
SFLL-HLS: Stripped-Functionality Logic Locking

Meets High-Level Synthesis
(Invited Paper)

Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan (JV) Rajendran

Department of Electrical and Computer Engineering, Texas A&M University

{myasin, cz zhao, jv.rajendran}@tamu.edu

Abstract—Logic locking has emerged as a promising coun-
termeasure against piracy and reverse engineering attacks on
integrated circuits. The state-of-the-art logic locking techniques,
more specifically stripped-functionality logic locking (SFLL), of-
fer provable security guarantees against many attacks. However,
these techniques focus on protecting individual modules or even
parts of a module, failing to deliver system-wide security. This
paper sheds light on integrating logic locking with high-level
synthesis (HLS) in an attempt to deliver system-wide security.
We demonstrate the integration of SFLL with LegUp HLS tool
for an image processing application.

I. INTRODUCTION

A. IP piracy and reverse engineering

The ever-increasing complexity of integrated circuits and

the cost of establishing foundries have given rise to fabless

companies [1]. Today, many companies, e.g., Apple and

Qualcomm, outsource integrated circuit (IC) fabrication to

offshore foundries, e.g., TSMC and Samsung, that are located

mostly in Asia. While this outsourcing has helped subsidize

IC manufacturing costs, it has also brought with it several

security challenges in the form of IP piracy, overbuilding,

reverse engineering, and hardware Trojans [2].

A number of design-for-trust (DfTr) countermeasures such

as IC metering [3], watermarking [4], IC camouflaging [5],

split manufacturing [6], and logic locking [7], [8], [9] have

been proposed to tackle the aforementioned security chal-

lenges [10]. Logic locking surpasses the other DfTr techniques

by offering protection against a wider range of threats, origi-

nating from either untrusted foundries or untrusted end-users,

as illustrated in Table I. Logic locking is carried out earlier

in the design flow at either register transfer level (RTL) or

gate level. Split manufacturing and camouflaging, however,

are conducted on the layout.

B. Logic locking

Logic locking protects a circuit by introducing additional

key-controlled logic into a circuit. In addition to the original

inputs, a locked circuit has key inputs that are driven by an on-

chip tamper-proof memory. The locked netlist passes through

the untrusted design phases, i.e., untrusted manufacturing, test,

and assembly. Without the knowledge of the secret key, neither

a design can be pirated nor an IC can be made functional.

The earliest logic locking techniques that focus on inserting

XOR/XNOR key-gates [7], [8] are vulnerable to attacks such

as the SAT that leverages Boolean satisfiability to eliminate in-

correct key [11]. Subsequent research on logic locking defends

TABLE I
A COMPARISON OF DFTR TECHNIQUES BASED ON THE ABSTRACTION

LEVEL AND THE PROTECTION OFFERED.

Technique Abstraction level Protection

Camouflaging [5] Layout End-user

Split manufacturing [6] Layout Foundry

Logic locking [7], [8], [9], [19], [14] RTL/gate Foundry + end-user

TAO [20] RTL Foundry

SFLL-HLS (this paper) RTL Foundry + end-user

against the SAT attack by combining an original circuit with

a point-function [9], [12]. However, the point function can

be isolated using removal attacks [13]. An approximate key

for these techniques can also be recovered by approximate

attacks [14]. Stripped functionality logic locking (SFLL) is

the first technique to defend against all these attacks in a

provable way [15], [16]. Sequential locking techniques that

lock finite state machines [3], [17] are susceptible to state-

machine-reconstruction attacks [18].

We would like to emphasize that the focus of logic locking

research has so far been on protecting individual modules or

even combinational logic that is only a small part of a single

module. Accordingly, the metrics and algorithms used in logic

locking research are also not yet adequately suited for offering

system-wide protection.

C. High-level synthesis (HLS)

Nowadays, high-level synthesis (see Section II-B for details)

is being actively deployed successfully to design large scale

SoCs. By shifting the design effort to a higher level of abstrac-

tion, HLS brings forth unique advantages in terms of faster

validation of large designs, smaller time-to-market, and agile

engineering change orders. HLS tools often support a variety

of hardware configurations allowing the use of several types of

functional units, storage elements, and on-chip interconnect.

We envision that logic locking can leverage the develop-

ments in HLS to effect system-level protection for large scale

SoCs. As explained in Section II-B, HLS involves compiling

the high-level code to an intermediate representation (IR).

The HLS tools conduct scheduling and binding operations on

this IR. The IR contains useful information about the control

and datapath of a design. This representation can be used to

identify suitable locations to be locked such that the protection

for the overall system is enhanced. This will enable system-

wide security and cost trade-offs. The cost can be area, power,

latency, throughput, or any such metric of interest. The security

metric(s) can be selected based on the threat model. Another

potential advantage of HLS is that it can help identify the

978-1-7281-2350-9/19/$31.00 ©2019 IEEE

Fig. 2. The proposed SFLL-HLS flow, which extends the typical HLS flow.
The entities shaded in blue are associted with logic locking.

higher level of abstraction. These tools, however, have not been

designed to handle hardware security. SFLL-HLS attempts to

bridge this gap and strives to incorporate security as another

design objective into HLS.

Similar to the core HLS engine that operates on IR, SFLL-

HLS also analyzes IR to identify the logic (functional units)

to be protected. SFLL-HLS identifies only the combinational

units, e.g., adders, multipliers, and subtractors, since SFLL is

a combinational locking technique. A large key size (e.g., 64

or higher) is desired to achieve a reasonable security level.

Accordingly, SFLL-HLS targets functional units with k or

more inputs, where k denotes the key size. Upon determining

the units-to-be-locked, their information (e.g., the output to

be locked, the subset of inputs, the key size) is passed to the

modified RTL code generation.

Recall from Fig. 1 that an SFLL-HD circuit comprises two

restore units, one with a hard-coded key and the other with

key inputs that are driven by a tamper-proof memory. The

modification to the RTL generation unit involves creating the

code for two restore units and replacing the original functional

units with their locked counterparts. Fig. 2 presents the flow

of SFLL-HLS; the entities associated with logic locking are

shaded blue.

(a) (b)

Fig. 3. (a) Original image, (b) Output of the sobel edge detector obtained
through simulation using Modelsim.

B. Case study

We demonstrate the application of SFLL-HLS on an image

processing example obtained from [25]. The example is about

edge detection, and more specifically, about applying the Sobel

filter to an image. Sobel filtering is the convolution of an

image with a pair of 3x3 kernels/filters [25]. The kernels

are typically referred to as Gx and Gy; they correspond to

detecting horizontal and vertical edges, respectively. Fig. 3

presents an example image and the output of the Sobel edge

detector.

Experimental setup. All experiments are conducted using

the open-source LegUp HLS tool [22], Modelsim, and Matlab.

The Sobel edge detector code is written in C. The input image

is specified as a char array, which translates into a ROM in the

hardware implementation. In this demonstrative case study, we

do not employ any pipe-lining or loop unrolling. The original

Sobel edge detector circuit is synthesized using the typical

HLS flow, highlighted in green color in Fig. 2. The circuit

is then locked following the proposed SFLL-HLS flow. An

analysis of the IR generated by the compiler reveals that there

are multiple add/sub instructions operating on 32-bit data. Ac-

cordingly, we configure the RTL generation block to generate

RTL code to lock one of these adders with a 32-bit key. To

compute area, power, and timing overhead, we synthesize the

original and the locked circuits using Synopsys DC Compiler

in conjunction with the NanGate Open Cell Library. The image

ROM and the RAM used for storing intermediate results are

not considered in the overhead computation..

Signal to noise ratio (SNR). Fig. 4 illustrates the effect of

locking on the edge detector output. The figure displays the

error (difference) between the correct output the edge detector

(shown in Fig. 3(b)) and the “incorrect” output, obtained for a

random incorrect key for different values of HD h. The darker

the image, the lower the error. One would expect the error

to increase with h. However, since the locked adder drives

only an internal register, the effect of the incorrect output may

not always be propagated to the output. We observe that for

h=8, the error is almost negligible as indicated by an SNR

value of 83 and a completely dark image in Fig. 4(b). The

same trend can also be observed in Table II, which reports the

SNR (computed using the Matlab PSNR function) between the

locked circuit output and correct output. The error introduced

TABLE II
SNR OF THE LOCKED SOBEL EDGE DETECTOR FOR DIFFERENT VALUES

OF HAMMING DISTANCE.

h 4 8 12 16

SNR 42 83 43 52

TABLE III
AREA, POWER, AND IMPLEMENTATION COST OF SOBEL EDGE DETECTOR.
THE REPORTED VALUES ARE AVERAGED OVER FOUR DIFFERENT VALUES

OF H.

Parameter Baseline Locked Overhead (%)

Area (µm2) 12933 13212 2.2

Power (µW) 1269.5 1407.3 10.9

Timing (ns) 3.37 3.37 0

(a) h=4 (b) h=8 (c) h=12 (d) h=16

Fig. 4. Error between the correct output and the incorrect output of the locked Sobel edge detector for different values of h. The corresponding SNR values
are 42, 83, 43 and 52, respectively.

is almost identical for h=4 and h=8. This also emphasizes the

intricacies of locking internal components; the impact on the

overall system output may be different from the expected one.

Implementation overhead. Table III reports the area,

power, and timing overhead of the locked circuit, which

is 2.2%, 10.9% and 0%, respectively. Note that the power

overhead can be traded-off with the area overhead by enabling

loop unrolling or pipe-lining.

ACKNOWLEDGEMENT

The work was supported by in part by the Office of

Naval Research (ONR Award #N00014-18-1-2058), the Na-

tional Science Foundation (NSF CNS-1749175), and the

the Defense Advanced Research Projects Agency (DARPA

HR001116S0001-FP39).

IV. CONCLUSION

The paper presents SFLL-HLS that integrates logic locking

and high-level synthesis with the goal of enabling system-level

security. An image processing case study successfully demon-

strated the locking of a Sobel edge detector in conjunction

with the LegUp HLS tool. The paper shed light on various

intricacies involved in the integration of HLS with SFLL and

emphasizes the need for further research in this area.

REFERENCES

[1] Evertiq, “Top 10 fabless IC design companies Qualcomm in the lead,”
https://evertiq.com/news/40662, 2016, last accessed on 02/09/19.

[2] R. Torrance and D. James, “The State-of-the-Art in Semiconductor
Reverse Engineering,” IEEE/ACM Design Automation Conference, pp.
333–338, 2011.

[3] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intel-
lectual Property Protection and Security,” USENIX Security Symposium,
pp. 291–306, 2007.

[4] A. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking
Techniques for Intellectual Property Protection,” IEEE/ACM Design

Automation Conference, pp. 776–781, 1998.
[5] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis

of Integrated Circuit Camouflaging,” ACM SIGSAC Conference on

Computer & Communications Security, pp. 709–720, 2013.
[6] R. Jarvis and M. McIntyre, “Split Manufacturing Method for Advanced

Semiconductor Circuits,” 2007, US Patent no. 7,195,931.
[7] J. Roy, F. Koushanfar, and I. Markov, “Ending Piracy of Integrated

Circuits,” IEEE Computer, vol. 43, pp. 30–38, 2010.
[8] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis

of Logic Obfuscation,” IEEE/ACM Design Automation Conference, pp.
83–89, 2012.

[9] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT Attack Resistant Logic Locking,” IEEE International Symposium

on Hardware Oriented Security and Trust, pp. 236–241, 2016.

[10] T. S. Perry, “Why Hardware Engineers Have to Think Like
Cybercriminals, and Why Engineers Are Easy to Fool,”
http://spectrum.ieee.org/view-from-the-valley/computing/embedded-
systems/why-hardware-engineers-have-to-think-like-cybercriminals-
and-why-engineers-are-easy-to-fool, 2017.

[11] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” IEEE International Symposium on Hardware

Oriented Security and Trust, pp. 137–143, 2015.
[12] Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”

International Conference on Cryptographic Hardware and Embedded

Systems, pp. 127–146, 2016.
[13] M. Yasin and B. Mazumdar and O. Sinanoglu and J. Rajendran,

“Removal Attacks on Logic Locking and Camouflaging Techniques,”
IEEE Transactions on Emerging Topics in Computing, pp. 1–1, 2018.

[14] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” IEEE International

Symposium on Hardware Oriented Security and Trust, pp. 95–100, 2017.
[15] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran,

and O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To
Practice,” ACM SIGSAC Conference on Computer & Communications

Security, pp. 1601–1618, 2017.
[16] A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based

cost-effective, secure logic locking,” IEEE VLSI Test Symposium, pp.
1–6, 2018.

[17] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[18] M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Böcker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293–330, 2018.

[19] M. Yasin and O. Sinanoglu, “Evolution of Logic Locking,” IFIP/IEEE

International Conference onVery Large Scale Integration, pp. 1–6, 2017.
[20] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for

Algorithm-Level Obfuscation during High-Level Synthesis,” Proceed-

ings of the 55th Annual Design Automation Conference, pp. 155:1–
155:6, 2018.

[21] D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, HighLevel Synthesis:

Introduction to Chip and System Design. Springer Science & Business
Media, 2012.

[22] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis for FPGA-
based Processor/Accelerator Systems,” ACM/SIGDA international sym-

posium on Field programmable gate arrays, pp. 33–36, 2011.
[23] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction

to high-level synthesis,” IEEE Design & Test of Computers, vol. 26,
no. 4, pp. 8–17, 2009.

[24] C. Pilato and F. Ferrandi, “Bambu: A Modular Framework for the
High Level Synthesis of Memory-Intensive Applications,” International

Conference on Field programmable Logic and Applications, pp. 1–4,
2013.

[25] LegUp, “LegUp High-Level Synthesis Tuto-
rial: Sobel Filtering for Image Edge Detection,”
https://www.legupcomputing.com/static/downloads/tutorials/Sobel Tutorial.pdf,
2016, last accessed on 07/09/19.

