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Abstract— Neuromorphic architectures are widely used in
many applications for advanced data processing and often
implement proprietary algorithms. However, in an adversarial
scenario, such systems may face elaborate security attacks
including learning attack. In this work, we prevent an attacker
with physical access from learning the proprietary algorithm
implemented by the neuromorphic hardware. For this purpose,
we leverage the obsolescence effect in memristors to judiciously
reduce the accuracy of outputs for any unauthorized user. For
a legitimate user, we regulate the obsolescence effect, thereby
maintaining the accuracy of outputs in a suitable range. We
extensively examine the feasibility of our proposed method with
four datasets. We experiment under different settings such as
activation functions and constraints such as process variations,
and estimate the calibration overhead. The security vs. cost
and performance vs. resistance range trade-offs for different
applications are also analyzed. We then prove that the defense
is still valid even if the attacker has the prior knowledge of
the defense mechanism. Overall, our methodology is compatible
with mainstream classification applications, memristor devices,
and security and performance constraints.

Index Terms—Neuromorphic computing, learning attack, se-
curity, memristor, obsolescence effect.

I. INTRODUCTION

A. Motivation

On one hand, machine learning has been widely used in data

processing applications to help users understand the underly-

ing property of the data [1]. As a popular type of machine

learning model, neural network [2] processes input data by

multiplying them with layers of weighted connections. Many

embedded hardware engines, including FPGA and System-

on-Chip (SoC), have been developed to implement neural

networks with high speed and efficiency, e.g., Qualcomm’s

cognitive computing platform [3].

On the other hand, memristor has been discovered as a

device whose resistance depends on the historical profile

of the voltage applied on it. The similarity between the
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programmable resistance state of memristors and the variable

weight connection in neural networks simplifies the structure

of circuit realization of a neural network. The compact struc-

ture, high energy-efficiency, and low power consumption of

memristor-based learning systems greatly improve the data

scale and computation capacity of learning applications in

embedded systems [4].

Running learning models on an embedded device, though

advantageous because of reduced processing times and high

energy-efficiency, introduces security challenges. The learning

model is exposed to the risk of being attacked by malicious

users who have physical access to the device. Consider the

following scenario: Assuming there is a drone carrying an

image processing system, which is being used for its nav-

igation and guidance systems. This system implements the

proprietary learning algorithms on a memristor-based neuro-

morphic computing system (MNCS). If the drone is captured

by an unauthorized third party, say, an attacker, he/she may

apply inputs to the system, observe the outputs, and “learn”

the proprietary algorithm implemented by the system [5].

Consequently, they can design a pirated system.

B. This Work

In this paper, we demonstrate how an attacker can learn and

replicate the proprietary algorithm. Our analysis is independent

of the learning model (e.g., support vector machine (SVM) [6],

random forest [7], K-nearest neighbors [8]). We then propose

a secure MNCS design to thwart such replication attacks

by leveraging memristors obsolescence effect. While many

architectures are designed to mitigate this usually undesirable

phenomenon, we harness this effect to resist security threats. In

the drone example, the embedded system will be periodically

calibrated to ensure its usability. Once the drone is captured

by attackers, the calibration mechanism will no longer work.

The resistance of the memristors in the crossbars, i.e., the

weights of the model, will gradually shift, thus aggravating

the accuracy of the embedded system. Therefore, the attack-

ers will not learn useful information for model replication,

which guarantees the model privacy. Furthermore, our analysis

demonstrates that the attacker will not achieve a reasonable

accuracy of the replication model even under the best-case

scenario.

A naı̈ve implementation of this idea will incur perfor-

mance overhead. Hence, we develop device-, circuit- and

architectural-level techniques to balance security and perfor-

mance overheads. Experimental results show that our design
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provides excellent usability as well as resilience to replication

attack of the MNCS, without increasing calibration over-

head. Previously, memristor devices are used to build security

primitives such as physical unclonable functions [9], public

physical unclonable functions [10], and motifs to prevent side-

channel attacks [11]. Here, we focus on using them to prevent

replication attacks on MNCS, which none of these primitives

can thwart.

II. PRELIMINARY

A. Memristors

The resistance of a memristor can be programmed by

applying appropriate current or voltage pulses. With proper

combinations of programming voltage amplitude and duration,

the resistance of the memristor can be programmed to an

arbitrary state between the low resistance state (LRS) and the

high resistance state (HRS) [12]. The resistance of a memristor

can be read (sensed) by a small current or voltage pulse.

However, for most types of memristors, even a small read

signal can disturb the resistance of the memristor, since the

only difference between the read and write operations is the

amplitude and/or the duration of the applied signal.

B. Obsolescence Effect of Memristors

The resistance of a memristor gradually changes on ap-

plying voltage pulses, eventually leading to either the ON

state or the OFF state. We call this effect as the obsolescence

effect of a memristor, as the original resistance value “van-

ishes” on applying a voltage pulse. The obsolescence effect

happens because of two phenomena: 1) the intrinsic retention

property of the device [13] and 2) the read-induced change

in resistance. The first type of resistance change is hard to

control since it is related to the material relaxing mechanism.

The read-induced change is depicted in [13]. A memristor is

constantly stimulated by short minor voltage pulses, and its

resistance change (reflected by the sensed current) is recorded

for every input pulse. This experiment is designed to mimic

the impact of the small sensing signal applied to the memristor

during read operations. It shows that the resistance of the

memristor keeps increasing with the stimulation. Therefore,

the obsolescence rate (i.e., changing rate of its resistance)

can be controlled by choosing the amplitude and duration

of the sensing current/voltage. In general, the resistance (or

conductance) change of a memristor is a continuous procedure

that can be described as:

∆R = f(v, t). (1)

Here, ∆R is the resistance change. v and t are the sensing

voltages and operation time of the memristor, respectively.

C. Memristor-based Neuromorphic Computing Systems

In this paper, we define a neuromorphic computing system

as the hardware specifically designed to accelerate neural net-

works or machine learning algorithms. We also constrain our

research object to supervised learning systems. Several such

systems have been proposed by different research groups: As

two major examples, IBM recently released their SRAM based

neural chip, namely, TrueNorth [14], and Micron demonstrated

Automata Processor [15] based on CMOS technology. A

simple neural network that can be directly mapped onto an

MNCS can be represented by two layers of neurons are fully

connected by one layer of synapses. The output neurons collect

the information from the input neurons through a network

of synaptic connections and process them with a transfer

function. The synapses multiply the signal transferring on them

with different synaptic weights. In general, the relationship

between the value of the input vector x, and the output vector

y can be described by [16]:

yn = f(Wm×n · xm). (2)

Here, the connection weight matrix Wm×n denotes the

synaptic strengths between the two layers of neurons, n and

m denotes the neuron number of current layer and previous

layer. The matrix-vector multiplication in Eq. 2 is one of

the fundamental operations in neural network and machine

learning algorithms. Due to the structural similarity, memristor

crossbars are time-efficient platforms to execute such matrix-

vector multiplications [17]. The operation defined by Eq. 2 is

the feedforward “evaluating” operation of a traditional neural

network. During the evaluating process of an MNCS, x is

represented as a vector of voltage signals applied to the word-

lines (WLs) of the memristor crossbar while the bit-lines (BLs)

are grounded. The current sensed from the bottom of each BL

will be converted to output voltage vector y by a specially

designed sensing circuit. Here the sensing circuit can be a

CMOS analog module or a memristive device carrying the

necessary transformation function. The matrix Wm×n is often

implemented by two memristor crossbars, which represent

the positive and negative elements of Wm×n, respectively.

“Training” on this system denotes the process of programming

the memristors to the conductance states representing Wm×n.

Open-loop and close-loop are two major training schemes. The

former directly applies a programming pulse on the targeted

memristor. The latter updates the Wm×n iteratively based

on the discrepancy between the generated and the expected

outputs.

III. THWARTING LEARNING ATTACKS

A. Target System

An MNCS consists of the following two proprietary infor-

mation:

• Training data denotes the sample set used for training

the MNCS. Each sample normally contains a vector of

features and a label. The feature vector serves as the input

of the learning model, and the label describes a property.

• Learning model denotes the model that has been trained

for the proprietary application using the training data. It

includes two parts: 1) the model info, say, the type (e.g.,

Hopfield or Naı̈ve Bayes models) and the topology, and

2) the model parameters, e.g., the weight on each synapse.

Without losing generality, we assume the function of the

original learning model g(w,x) is data classification, which

can be described as:

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

3

Training data (D)

Original model 
( g (w, x) )

Replicated model
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Input samples features ( Rin )

Output test results ( Rout )

Testing data for evaluation ( T )

I/O pairs for replication

Fig. 1. Training and replication process of the learning model [18].

g(w,x) = max
yi

p(y = yi|w,x), i = 1, ..., n. (3)

Here, w represents the parameters of the original model.

x is the input vector of features. yi is the ith target class

that a sample can be assigned to. The probability function

p(y = yi|w,x) is defined by the structure of the original

model, e.g., a neural network. After the training completes,

the original model g(w,x) is ready to classify new evaluating

data.

B. Protocol

Fig. 1 shows a conceptual view of the concerned embedded

system and its usage model. A proprietary (classification)

algorithm is running on the hardware, e.g., an MNCS. The

model is first trained for an application, and then the drone

can submit the collected data for processing (evaluating), e.g.,

pattern recognition or classification.

The drone with the learning system executes the following

protocol:

1) Initially, the MNCS is not trained, and hence it does not

implement the proprietary algorithm.

2) The drone requests the base station for the training

samples.

3) After authenticating the drone, the base station estab-

lishes a secure session with the drone using conventional

cryptographic protocols.

4) The base station encrypts the training set and sends to

the secure session.

5) The drone decrypts the encrypted training set and trains

the MNCS to implement the proprietary algorithm.

6) The MNCS executes proprietary algorithm N times, after

which the weights erase due to memristor’s obsolescence

effect.

7) After applying N I/O pairs, repeat steps (2) through (6).

C. Threat Model

We assume that the attacker has the following capabilities:

• The attacker can apply inputs, e.g., images, body data

from patients, finger prints, to the originally trained

model and obtain the corresponding outputs without any

constraints, i.e., being granted with the same privilege as

a normal user or being able to physically get access to it.

• The attacker does not have access to the original training

set.

• The attacker has no knowledge about the parameters of

the original model.

• An attacker can reverse engineering to understand the

hardware implementation of the system.

The objective of the attacker is to replicate the function

of the original model g(w,x) by constructing a new model

h(w′,x), such that the h(w′,x) = g(w,x). To achieve this

goal, an attacker can perform the following attacks:

1) Eavesdropping attack. An attacker can listen to the

communication channel to obtain the training set. This

attack is not possible, because the training set is en-

crypted and sent across the channel, as stated in Step

(3) of the protocol.

2) Spoofing attack. An attacker can impersonate as a drone

and request for the training set from the base station.

This attack is not possible, because the base station

authenticates the drone before sending the training set,

as stated in Step (3) of the protocol.

3) Probing attack. An attacker can probe the memristors

and can try to learn the stored weights [19]. Since the

attacker already has the structure of the MNCS through

reverse engineering, in addition to the weights, he/she

can replicate the proprietary algorithm. This attack is

not possible, because memristors are highly dense and

can be compactly stacked in 3D structure, making them

difficult to probe without physically damaging the neigh-

borhood devices. Besides, countermeasures can be used

to prevent probing attack [18].

4) Chosen input attack. An attacker can apply inputs of

his/her choice, observe the corresponding outputs, and

infer the weights. In this proposal, we focus on this

attack and thwart it using the obsolescence effect of the

memristor in the MNCS.

D. Chosen-input Attack

In this proposal, we use Din to denote the inputs chosen by

the attacker to the MNCS. Dout is the output of the MNCS.

[Din,Dout] construct I/O pairs. Here the length of Din, i.e.,

the number of inputs chosen by the attacker and the length of

Dout and [Din,Dout] are the same, say, m, which is decided

by the attacker.

Since the attacker has no knowledge about the type of

the original model, he/she needs to select a learning model

as a starting point for model replication. After the I/O pairs

are constructed and the replicated model type is selected, the

attacker starts to use the I/O pairs to train the replicated model:

because the I/O pairs are generated from the original model,

the function of the replicate model will gradually approach to

that of the original model.

Since the attacker does not know the model implemented by

the MNCS, any arbitrary model may be selected. Besides the

original model, (e.g., neural network [2]), we could also use

other model (e.g., support vector machine [6]) as the replicated

model to learn the function of the original model. In addition,

it has been proved that although the selection of learning

model is crucial for replication efficiency and accuracy, it is

not necessary to select the same model type as the one of the

original model [20].
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Fig. 2. Comparison of learning model between the original model and various
other learning models and parameters.

Security Metric. The performance of the MNCS is evalu-

ated by their accuracy, which is defined as:

accuracy =
number of true− positives

number of all evaluating samples
. (4)

Here the number of true-positives is the number of predic-

tions that match the ground-truth labels. In this proposal, we

use accuracy as the security metric to quantify the effective-

ness of our attack.

To demonstrate the effect of different learning models on

accuracy, we use MNIST dataset as an example [21]. MNIST

is a handwritten digit dataset, which is widely used in machine

learning field and various image processing training. The

system implements the target application using SVM [6])

model. Other candidate learning models include: SVM [6]),

random forest [7], and K-nearest neighbors [8]. The attacker

does not know which of the four learning model is being

implemented in the system.

As we mentioned in Section III-B, the attack models take

the I/O pairs generated from the original model as their

training data. A normal model (e.g., a SVM model) trained

by original training labels is also evaluated for comparison.

Experimental results can be found in Fig.2. The replicated

model based on SVM shows a rate of increase in accuracy

w.r.t. I/O pairs similar to that of the original one. Even if

the replication attack uses other learning models, the rate of

increase in accuracy w.r.t. I/O pairs is similar. And, their

accuracy’s both approach to the one of the normal model

(90%) after applying 900 I/O pairs.

This experiment shows that the model replication attack is

feasible and even if the replication model is different from

the original model (SVM, in this case), it still can achieve a

good enough accuracy. Thus, the proposed defense mechanism

should prevent the attacker from replicating the algorithm,

irrespective of the underlying learning model.

IV. SECURE MNCS DESIGN

A. Device Level: Memristors

Among all the device candidates such as memristor, phase

change memrory, and other non-volatile memories [22], we

use memristor because of its following attractive properties:
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Fig. 3. Memristor model: (a) Conductance. (b) Derivative of Conductance.

1) Memristors are highly dense and can be stacked in 3D

structure, which makes it extremely difficult for physical

attacks.

2) Memristor is energy-efficient.

3) Memristor is programmable for online training.

In this paper, we adopt the memristor model from the work

of Miao et al. [23]. The memristance can be expressed as:

M(α) = α ·RL + (1− α) ·RH , (5)

where α is the relative doping front position which ranges

from 0 to 1. It can be obtained by solving the differential

equation of velocity:

α(t) =
RH −

√

RH
2 − 2 · (RH −RL) · (A+B)

RH −RL

, (6)

where A = µv · RL

h2 ·
∫ t

t0
V (t) dt and B = RH · α0 + 1

2
·

(RH − RL) · α0
2. α0 is the initial condition of α. Assume

t0 = 0, α0 = 0.3 and substitute A and B into α and then to

M(α), we have:

M(t) =

√

√

√

√

√

RH
2 − 2 · (RH −RL) · (µv ·

RL

h2
· v · t

+0.255 ·RH + 0.045 ·RL)
. (7)

By using the ideal memristor parameters (h = 50nm,RH =
16kΩ, RL = 100Ω, µv = 10−14m2S−1V −1 [23]), we can

have a simplified memristor model as (in conductance form):

G(t) = 3.5 · 10−4 · (32− 15 · v · t)−0.5 (8)

and its corresponding derivative:

dG(t)

dt
= 2.7 · 10−3 · (32− 15 · v · t)−1.5. (9)

The conductance change over time can be found in Fig. 3.

Voltages of 1.0V and 0.5V are applied to the same memristor,

respectively, in our experiments. We made a observation that

the curve has a relatively flat portion, which we can utilize

to achieve a linear degradation speed, e.g., when applying a

small sensing voltage (e.g., 0.5V) or decreasing the duration

of the applied voltage pulses.

Our selected model is a general memristor model which

was originally proposed by HP Labs [24]. This model was

also adopted in many prior works [25], [26]. There are indeed

various implementations of memristors and thus many versions
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(a) (c)(b)

Fig. 6. Weight change in MNCS: (a) Original weight matrix. (b) Weight
matrix in naı̈ve design post-degradation. (c) Weight matrix after revised design
post-degradation.

design over the naı̈ve design. The comparison results will be

shown in Section V.

C. Architectural level: Depth of Neural Networks

Increasing the depth of neural networks is another way to

increase the nonlinearity of the MNCS. For example, a neural

network has intrinsic nonlinearity that arises from the error

diffusion across its layers. Considering a normal feedforward

network with one hidden layer, we have:

y = f2(f1(x ·W1) ·W2)). (15)

where fi(i = 1, 2) are the transfer functions, W1 is the weight

matrix between input layer and hidden layer, W2 is the weight

matrix between hidden layer and output layer, x is the input,

and y is the output. Hence, the partial derivative of y respect

to W1 is:

dy

dW1

=
df2
df1

·
df1
dW1

= f ′

2(f1(x·W1)·W2)·W2·f
′

1(x·W1)·W1.

(16)

For simplicity, we assume the second transfer function f2
is a linear function. Then the derivative can be re-written as:

dy

dW1

= W2 · f
′

1(x ·W1) ·W1. (17)

The partial derivative of dy

dW1

respect to W1 has a high

degree (larger than 1) because the transfer function is usually

a nonlinear function, e.g., hyperbolic tangent, which explains

why neural network has intrinsic nonlinearity property.

Similar to the back propagation method, the errors generated

from the weight matrix at the first layer will pass onto all

the subsequent layers, and affect the accuracy. The deeper the

network is, the greater the influence introduced by the errors

will be. Similar conclusion can be drawn for the matrices at

other layers. By carefully selecting the depth of the neural

network used in the original model, we are able to control the

nonlinearity of the degradation curve of the accuracy (service

quality).

D. New Challenge With Prior Knowledge on Defense Mech-

anism

To further evaluate the effectiveness of our defense mech-

anism, we endow the attacker stronger capability by letting

he know our defense mechanism in advance. This assumption

is practical, for that even if the attacker does not know in

advance, he will be able to know at least the basics of the

defense mechanism by collecting related information or learn

from the results. This means that before the attacker sends

inputs to our system, he already knows that this system is

going to degrade and the resistance of memristors will obsolete

according to input samples (voltage pulses). However, the

attacker can not access to the inside of the system, which

means he can not control the weights or change the structure.

Otherwise, it should be belong to what has been discussed

in Section III. The attacker can only play some tricks on the

input dataset, which is determined by himself, to slow down

the system degradation or at least to avoid the worst case.

There may exist the best way to do so and we will discuss it

later.

New attack model formulation. Here, we formulate the

above assumption as our new attack model. In general, the

attacker should obey the following claims based on our basic

attack model discussed in Section III:

1) The attacker knows the defense mechanism (system

degradation) prior to sending the inputs into the system.

2) The attacker can not change the weights or the structure

of the system.

3) The attacker can manipulate the inputs when attacking

the system.

4) The attacker can learn from the outputs to re-arrange the

inputs.

Mechanisms of defending-aware attack. We summarized

several mechanisms the attacker may adopt to manipulate the

inputs as follows, and we will evaluate their effectiveness in

Section V-G.

1) Random is a normal way of sending inputs to the

system. By doing this, the attacker should shuffle the

input samples in random order. The result usually varies

in a small range due to the randomness, meanwhile, the

system degrades at a moderate speed.

2) Sequence is to send the inputs in a sorted sequence,

e.g., send all samples in the 1st class and then send

samples in 2nd class, and so on. This technique brings

the fastest system degradation due to the accumulation

of obsolescence effect of similar memristor crossbar

Algorithm 1 Generate attack samples using difference tech-

nique

Initialize the network.

Randomly choose a starting input sample x1.

while not all input samples determined do

1) calculate the difference between xi and xj , j > i

2) find xj with largest difference

3) swap xi+1 and xj

4) i = i+ 1
end while
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Fig. 7. The relation between weight change and system degradation.

regions.

3) Difference represents the technique to send the inputs

with the largest difference. Here we use MSE to evaluate

the difference, i.e., the difference between inputs x and

y is D(x,y) = 1

n

∑n

i=1
(xi − yi)

2. Details of how to

generate input samples using difference technique can

be found in Algorithm 1. The sample with the largest

difference from the prior sample will be selected as the

next input sample.

4) Feedback is the technique manipulating input samples

by taking advantage of the softmax outputs. Details of

how to generate input samples using feedback technique

can be found in Algorithm 2.

V. RESULTS

In this section, we will demonstrate the effectiveness of

our proposed MNCS design to defend replication attacks. In

Section V-A, we will depict the obsolescence effect of mem-

ristor devices and its relationship with the system accuracy.

The proposed revised design, which has nonlinear degradation,

will be shown in Section V-B with the comparison to the

naı̈ve design that has linear degradation. In Section V-C, we

will show the security advantages provided by the revised

design. In our experiments, we choose two benchmarks from

UCI machine learning repository [29]: Image Segmentation

(Image), Steel Plates Faults (Faults), one benchmark from

Scikit-learn [30]: Hand-writtern digits (Digit) and popular

digit classification dataset MNIST [21]. All the details of the

Algorithm 2 Generate attack samples using feedback tech-

nique

Initialize the network.

Randomly choose a starting input sample x1.

while not all input samples determined do

1) send xi into the system and get softmax result;

2) find the least value of the softmax result, which

represents class t;

3) randomly choose a sample xj from class t and swap

with xi+1;

4) i = i+ 1.

end while

TABLE I
SUMMARY OF BENCHMARKS.

# Training #Evaluation #Attributes #Class

Image 1500 810 19 7
Faults 1500 441 27 7
Digit 500 300 64 10
MNIST 50000 10000 784 10

datasets are listed in Table I. These are all representative

classification tasks that can be realized on memristor-based

devices.

A. Number of I/O pairs vs. Degradation in Accuracy

To evaluate the impact of obsolescence effect on the accu-

racy of the MNCS, we simulate the degradation in accuracy

of MNCS when running different benchmarks. The memristor

crossbar is configured to implement a neural network with

two hidden layers for all the benchmarks. Each layer has

64 neurons. Compared with state-of-the-art models, such a

shallow fully-connected network is relatively simple but serves

as a good starting point. In Section V-B, we will also explore

the influence of the depth of the network, indicating the

proposed method will work on deeper networks. Furthermore,

current mainstream deep networks are not practically feasible

for memristor crossbars.

The simulation results are summarized in Fig. 7. Without

loss of generality, we take Digit for example as the curves

for all three benchmarks have very similar trend. X-axis

denotes the number of I/O pairs. The left y-axis denotes the

error rate of the system while the right y-axis denotes the

normalized summed absolute changes of weights (NSCW)

due to memristor obsolescence. We define the error rate and

NSCW as:

error rate =
1

n

n
∑

i=1

if(yi == ti), (18)

NSCW =

∑

i,j |wij − w′

ij |
∑

i,j |wij |
. (19)

Here yi denotes the classification result, ti denotes the target

result, n denotes the size of I/O pairs, and wij is the element

of weight matrices. As the weight change increases, the error

rate increases from less than 20% to over 60% gradually due

to the obsolescence effect of the memristors.

The low error rate region at the beginning provides the

usability for normal users. The average error rate within the

first 50 I/O pairs only increases by less than 2%. More details

on this will be provided in Section V-B.

B. Linear vs. Nonlinear Degradation

To provide better usability and increase protection against

replication attack, we compare the naı̈ve design and the revised

design. The naı̈ve design possesses a linear degradation curve,

leading to slower degradation. An attacker can apply more

I/O pairs with high accuracy and thus, learn the proprietary

algorithm better. The revised design has a nonlinear degra-

dation curve that degrades faster than the naı̈ve design. The

Authorized licensed use limited to: Texas A M University. Downloaded on March 05,2020 at 18:15:34 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2019.2937817, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

8

0.01

0.1

1

10

100

0 100 200 300 400 500

Nonlinear

Linear

0.01

0.1

1

10

100

0 450 900 1350

Nonlinear
Linear

0.01

0.1

1

10

100

1000

0 450 900 1350

Nonlinear
Linear

0.01

0.1

1

10

100

1000

0 450 900 1350

Nonlinear
Linear

Number of I/O pairs Number of I/O pairsNumber of I/O pairs Number of I/O pairs

Number of I/O pairs Number of I/O pairs Number of I/O pairs Number of I/O pairs

M
SE

Er
ro

r r
at

e

(a) (d)(c)(b)

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500

Nonlinear
Linear

0%

20%

40%

60%

80%

100%

0 450 900 1350

Nonlinear
Linear

0%

20%

40%

60%

80%

100%

0 450 900 1350

Nonlinear
Linear

0%

20%

40%

60%

80%

100%

0 300 600 900

Nonlinear
Linear

Fig. 8. Comparison between the naı̈ve and the revised designs using MSE and error rate: (a) Digit, (b) Faults, (c) Image, and (d) MNIST.

comparisons between the naı̈ve and the revised designs are

summarized in Fig. 8, where x-axis represents the number of

I/O pairs and y-axis shows the mean square error (MSE) and

error rate, respectively, as:

MSE =
1

n

n
∑

i=1

|oi − ti|
2. (20)

where oi denotes the final output obtained from the last layer

of the network.

The y-axis of the figure is in logarithmic scale for better

view. MSE is the absolute difference between target results

and classification results and hence, has a smooth monotonous

curve. Error rate does not necessarily linearly depend on the

system degradation, so the curve may contain many inflection

points that are caused by uncertainty in real classification task.

As we can see from Fig. 8, the degradation curve of the

revised design is much more nonlinear compared to the naı̈ve

design. The low error rate region at the beginning provides

the usability for normal users, and the rapidly increasing

portion guarantees the protection of the model. Take Digit

as an example. As we can see from Fig. 8 (a), the error

rate of the revised design keeps below 20% before obtaining

100 I/O pairs, and it increases to over 70% between 100 to

200 I/O pairs. At the same time, the error rate of the naı̈ve

design increases from below 20% to 60% gradually throughout

the whole process without showing significant nonlinearity.

For Digit, Faults, and Image, the average error rate increases

within 50 I/O pairs are less than 5%. For MNIST, the error

rate increases faster but still demonstrates the nonlinearity for

both normal users and model protection. Furthermore, one can

design the system to balance between usability and protection.

We also quantitatively analyze the nonlinearity using the

correlation coefficient:

r =

∑

(x− x̄)(y − ȳ)
√

∑

(x− x̄)2 ·
√

∑

(y − ȳ)2
. (21)

Here x denotes the evaluating operations and y denotes

evaluation index, i.e., error rate or MSE. r ∈ (0, 1) of

which 1 represents the highest linearity, and 0 represents the

highest nonlinearity. Then, we define the nonlinearity index

as 1 − r. We take the curve from initial error rate to 60%
of its maximum into consideration, because that is the part

reflecting the change in first-order derivative. The result is

shown in Table II. We can notice that the nonlinearity index

of the revised design is much higher than that of the naı̈ve

design. The average increase in degradation rate for MSE is

179.93% and for error rate is 288.99%.

We also investigated the influence of network depth on

the nonlinearity. We choose different neural networks with 1,

2, and 3 hidden layers to run on all the benchmarks. The

result of Digit is shown in Fig. 9. The x- and y-axis are

normalized to 0 to 1, respectively, for better observation of

nonlinearity. The nonlinearity indexes are 0.809, 0.897 and

0.971 for 1 layer, 2 layers and 3 layers, respectively. The

result confirms with our discussion in Section IV-C: The non-

linearity in degradation increases with the depth of neural

networks. Another similar observation is that if the number

of neurons in each layer is larger, the error rate increase is

faster. This is shown in Fig. 8 (d). Note that the dimension of

the first weight matrix of MNIST is “784×64” , which is much

larger than other datasets. The error rate increase of the revised

design is significant compared with the naı̈ve design, with

almost the same summed absolute changes of weights. This

means that revised design does not introduce extra calibration

TABLE II
NONLINEARITY INDEX OF MSE AND ERROR RATE, BETWEEN NAÏVE AND

REVISED DESIGNS.

Digit Faults Image MNIST

MSE
Naı̈ve 0.0320 0.0509 0.0294 0.0401
Revised 0.1015 0.1303 0.1010 0.0814

Error rate
Naı̈ve 0.0250 0.0122 0.0243 0.0322
Revised 0.0923 0.0762 0.0954 0.0546
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layers.

cost, which is propotional to the summed absolute changes of

weights. Detailed discussion can be found in Section V-F.

C. Accuracy of Replicated Model

In this section, we will mimic the replication attack and

evaluate the effectiveness of our proposed design. In the

simulation, we assume the best-case scenario for an attacker:

1) All the I/O pairs chosen by the attacker are the same as the

one in the original training samples. 2) The model chosen by

the attacker is the one with the best replication performance,

e.g., SVM for Digit, Random Forest for Faults, similar to

the analysis in Figure 2. Other simulated models include K-

Nearest Neighbors and feedforward neural network. We show

that even under the best-case scenario, an attacker cannot

obtain the correct outputs due to the obsolescence effect of

the system.

Fig. 10 summarizes our results where the x-axis is the I/O

pairs and the y-axis is the accuracy. We compare the accuracies

of the replication model when attacking three systems:

1) The original system without obsolescence property

(Original in the figure). As the number of I/O pair

increases, the accuracy should increase monotonously.

2) The system with naı̈ve design (Linear in the figure). The

accuracy should not increase monotonously. Ideally, it

will increase to a peak and then decrease.

3) The system with revised design (Nonlinear in the figure).

The accuracy should decrease earlier.

In the initial phase, all three systems achieve a similar trend

of accuracy increase, because this period belongs to the low

error rate region as we can observe from the curve in Fig. 8.

The accuracies of the naı̈ve and revised systems then both

drop, while the accuracy of the original system increases. The

accuracy of the naı̈ve system drops more slowly compared

with the revised system. We also observe that the highest

accuracy of the revised system is always lower than that of

the naı̈ve system. For example, in Fig. 10 (a), the theoretical

maximum accuracy (the attackers will hardly achieve this

since they have no idea when to stop training) of the revised

design is 78.5% while the one of the naı̈ve design is 85.4%.

Considering the fast degradation rate of the accuracy after

reaching the maximum, the proposed revised design is the

most resilient one to replication attacks among all the three

designs.
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Fig. 10. Replication accuracy comparison between nave and revised designs:
(a) Digit, (b) Faults, (c) Image, and (d) MNIST.

D. Ranges of Memristor Resistance

In the real design of MNCS, the resistance range of mem-

ristors greatly impacts on the performance of the system,

including the accuracy drop incurred by the limitation of the

precision, the change of the accuracy degradation rate due

to different memristor obsoleting speeds, and the change of

power consumption. The resistance levels of memristors can

be tens of kiloohms to hundreds of kiloohms based on different

models and techniques [31]. A higher resistance levels leads to

a lower power consumption since p = v2

r
, where v is normally

a constant for a chip, e.g., 1.2V . However, the low working

current incurred by the high resistance which is vulnerable to

the noise current generated from sneak path effect.

In this section, we include experiments with different mem-

ristor resistance ranges to show the impact of memristor

resistance on the robustness, effectiveness, and power con-

sumption of our proposed design. Experiments are performed

on MNIST with a fully-connected MLP (two hidden layers

with 64 neurons for each in order to be consistent with the

previous configuration) on our proposed revised design.

1) Resistance range analysis: To better demonstrate the

impacts introduced by resistance range, we carefully tune the

parameters to approximate the characteristics of real devices.

We select the relatively flat portion of the derivative of

conductance as shown in Fig. 3 (b) by applying a threshold of

tth = 0.5. The time ranges from 0 to tth × tmax. We choose

TABLE III
COMPARISON OF POWER CONSUMPTION CONTRIBUTED BY MEMRISTOR.

settings Power (W) I/O pairs

1k/100k 0.71 1
1k/300k 0.70 523
1k/500k 0.90 326
1k/700k 1.13 231
0.5k/150k 1.39 513
2k/600k 0.35 527
3k/900k 0.23 585
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P (y = j) =
ezj

∑K

k=1
ezk

, for j = 1, 2, ...,K. (25)

In the digit classification task, K = 10 since there are 10

classes. P (y = j) is the probability (also known as confidence

score) that the system classify the input as class j. When

we calculate the accuracy, we take the class with the highest

probability and compare it with the label t.

accuracy =
1

n

n
∑

i=1

1(yi == ti). (26)

where n is the size of test set. In MNIST, for example, n =
10000.

The attacker could analyze the output combinations and

flip the labels of the I/O pairs they get, expecting to gain

a better performance of the replicated model. Even though the

attacker knows the defense mechanism, his/her choices are

very limited.

First, the attacker can randomly flip the output label. How-

ever, the chance that the wrong label is flipped to the correct

one is very low since the accuracy is usually very high.

Assume the original model has an accuracy of 90% and the

attacker wants to experiment on 100 samples. In this case, the

attacker may want to flip 10 wrong labels out of 100 samples.

Since there are C10
100 possible combinations of flips, even the

possibility that these 10 flips cover 5 wrong label is extremely

low (the chance is C5
10 × C5

90/C
10
100 = 0.06%). The fact

that the original model is being compromised exacerbates the

possibility. The above analysis demonstrates that the accuracy

is more likely to get worse (correct labels are changed to the

wrong label) when the attacker flips the label.

Second, it might be reasonable to flip the labels with

lower confidence scores since these labels tend to be wrong.

However, this statement is not true because the original model

is being compromised, thus lowering the confidence even for

correct labels. Besides, it is not feasible to put the weight-

changing function of the original model into the replicated

model’s loss function since there is no connection between

the original model and the replicated model.

In conclusion, the attacker can only manipulate the inputs

to the original model in order to alleviate the system degra-

dation, in which case we already know the proposed defense

mechanism will still work.

VI. RELATED WORKS

Security attacks against learning models can be mainly

categorized into two types: exploratory attack (exploitation of

the classifier) and causative attack (manipulation of training

samples) [35]. Causative attack denotes the situation when

attackers are able to manipulate the training set and there-

fore change the parameters of the target model. In contrast,

exploratory attack does not change the parameters of the

target model. Replication attack also belongs to exploratory

attack since the attack occurs in the inference phase, thus

not modifying the model’s parameters. Replication attack is

also known as “model stealing attack” in some literature.

Tramér et al. demonstrated simple and efficient attacks that

can extract target ML models for popular model classes

including logistic regression, neural networks, and decision

trees [36]. Later, Juuti et al. proposed a new technique to

detect model extraction which analyses the distribution of

successive queries from a client and identifies deviations from

a Gaussian distribution [37]. However, rather than detection,

our method can physically thwart replication attack without

introducing much overhead from both software and hardware

sides. There are also some works on physical degradation-

based defense which refers to hardware measures that enforce

physical usage bounds through intentional degradation of the

hardware. Rahmati et al. used the SRAM decay phenomenon

to measure time for batteryless embedded devices in order to

throttle response rates to adversarial accesses [38]. Deng et al.

provided statistical guarantees on system-level usage based on

the probabilistic wearout models. [39]. Some other hardware

approaches can restrict data accesses through self-destructing

circuits [40], [41].

VII. CONCLUSION

In this paper, we propose a design to prevent memristor-

based neuromorphic computing system (MNCS) from being

attacked by replicating the function of the model. We propose

an approach across device-, circuit-, and architectural-levels

to thwart this attack. We study the influences of process

variation, different activation functions and cost functions, and

the resistance ranges of memristors towards the effectiveness

of our proposed approaches. We also estimate the power con-

sumption and the calibration overhead under different settings.

Compared to the naı̈ve design, our revised design has a higher

nonlinearity index, e.g., 179.93% on MSE and 288.99% on the

error rate, indicating a more effective defense. Further analysis

proves that our method can protect the MNCS even when the

attacker knows our defense mechanism in advance.
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