero increase from 13%
(0 = 0) to 16% and 18% when the standard deviations o =
1 and 2, respectively. However, all the error rates approach to
the same level when the number of I/O paris increases. We
also calculated the nonlinearity index for each case, which are
included in Fig. 13 too. In our revised design, the nonlinearity
increases when the process variation increases. In naive design,
however, the nonlinearity always keeps at a low level when
the process variation varies.

The results show that our revised design is robust to
process variations and indeed its nonlinearity benefits from
such variability. The initial accuracy degradation of the system
can be partially compensated by enhanced training techniques
such as variation-aware training [34].

F. Calibration Overhead

The cost of weight calibration operations discussed in
Section IV-B is mainly determined by }, ; |w;; —wj;|, which
is the summed discrepancy between the changed conductance
and the fully trained conductance of the memristors.

Each operation cycle of our proposed secured MNCS
consists of two periods — evaluating operation and system
calibration. To calculate the calibration time overhead, we
quantitatively measure the percentage of the calibration time
T.q over the whole operation cycle T¢yq; + Trqr as:

T(:(Ll

OH.yp = ——.
cal Teval + Tcal

(22)

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

70%
© 60% Tend to be the same
= 50%
Bt
= 40%
g 30"/0
= ¢ —e—sigma=0.1

0,
20% ——sigma=0.2
10%
0 100 200 300 400 500
Number of I/0O pairs
(2)

90%
2 0%
s Tend to be the same
5 50% joma=
o ——sigma=0
5 0.1298 e ol
= 30% . —e—sigma=0.

0.0905 ——sigma=0.2
10%
0 100 200 300 400 500
Number of 1/0 pairs
(b)

Fig. 13. System degradation comparison with different memristor process
variation: (a) Naive design and (b) Revised design.

Here the evaluation time 7,,; and the calibration time 7.,;
can be further expressed as:

N,
Te'ual = .eva’l = Q(E) 5 (23)
feval feval
Tear = Y tearlwi; — wij'|. (24)

Here € is error rate threshold. The system needs calibration
when the error rate approaches €. g(e) is the number of test
operations that can be performed before the system error rate
reaching €. fe,q; is the frequency of evaluating operations,
tcqi is the unit calibration time, and t.q;|w;; — w;j\ denotes
the time to calibrate w;; from wy;.

For example, in the revised design of Fig. 8(a), if we
set € to 20%, when the error rate increases from original
13% to €, only 100 I/O pairs can be applied. The overhead
comparison between the naive and revised designs can be
found in Table IV. Here 1" denotes the difference between
the initial error rate and the error rate threshold. In the above
case, T = 7%. Our result shows that the revised design incurs
a very marginal increase in the calibration cost compared with
the naive design. This is because the conductance changing
speed is almost the same for the both designs as indicated by
Eq. (13) and Eq. (14).

G. Analysis on Attacks with Prior Knowledge of Defense
Mechanism

As discussed in Section IV-D, the attacker may be aware
of our defense mechanism in advance. In this section, we
perform experiments based on this assumption (new attack
model) using the revised design and MNIST.

11

80% |
70%
60%
§ 50%
5 40% == random
£ 30%
2 20% sequence
. o == difference
lgt;) =p== feedback
°0 200 400 600 800 1000
Number of I/O pairs

Fig. 14. System degradation comparison, applying different defending-aware
attacks.

1) Manipulation of the Inputs: Previously, we applied ran-
dom voltage pulses to a memristor crossbar once there is an
input sample sent in in order to obtain a smooth and con-
trollable accuracy degradation curve. However, the auxiliary
random number generator could be a potential security issue
and also introduce extra overhead and delay. In this section,
we remove the randomness incurred by random voltage pulses,
which means the speed of memristor shift is directly linked to
input samples (voltage pulses). Thus, the system satisfies the
requirement of the new attack model.

In Fig. 14 we compared the effectiveness of different
attack techniques, including 1) sending inputs in random order
(random), 2) sending inputs from zeros to nines (sequence), 3)
sending inputs with largest difference (difference) and 4) send-
ing inputs using feedback from results (feedback). The result
indicates that sequence leads to the fastest system degradation,
while the other three techniques have similar results among
which difference has slightly slower system degradation. This
phenomenon can be explained as follows: sequence sends
similar inputs together to the system and hence cause fast
accumulation of weight changes in the same direction. distance
and feedback both try to alleviate such accumulation by
sending samples with large differences between each other and
impacting the weight changes differently. Nonetheless, for all
the four attack techniques, the error rate of the MNCS quickly
raises after 100 I/O pairs and effectively prevent the system
from being attacked by learning the model.

2) Attack With Prior Knowledge: Without losing generality,
we assume the attacker can get the output from the softmax
layer as:

TABLE IV
COMPARISON OF CALIBRATION OVERHEAD (%).
B T 5% 10% 20%
Dicit Naive 2805 28.14 2830

18t Revised 29.15 29.09 29.24
Fuuis Naive 928 928 940
Revised 922 924 926

I Naive 50.65 50.36 50.54

Mage Revised 5053 5049 50.66

Naive 18.66 18.77 18.94

MNIST pevised 19.67 19.67 19.67

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Ply=j)= ——" forj=1,2, .., K.

Zf:l ek

In the digit classification task, K = 10 since there are 10

classes. P(y = j) is the probability (also known as confidence

score) that the system classify the input as class j. When

we calculate the accuracy, we take the class with the highest
probability and compare it with the label ¢.

(25)

n

1
accuracy = — Z 1(y; == t;).
i=1

(26)

where n is the size of test set. In MNIST, for example, n =
10000.

The attacker could analyze the output combinations and
flip the labels of the I/O pairs they get, expecting to gain
a better performance of the replicated model. Even though the
attacker knows the defense mechanism, his/her choices are
very limited.

First, the attacker can randomly flip the output label. How-
ever, the chance that the wrong label is flipped to the correct
one is very low since the accuracy is usually very high.
Assume the original model has an accuracy of 90% and the
attacker wants to experiment on 100 samples. In this case, the
attacker may want to flip 10 wrong labels out of 100 samples.
Since there are C1), possible combinations of flips, even the
possibility that these 10 flips cover 5 wrong label is extremely
low (the chance is C7) x C§,/Ciy, = 0.06%). The fact
that the original model is being compromised exacerbates the
possibility. The above analysis demonstrates that the accuracy
is more likely to get worse (correct labels are changed to the
wrong label) when the attacker flips the label.

Second, it might be reasonable to flip the labels with
lower confidence scores since these labels tend to be wrong.
However, this statement is not true because the original model
is being compromised, thus lowering the confidence even for
correct labels. Besides, it is not feasible to put the weight-
changing function of the original model into the replicated
model’s loss function since there is no connection between
the original model and the replicated model.

In conclusion, the attacker can only manipulate the inputs
to the original model in order to alleviate the system degra-
dation, in which case we already know the proposed defense
mechanism will still work.

VI. RELATED WORKS

Security attacks against learning models can be mainly
categorized into two types: exploratory attack (exploitation of
the classifier) and causative attack (manipulation of training
samples) [35]. Causative attack denotes the situation when
attackers are able to manipulate the training set and there-
fore change the parameters of the target model. In contrast,
exploratory attack does not change the parameters of the
target model. Replication attack also belongs to exploratory
attack since the attack occurs in the inference phase, thus
not modifying the model’s parameters. Replication attack is
also known as “model stealing attack” in some literature.
Tramér et al. demonstrated simple and efficient attacks that

12

can extract target ML models for popular model classes
including logistic regression, neural networks, and decision
trees [36]. Later, Juuti er al. proposed a new technique to
detect model extraction which analyses the distribution of
successive queries from a client and identifies deviations from
a Gaussian distribution [37]. However, rather than detection,
our method can physically thwart replication attack without
introducing much overhead from both software and hardware
sides. There are also some works on physical degradation-
based defense which refers to hardware measures that enforce
physical usage bounds through intentional degradation of the
hardware. Rahmati et al. used the SRAM decay phenomenon
to measure time for batteryless embedded devices in order to
throttle response rates to adversarial accesses [38]. Deng et al.
provided statistical guarantees on system-level usage based on
the probabilistic wearout models. [39]. Some other hardware
approaches can restrict data accesses through self-destructing
circuits [40], [41].

VII. CONCLUSION

In this paper, we propose a design to prevent memristor-
based neuromorphic computing system (MNCS) from being
attacked by replicating the function of the model. We propose
an approach across device-, circuit-, and architectural-levels
to thwart this attack. We study the influences of process
variation, different activation functions and cost functions, and
the resistance ranges of memristors towards the effectiveness
of our proposed approaches. We also estimate the power con-
sumption and the calibration overhead under different settings.
Compared to the naive design, our revised design has a higher
nonlinearity index, e.g., 179.93% on MSE and 288.99% on the
error rate, indicating a more effective defense. Further analysis
proves that our method can protect the MNCS even when the
attacker knows our defense mechanism in advance.

ACKNOWLEDGMENT

The presented works were supported by NSF CCF-1615475
and AFRL FA8750-18-2-0057.

REFERENCES

[1]1 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436-444, 2015.

[2] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain.”” Psychological review, vol. 65,
no. 6, p. 386, 1958.

[3] S. Kumar, “Introducing qualcomm ze-
roth processors: Brain-inspired computing,”
https://www.qualcomm.com/news/onq/2013/10/10/introducing-
qualcomm-zeroth-processors-brain-inspired-computing, 2013.

[4] M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of bsb
recall function using memristor crossbar arrays,” IEEE/ACM Design
Automation Conference, pp. 498-503, 2012.

[5] B. Lendon, “Iran says it built copy of captured u.s. drone,”
http://www.cnn.com/2014/05/12/world/meast/iran-u-s-drone-copy/,
2014.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273-297, 1995.

[71 T. K. Ho, “Random decision forests,” Document Analysis and Recog-
nition, 1995., Proceedings of the Third International Conference on,
vol. 1, pp. 278-282, 1995.

[8] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175-185, 1992.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computer-Aided Design of Integrated Circuits and Systems

A. Mazady, M. T. Rahman, D. Forte, and M. Anwar, “Memristor pufa
security primitive: Theory and experiment,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 5, no. 2, pp. 222-229,
2015.

J. Rajendran, G. Rose, R. Karri, and M. Potkonjak, “Nano-PPUF: A
Memristor-Based Security Primitive,” in the Proceedings of the IEEE
Computer Society Annual Symposium on VLSI, pp. 84-87, 2012.

G. Khedkar, C. Donahue, and D. Kudithipudi, “Towards leakage re-
siliency: memristor-based aes design for differential power attack mitiga-
tion,” in SPIE Sensing Technology+ Applications. International Society
for Optics and Photonics, 2014, pp. 911907-911907.

S. Yu, Y. Wu, and H.-S. P. Wong, “Investigating the switching dynamics
and multilevel capability of bipolar metal oxide resistive switching
memory,” Applied Physics Letters, vol. 98, no. 10, p. 103514, 2011.

T. Chang, S.-H. Jo, and W. Lu, “Short-term memory to long-term
memory transition in a nanoscale memristor,” ACS nano, vol. 5, no. 9,
pp. 7669-7676, 2011.

S. K. Esser, A. Andreopoulos, R. Appuswamy, P. Datta, D. Barch,
A. Amir, J. Arthur, A. Cassidy, M. Flickner, P. Merolla et al., “Cognitive
computing systems: Algorithms and applications for networks of neu-
rosynaptic cores,” in Neural Networks (IJCNN), The 2013 International
Joint Conference on. 1EEE, 2013, pp. 1-10.

P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” Parallel and Distributed Systems, vol. 25, no. 12,
pp- 3088-3098, 2014.

M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose, “Bsb training scheme
implementation on memristor-based circuit,” IEEE Computational Intel-
ligence for Security and Defense Applications, pp. 80-87, 2013.

B. Liu, Y. Chen, B. Wysocki, and T. Huang, “The circuit realization of a
neuromorphic computing system with memristor-based synapse design,”
in Neural Information Processing. Springer, 2012, pp. 357-365.

S. Kannan, N. Karimi, O. Sinanoglu, and R. Karri, “Security vulnera-
bilities of emerging nonvolatile main memories and countermeasures,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 1, pp. 2-15, 2015.

C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and
J.-P. Seifert, “Breaking and entering through the silicon,” in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 733-744.

B. Liu, C. Wu, H. Li, Y. Chen, Q. Wu, M. Barnell, and Q. Qiu, “Cloning
your mind: security challenges in cognitive system designs and their
solutions,” IEEE/ACM Design Automation Conference, pp. 1-5, 2015.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

D. Kuzum, S. Yu, and H. P. Wong, “Synaptic electronics: materials,
devices and applications,” Nanotechnology, vol. 24, no. 38, p. 382001,
2013.

M. Hu, H. Li, and R. E. Pino, “Fast statistical model of tioo thin-film
memristor and design implication,” IEEE/ACM International Conference
on Computer-Aided Design, pp. 345-352, 2011.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, 2008.
M. Elshamy, H. Mostafa, Y. H. Ghallab, and M. S. Said, “A novel
nondestructive read/write circuit for memristor-based memory arrays,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 11, pp. 2648-2656, 2014.

M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2016, pp. 1-13.

J. Zha, H. Huang, T. Huang, J. Cao, A. Alsaedi, and F. E. Alsaadi, “A
general memristor model and its applications in programmable analog
circuits,” Neurocomputing, vol. 267, pp. 134-140, 2017.

B. Li, Y. Wang, Y. Chen, H. H. Li, and H. Yang, “Ice: inline calibra-
tion for memristor crossbar-based computing engine,” in 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 1EEE,
2014, pp. 1-4.

A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor model
comparison,” I[EEE Circuits and Systems Magazine, vol. 13, no. 2, pp.
89-105, 2013.

(32]

(33]

(34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

13

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on
emerging memristor,” in Design Automation Conference (DAC), 2010
47th ACM/IEEE. 1EEE, 2010, pp. 877-882.

B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: variation-
aware training for memristor x-bar,” in Proceedings of the 52nd Annual
Design Automation Conference. ACM, 2015, p. 15.

M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The security of
machine learning,” Machine Learning, vol. 81, no. 2, pp. 121-148, 2010.
F. Tramer, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601-618.

M. Juuti, S. Szyller, A. Dmitrenko, S. Marchal, and N. Asokan,
“Prada: protecting against dnn model stealing attacks,” arXiv preprint
arXiv:1805.02628, 2018.

A. Rahmati, M. Salajegheh, D. Holcomb, J. Sorber, W. P. Burleson, and
K. Fu, “Tardis: Time and remanence decay in sram to implement secure
protocols on embedded devices without clocks,” in Proceedings of the
21st USENIX conference on Security symposium. USENIX Association,
2012, pp. 36-36.

Z. Deng, A. Feldman, S. A. Kurtz, and F. T. Chong, “Lemonade
from lemons: Harnessing device wearout to create limited-use security
architectures,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 2, pp. 361-374, 2017.

N. Banerjee, Y. Xie, M. M. Rahman, H. Kim, and C. Mastrangelo,
“From chips to dust: The mems shatter secure chip,” in 2014 IEEE
27th International Conference on Micro Electro Mechanical Systems
(MEMS). 1EEE, 2014, pp. 1123-1126.

J.-W. Han, M.-L. Seol, Y.-K. Choi, and M. Meyyappan, “Self-
destructible fin flip-flop actuated channel transistor,” IEEE Electron
Device Letters, vol. 37, no. 2, pp. 130-133, 2015.

Chaofei Yang received B.S. from Tsinghua Univer-
sity and M.S. from University of Pittsburgh in 2017.
He is a Ph.D. student in the Electrical and Computer
Engineering department at Duke University. His
research interests include Deep Learning Security
and Neuromorphic Computing.

Beiye Liu is currently an applied scientist in Ama-
zon. He received his B.S. from Southeast University,
Nanjing, China. In 2016, Beiye graduated from Uni-
versity of Pittsburgh, Electrical and Computer Engi-
neering department with Ph.D. Degree. His research
interests include neuromorphic computing system,
deep learning algorithms, deep learning hardware
optimization, and nature language processing. His
work has been published in conferences including
ICCAD, DAC, ICCD, and ISCAS. Beiye has also
served as review committee members of Embedded

systems letters, ISQEA, Neurocomputing etc. He received Richard Newton
Young Student Fellow in 2013 and best paper nomination in 2015 DAC.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Hai (Helen) Li (M’08-SM’16-F’19) received the
B.S. and M.S. degrees from Tsinghua University,
Beijing, China, and the Ph.D. degree from the De-
partment of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN, USA, in
2004. Dr. Li currently is the Clare Boothe Luce
Associate Professor with the Department of Electri-
cal and Computer Engineering at Duke University,
Durham, NC, USA. Prior to it, she was with Qual-
comm Inc., San Diego, CA, USA, Intel Corporation,
Santa Clara, CA, Seagate Technology, Bloomington,
MN, USA, the Polytechnic Institute of New York University, Brooklyn, NY,
USA, and the University of Pittsburgh, Pittsburgh, PA, USA. She has authored
or co-authored more than 200 technical papers in peer-reviewed journals
and conferences and a book entitled Nonvolatile Memory Design: Magnetic,
Resistive, and Phase Changing (CRC Press, 2011). Her current research inter-
ests include neuromorphic architecture for brain-inspired computing systems,
machine learning and deep neural network, memory design and architecture,
and architecture/circuit/device cross-layer optimization for low power and
high performance. Dr. Li is currently a Distinguished Lecturer of the IEEE
CAS society and a distinguished speaker of ACM. She is a distinguished
member of the ACM. Dr. Li is a recipient of the NSF Career Award, DARPA
Young Faculty Award (YFA), and TUM-IAS Hans Fisher Fellowship from
Germany. She received seven best paper awards and additional seven best
paper nominations from international conferences. Dr. Li serves as Associate
Editor of IEEE TCAD, IEEE TVLSI, IEEE TCAS-II, IEEE TMSCS, ACM
TECS, IEEE CEM, ACM TODAES, and IET-CPS. She was the General
Chair or Technical Program Chair of multiple IEEE/ACM conferences and the
Technical Program Committee members of over 30 international conference
series.

Yiran Chen (M’04-SM’16-F’18) received B.S and
M.S. from Tsinghua University and Ph.D. from
Purdue University in 2005. After five years in in-
dustry, he joined University of Pittsburgh in 2010 as
Assistant Professor and then promoted to Associate
Professor with tenure in 2014, held Bicentennial
Alumni Faculty Fellow. He now is a tenured As-
sociate Professor of the Department of Electrical
and Computer Engineering at Duke University and
serving as the director of NSF IndustryUniversity
Cooperative Research Center (IUCRC) for Alterna-
tive Sustainable and Intelligent Computing (ASIC) and co-director of Duke
Center for Evolutionary Intelligence (CEI), focusing on the research of new
memory and storage systems, machine learning and neuromorphic computing,
and mobile computing systems. Dr. Chen has published one book and more
than 350 technical publications and has been granted 93 US patents. He serves
or served the associate editor of several IEEE and ACM transactions/journals
and served on the technical and organization committees of more than 50
international conferences. He received 6 best paper awards and 12 best
paper nominations from international conferences. He is the recipient of NSF
CAREER award and ACM SIGDA outstanding new faculty award. He is the
Fellow of IEEE and Distinguished Member of ACM, a distinguished lecturer
of IEEE CEDA, and the recipient of the Humboldt Research Fellowship for
Experienced Researchers.

Mark Barnell (M’09) received the B.S. degree of
Optical Engineering from University of Rochester in
1987 and the M.S. degree in Computer Science from
SNUY Polytechnic Institute in 2000. He is a Senior
Computer Scientist with the U.S. Air Force Research
Laboratory, high performance computing systems
branch (AFRL/RITB). Mr. Barnell currently is the
HPC Director for AFRLs Information Directorate
Computing and Communications Affiliate Resource
Center (ARC) and Agile High Performance Systems
(AHPS) Program Manager. His areas of expertise
include high performance computers, embedded computing, persistent wide
area surveillance, distributed and next generation architectures.

14

Qing Wu (M’01) received the B.S. and M.S. de-
grees from the Department of Information Science
and Electronic Engineering at Zhejiang University,
Hangzhou, China, in 1993 and 1995, respectively,
and the Ph.D. degree from the Department of Elec-
trical Engineering at the University of Southern Cal-
ifornia in 2002. Currently, he is a Senior Electronics
Engineer at the United States Air Force Research
Laboratory (AFRL), Information Directorate (RI).
Before joining AFRL, he was an Assistant Professor
in the Department of Electrical and Computer Engi-
neering at State University of New York, Binghamton. His research interests
include large-scale neuromorphic computing circuits and systems, highperfor-
mance computing architectures, energy-efficient embedded computing.

Wujie Wen (M’16) is currently an assistant profes-
sor in the department of Electrical and Computer En-
gineering at Florida International University (FIU),
Miami, FL. He received his Ph.D. from University
of Pittsburgh in 2015. He earned his B.S. and M.S.
degrees in electronic engineering from Beijing Jiao-
tong University and Tsinghua University, Beijing,
China, in 2006 and 2010, respectively. Before he
joined FIU, he also worked with AMD and Broad-
com for various engineer and intern positions. His
current research interests include deep learning hard-
ware acceleration/security, neuromorphic computing, and circuit-architecture
design for emerging memory technologies. His works have been published
in top-tier conferences (e.g. HPCA, DAC, ICCAD, DATE, ICPP, HOST,
ECCV, AAAI, CVPR etc). Dr. Wen is the associate editor of Neurocomputing
and serves as the General Chair of ISVLSI 2019 (Miami), Program Chair
of ISVLSI 2018 (Hong Kong), as well as program committee for many
conferences such as DAC, ICCAD, ASP-DAC etc. He received best paper
nominations from ASP-DAC2018, ICCAD2018, DATE2016 and DAC2014.
He was also the recipient of the 49th DAC A. Richard Newton Graduate
Scholarship, the most prestigious Ph.D. scholarship (one awardee per year)
in EDA society and 2015 DAC Ph.D. forum best poster presentation. His
research is sponsored by NSF, AFRL and Florida Center for Cybersecurity
etc.

Jeyavijayan (JV) Rajendran (S’09-M’15) is an
Assistant Professor in the Department of Electrical
and Computer Engineering at the Texas A&M Uni-
versity. Previously, he was an Assistant Professor at
UT Dallas between 2015 and 2017. He obtained his
Ph.D. degree in the Electrical and Computer Engi-
neering Department at New York University in Au-
gust 2015. His research interests include hardware
security and emerging technologies. His research
has won the NSF CAREER Award’17, the ACM
SIGDA Outstanding Ph.D. Dissertation Award’17,
three Student Paper Awards (ACM CCS 2013, IEEE DFTS 2013, and IEEE
VLSI Design 2012). He organizes the annual Embedded Security Chal-
lenge, a redteam/blueteam hardware security competition and has cofounded
Hack@DAC, a student security competition colocated with DAC. He is a
member of IEEE and ACM.

0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore. Restrictions apply.

