SFLL-HLS: Stripped-Functionality Logic Locking
Meets High-Level Synthesis

(Invited Paper)

Muhammad Yasin, Chongzhi Zhao, and Jeyavijayan (JV) Rajendran
Department of Electrical and Computer Engineering, Texas A&M University
{myasin, cz_zhao, jv.rajendran}@tamu.edu

Abstract—Logic locking has emerged as a promising coun-
termeasure against piracy and reverse engineering attacks on
integrated circuits. The state-of-the-art logic locking techniques,
more specifically stripped-functionality logic locking (SFLL), of-
fer provable security guarantees against many attacks. However,
these techniques focus on protecting individual modules or even
parts of a module, failing to deliver system-wide security. This
paper sheds light on integrating logic locking with high-level
synthesis (HLS) in an attempt to deliver system-wide security.
We demonstrate the integration of SFLL with LegUp HLS tool
for an image processing application.

I. INTRODUCTION
A. IP piracy and reverse engineering

The ever-increasing complexity of integrated circuits and
the cost of establishing foundries have given rise to fabless
companies [1]. Today, many companies, e.g., Apple and
Qualcomm, outsource integrated circuit (IC) fabrication to
offshore foundries, e.g., TSMC and Samsung, that are located
mostly in Asia. While this outsourcing has helped subsidize
IC manufacturing costs, it has also brought with it several
security challenges in the form of IP piracy, overbuilding,
reverse engineering, and hardware Trojans [2].

A number of design-for-trust (DfTr) countermeasures such
as IC metering [3], watermarking [4], IC camouflaging [5],
split manufacturing [6], and logic locking [7], [8], [9] have
been proposed to tackle the aforementioned security chal-
lenges [10]. Logic locking surpasses the other DfTr techniques
by offering protection against a wider range of threats, origi-
nating from either untrusted foundries or untrusted end-users,
as illustrated in Table I. Logic locking is carried out earlier
in the design flow at either register transfer level (RTL) or
gate level. Split manufacturing and camouflaging, however,
are conducted on the layout.

B. Logic locking

Logic locking protects a circuit by introducing additional
key-controlled logic into a circuit. In addition to the original
inputs, a locked circuit has key inputs that are driven by an on-
chip tamper-proof memory. The locked netlist passes through
the untrusted design phases, i.e., untrusted manufacturing, test,
and assembly. Without the knowledge of the secret key, neither
a design can be pirated nor an IC can be made functional.

The earliest logic locking techniques that focus on inserting
XOR/XNOR key-gates [7], [8] are vulnerable to attacks such
as the SAT that leverages Boolean satisfiability to eliminate in-
correct key [11]. Subsequent research on logic locking defends

978-1-7281-2350-9/19/$31.00 ©2019 IEEE

TABLE I
A COMPARISON OF DFTR TECHNIQUES BASED ON THE ABSTRACTION
LEVEL AND THE PROTECTION OFFERED.

Technique Abstraction level Protection
Camouflaging [5] Layout End-user
Split manufacturing [6] Layout Foundry
Logic locking [7], [8], [9], [19], [14] RTL/gate Foundry + end-user
TAO [20] RTL Foundry
SFLL-HLS (this paper) RTL Foundry + end-user

against the SAT attack by combining an original circuit with
a point-function [9], [12]. However, the point function can
be isolated using removal attacks [13]. An approximate key
for these techniques can also be recovered by approximate
attacks [14]. Stripped functionality logic locking (SFLL) is
the first technique to defend against all these attacks in a
provable way [15], [16]. Sequential locking techniques that
lock finite state machines [3], [17] are susceptible to state-
machine-reconstruction attacks [18].

We would like to emphasize that the focus of logic locking
research has so far been on protecting individual modules or
even combinational logic that is only a small part of a single
module. Accordingly, the metrics and algorithms used in logic
locking research are also not yet adequately suited for offering
system-wide protection.

C. High-level synthesis (HLS)

Nowadays, high-level synthesis (see Section II-B for details)
is being actively deployed successfully to design large scale
SoCs. By shifting the design effort to a higher level of abstrac-
tion, HLS brings forth unique advantages in terms of faster
validation of large designs, smaller time-to-market, and agile
engineering change orders. HLS tools often support a variety
of hardware configurations allowing the use of several types of
functional units, storage elements, and on-chip interconnect.

We envision that logic locking can leverage the develop-
ments in HLS to effect system-level protection for large scale
SoCs. As explained in Section II-B, HLS involves compiling
the high-level code to an intermediate representation (IR).
The HLS tools conduct scheduling and binding operations on
this IR. The IR contains useful information about the control
and datapath of a design. This representation can be used to
identify suitable locations to be locked such that the protection
for the overall system is enhanced. This will enable system-
wide security and cost trade-offs. The cost can be area, power,
latency, throughput, or any such metric of interest. The security
metric(s) can be selected based on the threat model. Another
potential advantage of HLS is that it can help identify the

Original
circuit

] >—v

| Restore unit restore

with hardcoded ke

Restore unit
HD(IN,K)=h

Tamper-proof
memory K

Fig. 1. The architecture of SFLL-HD. The overall circuit consisting of the
original circuit, the restore unit, and a restore unit with the secret key hard-
coded is synthesized using logic synthesis tools [15].

modules that are most crucial from security stand-point early
in the design process.

TAO is the only research work considering both logic
locking and HLS (refer to Section II-C). TAO, however, adopts
a weaker threat model compared to the standard logic locking
threat model [8], [11], which is also adopted in this paper. The
standard threat model assumes that an attacker can have access
to: (1) a locked netlist, obtained through reverse engineering,
and (2) a functional IC, purchased from the open market. TAO
does not assume access to a functional IC and can protect
against only a limited set of attacks that originate only at an
untrusted foundry.

D. Contributions

In this paper, we demonstrate the feasibility of integrating
HLS with state-of-the-art logic locking. Specifically, we inte-
grate HLS with SFLL. SFLL-HLS analyzes the IR to deter-
mine the location of large (with 32 or 64 inputs) combinational
units (e.g., adders and subtractors) in a design and locks these
units using SFLL. We report the impact of locking on the
overall system output in terms of SNR as well as the associated
area, power, and timing overhead for an image processing
application.

II. BACKGROUND AND PRIOR WORK
A. SFLL

To achieve maximal resilience against SAT, removal, and
approximate attacks, SFLL adopts the philosophy of stripped-
functionality. It modifies the original circuit during design and
later restores the functionality by applying the correct key. The
locked circuit comprises a functionality-stripped circuit (FSC)
and a restore unit, as illustrated in Fig. 1.

Functionality stripping can be implemented in various
flavors such as SFLL-HD [15], SFLL-flex [15], or SFLL-
fault [16]. In SFLL-HD, which represents the most effective
flavor of SFLL, the output of the original circuit is modified for
those input patterns that are of Hamming distance h from the
secret key, i.e., O_locked # O,if(HD(IN, Ksecret) # h)
where Kecret 18 known only to the designer and H D denotes
Hamming distance. Such input patterns are referred to as the
protected input patterns. The restore operation is also based
on the HD between the input pattern and the secret key. The
FSC output is restored only when HD(K,IN) = h.

B. HLS: An overview

HLS interprets an algorithmic description of a design and
creates RTL code that can be implemented in hardware [21],
[22]. For example, HLS can translate a C/C++ code into
Verilog code. The use of a higher abstraction level to represent
a design speeds up the design as well as verification effort.
HLS first compiles the high-level code into an IR, which is
essentially a sequence of instructions (operations). The core
HLS engine then bifurcates the operations into control and
datapath operations. As illustrated in Fig. 2, the core HLS
engine:

1) allocates the functional units to be used in the hardware

implementation,

2) schedules the operations to be carried out in each clock

cycle, and

3) binds each operation to a functional unit, while simul-

taneously adhering to the design constraints [23].

HLS is now supported by all major EDA vendors such
as Intel and Xilinx. The vendors often provide HLS tools,
e.g., Intel HLS Compiler and Xilinx Vivado HLS, along with
libraries containing hardware components speahcific to certain
families of FPGAs. Open-source HLS tools that target both
FPGAs and ASICs (application-specific integrated circuits) are
also available. LegUp is one of the widely adopted open-
source HLS tools that has been evolving for more than a
decade [22]. In addition to supporting traditional FPGA and
ASIC flows, LegUp also supports a hardware/software co-
design flow. In this flow, the operations are carried in part by
dedicated hardware and in part by general-purpose processors.

C. Prior work on HLS + logic locking

Only a handful of research efforts investigate the link
between HLS and logic locking. TAO is a recent technique
that “obfuscates” design functionality during high-level syn-
thesis [20], albeit in a restrictive threat model. TAO assumes
that the only untrusted entity is a foundry that cannot have
access to a working chip. This threat model is applicable
in only a handful of scenarios, e.g., in military ICs that are
never available in the open market. Compared to TAO, SFLL-
HLS adopts the standard logic locking threat model, which is
applicable widely.

Built on the top of Bambu HLS framework [24], TAO can
be considered as the integration of HLS and random logic
locking [7]. The TAO algorithm operates on IR to identify
and protect (using RLL) the following types of elements:
arithmetic operations, constant values, and control flow. In
most cases, the element to be protected is XORed with the
secret key such that the correct output is obtained only upon
application of the correct key.

ITI. SFLL-HLS

A. Architecture

SFLL-HLS aims to integrate HLS with SFLL (or other
logic locking techniques) in a synergistic manner. As already
mentioned, HLS tools allow faster design cycles by using a

Compilation

Functional unit

identification
¥
(i Locking + RTL

Locking unit
configuration
generation

RTL code

Fig. 2. The proposed SFLL-HLS flow, which extends the typical HLS flow.
The entities shaded in blue are associted with logic locking.

Specifications

higher level of abstraction. These tools, however, have not been
designed to handle hardware security. SFLL-HLS attempts to
bridge this gap and strives to incorporate security as another
design objective into HLS.

Similar to the core HLS engine that operates on IR, SFLL-
HLS also analyzes IR to identify the logic (functional units)
to be protected. SFLL-HLS identifies only the combinational
units, e.g., adders, multipliers, and subtractors, since SFLL is
a combinational locking technique. A large key size (e.g., 64
or higher) is desired to achieve a reasonable security level.
Accordingly, SFLL-HLS targets functional units with & or
more inputs, where & denotes the key size. Upon determining
the units-to-be-locked, their information (e.g., the output to
be locked, the subset of inputs, the key size) is passed to the
modified RTL code generation.

Recall from Fig. 1 that an SFLL-HD circuit comprises two
restore units, one with a hard-coded key and the other with
key inputs that are driven by a tamper-proof memory. The
modification to the RTL generation unit involves creating the
code for two restore units and replacing the original functional
units with their locked counterparts. Fig. 2 presents the flow
of SFLL-HLS; the entities associated with logic locking are
shaded blue.

(a) ()

Fig. 3. (a) Original image, (b) Output of the sobel edge detector obtained
through simulation using Modelsim.

B. Case study

We demonstrate the application of SFLL-HLS on an image
processing example obtained from [25]. The example is about
edge detection, and more specifically, about applying the Sobel
filter to an image. Sobel filtering is the convolution of an
image with a pair of 3x3 kernels/filters [25]. The kernels
are typically referred to as Gx and Gy; they correspond to
detecting horizontal and vertical edges, respectively. Fig. 3
presents an example image and the output of the Sobel edge
detector.

Experimental setup. All experiments are conducted using
the open-source LegUp HLS tool [22], Modelsim, and Matlab.
The Sobel edge detector code is written in C. The input image
is specified as a char array, which translates into a ROM in the
hardware implementation. In this demonstrative case study, we
do not employ any pipe-lining or loop unrolling. The original
Sobel edge detector circuit is synthesized using the typical
HLS flow, highlighted in green color in Fig. 2. The circuit
is then locked following the proposed SFLL-HLS flow. An
analysis of the IR generated by the compiler reveals that there
are multiple add/sub instructions operating on 32-bit data. Ac-
cordingly, we configure the RTL generation block to generate
RTL code to lock one of these adders with a 32-bit key. To
compute area, power, and timing overhead, we synthesize the
original and the locked circuits using Synopsys DC Compiler
in conjunction with the NanGate Open Cell Library. The image
ROM and the RAM used for storing intermediate results are
not considered in the overhead computation..

Signal to noise ratio (SNR). Fig. 4 illustrates the effect of
locking on the edge detector output. The figure displays the
error (difference) between the correct output the edge detector
(shown in Fig. 3(b)) and the “incorrect” output, obtained for a
random incorrect key for different values of HD h. The darker
the image, the lower the error. One would expect the error
to increase with h. However, since the locked adder drives
only an internal register, the effect of the incorrect output may
not always be propagated to the output. We observe that for
h=8, the error is almost negligible as indicated by an SNR
value of 83 and a completely dark image in Fig. 4(b). The
same trend can also be observed in Table II, which reports the
SNR (computed using the Matlab PSNR function) between the
locked circuit output and correct output. The error introduced

TABLE II
SNR OF THE LOCKED SOBEL EDGE DETECTOR FOR DIFFERENT VALUES
OF HAMMING DISTANCE.

h 4 8 12 | 16
SNR | 42 | 83 | 43 | 52

TABLE III
AREA, POWER, AND IMPLEMENTATION COST OF SOBEL EDGE DETECTOR.
THE REPORTED VALUES ARE AVERAGED OVER FOUR DIFFERENT VALUES

OF H.
Parameter Baseline | Locked | Overhead (%)
Area (um?) 12933 13212 2.2
Power (uWW) 1269.5 1407.3 10.9
Timing (ns) 3.37 3.37 0

(a) h=4

(b) h=8

(©) h=12 (d) h=16

Fig. 4. Error between the correct output and the incorrect output of the locked Sobel edge detector for different values of h. The corresponding SNR values

are 42, 83, 43 and 52, respectively.

is almost identical for h=4 and h=8. This also emphasizes the
intricacies of locking internal components; the impact on the
overall system output may be different from the expected one.

Implementation overhead. Table III reports the area,
power, and timing overhead of the locked circuit, which
is 2.2%, 10.9% and 0%, respectively. Note that the power
overhead can be traded-off with the area overhead by enabling
loop unrolling or pipe-lining.

ACKNOWLEDGEMENT

The work was supported by in part by the Office of
Naval Research (ONR Award #N00014-18-1-2058), the Na-
tional Science Foundation (NSF CNS-1749175), and the
the Defense Advanced Research Projects Agency (DARPA
HRO001116S0001-FP39).

IV. CONCLUSION

The paper presents SFLL-HLS that integrates logic locking
and high-level synthesis with the goal of enabling system-level
security. An image processing case study successfully demon-
strated the locking of a Sobel edge detector in conjunction
with the LegUp HLS tool. The paper shed light on various
intricacies involved in the integration of HLS with SFLL and
emphasizes the need for further research in this area.

REFERENCES
[1

—

Evertiq, “Top 10 fabless IC design companies Qualcomm in the lead,”

https://evertiq.com/news/40662, 2016, last accessed on 02/09/19.

R. Torrance and D. James, “The State-of-the-Art in Semiconductor

Reverse Engineering,” IEEE/ACM Design Automation Conference, pp.

333-338, 2011.

Y. Alkabani and F. Koushanfar, “Active Hardware Metering for Intel-

lectual Property Protection and Security,” USENIX Security Symposium,

pp. 291-306, 2007.

[4] A. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Watermarking
Techniques for Intellectual Property Protection,” IEEE/ACM Design
Automation Conference, pp. 776781, 1998.

[5] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis
of Integrated Circuit Camouflaging,” ACM SIGSAC Conference on
Computer & Communications Security, pp. 709-720, 2013.

[6] R.Jarvis and M. MclIntyre, “Split Manufacturing Method for Advanced
Semiconductor Circuits,” 2007, US Patent no. 7,195,931.

[7]1 J. Roy, F. Koushanfar, and 1. Markov, “Ending Piracy of Integrated
Circuits,” IEEE Computer, vol. 43, pp. 30-38, 2010.

[8] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security Analysis
of Logic Obfuscation,” IEEE/ACM Design Automation Conference, pp.
83-89, 2012.

[9] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:

SAT Attack Resistant Logic Locking,” IEEE International Symposium

on Hardware Oriented Security and Trust, pp. 236-241, 2016.

[2

—

3

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. S. Perry, “Why Hardware Engineers Have to Think Like
Cybercriminals, and Why Engineers Are Easy to Fool,”
http://spectrum.ieee.org/view-from-the-valley/computing/embedded-
systems/why-hardware-engineers-have-to-think-like-cybercriminals-
and-why-engineers-are-easy-to-fool, 2017.

P. Subramanyan, S. Ray, and S. Malik, “Evaluating the Security of Logic
Encryption Algorithms,” IEEE International Symposium on Hardware
Oriented Security and Trust, pp. 137-143, 2015.

Y. Xie and A. Srivastava, “Mitigating SAT Attack on Logic Locking,”
International Conference on Cryptographic Hardware and Embedded
Systems, pp. 127-146, 2016.

M. Yasin and B. Mazumdar and O. Sinanoglu and J. Rajendran,
“Removal Attacks on Logic Locking and Camouflaging Techniques,”
IEEE Transactions on Emerging Topics in Computing, pp. 1-1, 2018.
K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately Deobfuscating Integrated Circuits,” IEEE International
Symposium on Hardware Oriented Security and Trust, pp. 95-100, 2017.
M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran,
and O. Sinanoglu, “Provably-Secure Logic Locking: From Theory To
Practice,” ACM SIGSAC Conference on Computer & Communications
Security, pp. 1601-1618, 2017.

A. Sengupta, M. Nabeel, M. Yasin, and O. Sinanoglu, “ATPG-based
cost-effective, secure logic locking,” IEEE VLSI Test Symposium, pp.
1-6, 2018.

R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based
SoC Design Methodology for Hardware Protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493-1502, 2009.

M. Fyrbiak, S. Wallat, J. Déchelotte, N. Albartus, S. Bocker, R. Tessier,
and C. Paar, “On the difficulty of fsm-based hardware obfuscation,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 293-330, 2018.

M. Yasin and O. Sinanoglu, “Evolution of Logic Locking,” IFIP/IEEE
International Conference onVery Large Scale Integration, pp. 1-6, 2017.
C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for
Algorithm-Level Obfuscation during High-Level Synthesis,” Proceed-
ings of the 55th Annual Design Automation Conference, pp. 155:1—
155:6, 2018.

D. D. Gajski, N. D. Dutt, A. C. Wu, and S. Y. Lin, HighLevel Synthesis:
Introduction to Chip and System Design. Springer Science & Business
Media, 2012.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “LegUp: High-level Synthesis for FPGA-
based Processor/Accelerator Systems,” ACM/SIGDA international sym-
posium on Field programmable gate arrays, pp. 33-36, 2011.

P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction
to high-level synthesis,” IEEE Design & Test of Computers, vol. 26,
no. 4, pp. 8-17, 2009.

C. Pilato and F. Ferrandi, “Bambu: A Modular Framework for the
High Level Synthesis of Memory-Intensive Applications,” International
Conference on Field programmable Logic and Applications, pp. 1-4,
2013.

LegUp, “LegUp High-Level Synthesis Tuto-
rial: Sobel Filtering for Image Edge Detection,”
https://www.legupcomputing.com/static/downloads/tutorials/Sobel_Tutorial.pdf,
2016, last accessed on 07/09/19.

