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ABSTRACT
The usage of Deep Neural Networks (DNN) on resource-

constrained edge devices has been limited due to their high
computation and large memory requirement. In this work,
we propose an algorithm to compress DNNs by jointly op-
timizing structured sparsity and quantization constraints in a
single DNN training framework. The proposed algorithm has
been extensively validated on high/low capacity DNNs and
wide/deep sparse DNNs. Further, we perform Pareto-optimal
analysis to extract optimal DNN models from a large set of
trained DNN models. The optimal structurally-compressed
DNN model achieves ∼50X weight memory reduction with-
out test accuracy degradation, compared to floating-point un-
compressed DNN.

1. INTRODUCTION

In recent years, DNNs have unprecedentedly improved ac-
curacy in practical recognition and classification tasks, some
even surpassing human-level accuracy [1, 2]. However, to
achieve incremental accuracy improvement, state-of-the-art
DNN algorithms tend to present very deep/large models (e.g.,
1,000-layer networks [1]), which poses significant challenges
for hardware implementations in terms of computation, mem-
ory, and communication. This is especially true for edge de-
vices that exhibit severe constraints in area and power/energy.

This necessitates techniques to compress the DNN and
lower energy consumption. A number of prior works investi-
gated methods to lower the precision of activations/weights [3,
4] and apply pruning and compression [5] for DNNs, while
maintaining high classification accuracy. Low-precision tech-
niques quantize the DNN weights and activations. Quantizing
DNNs to a very low precision (e.g. 1-2 bit) has been achieved
by involving specific low-precision constraints during train-
ing [3, 4]. Large compression of DNNs was shown in [5]
through pruning neurons and weights. However, the resulting
scattered sparsity does not necessarily result in hardware ac-
celeration [6, 7], and also increases the storage overhead for
encoding sparsity [8]. Structured Sparsity Learning (SSL) [6]
has demonstrated row-/column-/layer-wise structured spar-
sity based on group Lasso regularization, demonstrating
enhanced acceleration. Coarse Grain Sparsity (CGS) was
presented in [8], where static sparsity is applied on randomly

selected blocks of weights throughout training, leading to
large memory reduction with minimal index overhead. In [9],
CGS and low-precision techniques were integrated during
DNN training, but only a single DNN model was analyzed.

More recent works [10, 11] investigated another dimen-
sion – DNN model size – for precision-lowering [10] and
pruning [11]. The authors of [10] reported that, for iso-
accuracy, wider networks can lower the precision of activa-
tions/weights much more than shallower networks, so that the
total computation cost actually becomes less. In [11], it has
been shown that large-sparse models outperform small-dense
models in test accuracy for the same memory footprint.

While these prior works separately investigated low-
precision, structured compression, and/or DNN model size,
there has been little work that systematically applied and opti-
mized all of these three techniques in a single framework. For
example, CGS [8] employed block-wise structured sparsity,
but only quantized the weights and activations after training
was complete, resulting in limited precision reduction (5-6
bit). To simultaneously achieve very low precision (1-3 bit)
and structured sparsity in DNNs without hampering accuracy,
all three dimensions need to be explored holistically and ap-
plied throughout the training process. As shown in [10, 11],
for the same accuracy, smaller networks do not necessarily re-
sult in smaller footprint or less computation when collectively
analyzed with low precision [10] or sparsity [11].

In this work, we jointly optimize both structured sparsity
and quantization techniques in a single training framework
for various DNN model sizes. The objective is to find the
optimal DNN algorithm that can be implemented in efficient
hardware with minimal area/energy for resource-constrained
edge devices. Among the large number of trained DNNs
(107 DNNs) that we explored, we found 11 optimal designs
using the Pareto-optimal approach, and further analysis on
the DNN memory breakdown (e.g. weight versus activa-
tion memory, convolution versus fully-connected layers) has
been performed on those optimal DNNs. One of the key
results shows that structurally-compressed DNN with 2-bit
weight precision achieves overall 50X weight memory reduc-
tion, compared to floating-point uncompressed DNN, while
obtaining >92% test accuracy for CIFAR-10 dataset. Our
source code can be found at https://gitlab.com/
srivastavag/CGS_quantization.
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Fig. 1: Illustration of CGS mask for a 32x32 weight matrix

with CGS size 4x4 and CGS ratio 4X. The gray and white

blocks represent zero and non-zero blocks, respectively.

To put our proposed work into the perspective of DNN

hardware implementation, let us consider mapping represen-

tative DNNs onto FPGA-based edge devices. For example,

performing inference on a ResNet-50 [1] DNN requires stor-

age of ∼26M weight parameters and ∼16M activations, and

a 32-bit floating-point ResNet-50 would need 168MB of

memory. If we consider edge devices based on Intel Arria

10 FPGA, the maximum FPGA on-chip memory storage is

8.4MB [12], so the baseline ResNet-50 would not fit in the

FPGA. This necessitates a large amount of DRAM access,

which can be a dominant portion of the overall energy and la-

tency [13]1. The overall 50X model reduction achieved in this

work can enable on-chip storage of all weights/activations on

edge devices and the structured sparsity based compression

will enable sufficient hardware acceleration [6, 7].

2. JOINT-OPTIMIZATION OF QUANTIZATION AND
STRUCTURED SPARSITY FOR DNN

2.1. Proposed DNN Training Framework

The proposed DNN training algorithm uses the BNN train-

ing scheme [4] with additional constraints on CGS [8] based

structured sparsity. Prior to training, blocks of weights were

randomly dropped as illustrated in Fig. 1 (CGS mask), de-

pending on CGS size and CGS ratio. CGS size is the shape of

a CGS block and CGS ratio is the compression ratio of non-

zero blocks to all blocks. The weights of the dropped blocks

statically remain zero throughout the entire training process

and classification. With regards to CGS mask for convolution

layers, the smallest rectangle in Fig. 1 is the mask applied to

all weights in a 2D filter (e.g. 3×3). The smallest rectangle in

the CGS mask for fully-connected layers represents a single

weight. Quantization constraints are applied when we train

the non-zero weight blocks (white color in Fig. 1).
The sparse weight matrix/tensor, generated after applying

CGS, is trained using backpropagation. Quantized weights

1∼40% of total latency was reportedly consumed by DRAM access for

end-to-end ResNet-50 implementation on Arria 10 FPGA in [13].

are generated from high-precision weights using a quantiza-
tion function for the target precision. Once the activations are
computed, they are quantized to the specified activation pre-
cision. The quantized weights/activations are used for the for-
ward phase. During the backward phase, gradients of the cost
function with respect to activations/weights are computed and
backpropagated. Straight-through estimator [14] is used to
estimate the gradient with respect to quantized activations.
During the weight update phase, the high-precision weights
are updated only for non-zero blocks of weights, using Eq. 1.

(W ij)k+1
= (Wij)

k
+
{
(ΔWij)k +m× (ΔWij)k−1

}×lr×Cij ,

(1)

where (W ij)k is weight at kth iteration, m is momentum, lr
is learning rate, and Cij is the CGS connection coefficient

between two consecutive DNN layers. Cij = 0 for weights

corresponding to the zero blocks, and Cij = 1 for weights

corresponding to non-zero blocks.

2.2. Experiment Setup

The proposed algorithm has been evaluated on CIFAR-10

dataset for image classification tasks. We have used deep

learning framework Theano [15] and toolbox Lasagne [16]

for DNN training and classification. We performed exper-

iments for different weight/activation precision values, in-

cluding floating-point (W-FP:A-FP), 8-bit (W8b:A8b), 4-bit

(W4b:A4b), 2-bit (W2b:A2b), and 1-bit (W1b:A1b), as well

as different CGS ratios of 32X, 16X, 8X, 4X, 2X, and 1X,

where 1X is an uncompressed DNN. Furthermore, we com-

pare the performance of wide-sparse, thin-dense, deep-sparse,

and shallow-dense DNNs. Wide-sparse DNNs have larger

number of neurons in a layer and higher CGS ratio compared

to thin-dense DNNs, so that the total weight memory is com-

parable. Similarly, deep-sparse DNNs have larger number

of layers and higher CGS ratio compared to shallow-dense

DNNs. The weight memory reported in all of our results

includes the index memory needed for CGS non-zero blocks.

Experiments were performed on DNN models of three

different depths, e.g. n128r3, n128r2 and n128r1. Here, n128r2

represents a DNN that has 128 feature maps in first convo-

lution layer and has 2 repeated convolution layers with same

width before doubling the number of feature maps, i.e. C128-

C128-P2-C256-C256-P2-C512-C512-P2-F1024-F1024-F10.

n128r3 and n128r1 has 3 and 1 repeated convolution layers, re-

spectively. In addition, DNNs with varying widths (different

number of feature maps) for each of the three depths (r1, r2,

r3), such as n32r3 and n64r2, have been trained and analyzed.

Dropout ratio of 20% is employed on convolution layers and

50% on fully-connected layers.

3. EXPERIMENTAL RESULTS

3.1. Comparison of Wide-Sparse / Thin-Dense DNNs

We first compare wide-sparse and thin-dense DNNs. Wide-

sparse floating-point high-capacity (r3 depth) DNN resulted
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Fig. 2: Test accuracy versus weight memory comparison

between deep-sparse (n128r3) and shallow-dense (other data

points) DNNs are shown for (a) floating-point (W-FP:A-FP)

and (b) 1-bit weight/activation precision (W1b:A1b).

in ∼2X memory reduction at 92% iso-accuracy, compared

to a thin-dense floating-point DNN. However, wide-sparse

DNN gives minimal or no memory savings for low preci-

sion schemes (1-bit, 2-bit, 4-bit, 8-bit). Moreover, for mid-

capacity (r2 depth) DNNs, wide-sparse DNNs show inferior

accuracy compared to thin-dense DNNs.

3.2. Comparison of Deep-Sparse / Shallow-Dense DNNs

On the other hand, we observed accuracy/memory benefits

when using deep-sparse DNNs compared to shallow-dense

DNNs. First, we investigated mid-capacity DNNs, compar-

ing deep-sparse (r2 depth) versus shallow-dense (r1 depth)

DNNs. Test accuracy of floating-point deep-sparse r2 DNN

(W-FP:A-FP) is ∼7% higher than that of shallow-dense r1

DNN for 40Mb weight memory DNN. Similar observations

were made for mid-capacity low-precision DNNs (<8-bit).

For example, 1-bit deep-sparse DNN (1.5Mb weight mem-

ory) demonstrated ∼13% higher test accuracy than that of

shallow-dense DNN.

We observed similar trends for high-capacity DNNs,

when we compared deep-sparse (r3 depth) and shallow-

dense (r2 depth) DNNs. As seen in Fig. 2a, high-capacity

deep-sparse floating-point DNN (W-FP:A-FP) demonstrates

0.5% higher accuracy across all sparsity levels. For low

precision schemes (<8-bit) on high-capacity r3 DNNs, we

observed 2-3X memory savings at iso-accuracy. 1-bit DNN

(Fig. 2b) shows ∼3X weight memory savings at ∼88% ac-

curacy. Overall, we find that memory saving diminishes with

lower precision DNNs. In addition, with more zero weights

and lower bit precision, arithmetic operations/computations

will also reduce and result in lower power consumption.

3.3. Comparison of DNNs with Quantization and CGS

To obtain the optimal quantization and structured sparsity val-

ues, a number of DNN models are analyzed together for iso-

accuracy. Fig. 3 presents test accuracy versus weight mem-

Fig. 3: Test accuracy versus weight memory comparison for

different precision and structured sparsity configurations on

high-capacity n128r3 DNN.

ory trade-off on high-capacity (n128r3) DNN models for dif-

ferent CGS ratio and precision configurations. Floating-point

uncompressed model is the baseline DNN model on which

low-precision and CGS constraints were applied. Applying

only CGS constraints on floating-point uncompressed DNN

achieves 2X compression with <0.16% accuracy degradation.

If only quantization is used, 16X compression was achieved

with 0.80% accuracy improvement for 2-bit DNN. By jointly

optimizing quantization and low-precision constraints, mem-

ory saving of ∼50X was achieved for the 2-bit precision and

4X CGS ratio scheme without any accuracy degradation.

Similar analysis was performed on mid-capacity (n128r2)

DNN with different CGS ratio and precision settings. Com-

pared to the uncompressed DNN, ∼2X weight memory com-

pression is achieved by using only CGS compression, without

degrading test accuracy. Using only low-precision quantiza-

tion, compared to floating-point DNN, ∼16X weight mem-

ory savings is achieved with accuracy gain of 0.80% for 2-bit

precision DNN, likely due to regularization [4]. Overall 32X

weight savings is achieved without any test accuracy degra-

dation by simultaneously optimizing quantization and CGS.

3.4. DNN memory analysis

For DNN accuracy and memory optimization, we employ the

Pareto-optimal approach to extract the optimal DNN designs

and then perform memory analysis on the optimal designs.

We trained a large number (107) of DNN models with vary-

ing depth and width, to comprehensively analyze the trade-off

between test accuracy and memory utilization. Fig. 4a shows

the Pareto-optimal plot for all 107 trained DNNs. The Pareto-

front, shown by the red line, maximizes test accuracy and

minimizes weight memory. By choosing all the designs close

to the Pareto-front, we obtained 11 optimal DNN designs. It

is noteworthy that the optimal designs do not include any low-

capacity (r1 depth) DNNs. Total DNN memory is the sum of

activation memory and weight memory. While only weight

memory was considered for extracting the Pareto-optimal de-

signs, we analyzed the contribution of activation memory for

the 11 optimal designs. The analysis was performed using

batch size of 1, targeting inference on edge devices.
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Fig. 4: (a) Pareto-front of all compressed and uncompressed
DNNs. (b) Test accuracy versus activation and weight mem-
ory for 11 optimal designs on the Pareto front.

Fig. 4b shows test accuracy as a function of sum of acti-
vation memory and weight memory for inference batch size
of 1. After adding activation memory to weight memory,
there is only a small change in the memory footprint of the
optimal designs corresponding to the low sparsity networks
(CGS ratio 1X-4X). However, if the network has high spar-
sity (CGS ratio 8X-32X) the effect of activation memory on
overall DNN memory cannot be ignored.

In DNNs, typically convolution layers contribute for
heavy computations and fully-connected layers dominate
the DNN memory footprint. Fig. 5a shows the weigth dis-
tribution of convolution versus fully-connected layers for
the 11 optimal designs. The ratio of convolution weights
versus fully-connected weights is slightly lower for high-
capacity (r3 depth) DNN models. When the optimal de-
sign is mid-capacity (r2 depth) DNN, the contribution from
fully-connected weights dominate the weight memory distri-
bution. However, weight distribution of convolution versus
fully-connected layers can depend on the DNN architecture.
Fig. 5b shows the distribution of activation memory and
weight memory for the optimal designs for inference batch
size of 1. The ratio of activation memory to that overall
memory is insignificant for low sparsity DNNs (CGS ratio
1X-4X). However, at high sparsity (CGS ratio 8X-16X), the
activation memory becomes a significant component of the
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Fig. 5: (a) Distribution of convolution versus fully-connected
weight memory for 11 optimal designs. (b) Distribution of
activation versus weight memory for 11 optimal designs.

overall DNN memory as weights get pruned largely, while all
the activations remain non-sparse.

4. CONCLUSION

High computation and large memory requirement of DNNs
prohibit their deployment on resource-constrained edge de-
vices. To enhance compression and hardware acceleration,
this work jointly optimizes structured sparsity and quantiza-
tion in a single DNN training framework. By investigating
varying-depth/width DNNs with low precision and struc-
tured sparsity, 50X weight memory reduction is achieved
without accuracy degradation, compared to floating-point un-
compressed DNN. Our experiments demonstrated that deep-
sparse DNN outperform shallow-dense DNN with compara-
ble weight memory. However, the weight memory savings
diminish as the precision is reduced and structured sparsity
is increased. Future work includes applying the algorithm on
other DNN architectures and large-scale ImageNet dataset.
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