
Towards Provably-Secure Performance Locking

Monir Zaman! *, Abhrajit Sengupta2*, Danqing Liu3
, Ozgur Sinanoglu4

,

Yiorgos Makris!, and Jeyavijayan (JV) Rajendran3

1 The University of Texas at Dallas, 2 New York University, 3 Texas A&M University, 4 New York University Abu Dhabi

Abstract-Locking the functionality of an integrated circuit
(IC) thwarts attacks such as intellectual property (IP) piracy,
hardware Trojans, overbuilding, and counterfeiting. Although
functional locking has been extensively investigated, locking the
performance of an IC has been little explored. In this paper,
we develop provably-secure performance locking, where only on
applying the correct key the IC shows superior performance; for
an incorrect key, the performance of the IC degrades significantly.
This leads to a new business model, where the companies can
design a single IC capable of different performances for different
users. We develop mathematical definitions of security and
theoretically, and experimentally prove the security against the
state-of-the-art-attacks. We implemented performance locking
on a FabScalar microprocessor, achieving a degradation in
instructions per clock cycle (IPC) of up to 77% on applying
an incorrect key, with an overhead of 0.6%, 0.2%, and 0% for
area, power, and delay, respectively.
Index Terms-IP piracy, performance locking, Boolean satisfi­

ability (SAT), FabScalar

I. INTRODUCTION

A. Motivation

Over the last few decades, the semiconductor industry has
seen an exponential growth in integrated circuit (IC) produc­
tion. With different performance requirements, companies cur­
rently build different ICs, thereby, inadvertently increasing the
time to market. To address these diverse market requirements,
Intel proposed a solution known as Intel Upgrade Service [1].
The idea was to have a single processor delivering different
performances depending on the price paid by the user-we
call this performance locking (PL).
Intel implemented performance locking in Clarkdale pro­

cessors by asking their customers to pay an extra $50 to
activate one megabyte of extra cache and hyper-threading [2].
The activation was performed by executing an activation code
at the software level. Similarly, AMD applied performance
locking by disabling one of the cores in their X3 quad­
core processor, where the fourth core was only unlocked
on applying the correct key, boosting its performance [3].
Currently, this kind of performance locking is realized by
speed binning, by leveraging unintended process variations,
and by frequency throttling [4].
Unfortunately, none of the above techniques provide any

proofs of security, that is, it is not clear if an attacker can
possibly boost the performance without paying any extra
money. Furthermore, techniques such as speed binning are
non-deterministic in nature, and hence, do not guarantee
controllable performance tuning.

B. Business and threat models

Fig. 1 shows the business and threat models of performance
locking. The design team synthesizes the design such that

*M. Zaman and A. Sengupta contributed equally.

the processor can deliver both high and low performances.
In this model, the attacker can reside at the foundry or can
be the end-user. We assume the attacker has access to the
reverse-engineered netlist of the design but does not possess
any knowledge of the secret key which is used to lock the
performance. To this end, an attacker can buy an IC with
high performance from the market, reverse engineer it, and
obtain the locked netlist. The aim of the attacker is to extract
the secret key from the design such that s/he can unlock the
superior performance. Moreover, the user can buy another IC
from the market, use it as a black-box to apply input patterns,
and obtain the corresponding responses.
In the academic literature, several papers have proposed

performance locking or its variants in the past by inserting
dummy states, black states, redundant states, and no-op states
in the finite state machine (FSM), and retiming, resynthesis,
and stuttering [5-10]. Whenever a design enters one of these
states, its performance gets degraded. All these techniques are
proven to be secure only in the context of preventing an un­
trusted foundry from stealing and/or overproducing a design.
However, they do not discuss security against an attacker who
has access to a functional chip. Hence, they cannot be used for
performance locking. Recently, delay locking was introduced
in [10]. While they assume the attackers have access to a
functional chip, they lock the timing to create incorrect out­
puts. Similarly, performance locking for high-level synthesis
was briefly discussed in [11]. These work do not provide any
security proofs on why an attacker cannot recover the correct
timing either; therefore, none of the previous work can deliver
provably-secure performance locking.

C. This paper and its contributions

In this paper, we provide provably-secure performance lock­
ing at the microarchitectural level. We selectively lock/unlock
certain performance-enhancing modules in the process archi­
tecture. However, instead of running an activation code like
Intel, here the locking is implemented at the hardware level
with a secret key. To this end, we adapt a technique called logic
locking l

. Since logic locking only locks the functionality, it is
not suitable for locking the performance of a design. Thus, in
this work, we define and implement performance locking.
The contributions of this paper are:

1) Design a performance locking module that is agnostic
to the (processor) design;

2) Provide mathematical definitions for the security of
performance locking;

3) Provide proofs of security (theoretically and experimen­
tally) of the developed module;

1Logic locking enables a design to implement the correct functionality
only upon applying the correct key. The design produces incorrect outputs
on applying an incorrect key [11, 12].

978-3-9819263-0-9/DATEI8/©2018 EDAA 1592

High-spec. design

Low-spec. design

a
Design/----+ Performance

Integration locking

2Here, the memory elements refer to the registers in the FSM of the design.

B. Security analysis

Without loss of generality, we assume n input and k key
bits, where k ~ n. The security definitions and conditions for
security against many state-of-the-art attacks for logic locking
are proposed in [17]. However, no notions of security exist
for sequential designs that are required for our performance
locking. Hence, we follow the security notions introduced
in [17] to develop security properties for sequential designs.
For brevity, in this section we will use "PL" in place of
"performance locking".

Definition 1. A sequential circuit ckt consists of combina­
tional logic C and memory elements M 2

, where the output at
the tth clock cycle is given by 0t == ckt(C, M t - 1 , it), where
0t, i b and M t - 1 denote the output at the tth clock cycle, input
at the tth clock cycle, and memory elements at the (t - 1)st

4) Implement the performance locking on different mod­
ules of the FabScalar microprocessor such that perfor­
mance locking has the maximum impact with provable
guarantees and minimal « 1%) overhead.

Fig. 3. Design. Stall values controlled by perturb and restore. "L" indicates
the LOCK state. "-" indicates the NORMAUUNLOCK state. ".;" indicates
that StallJJerturb has the same value as the original Stall, and "x" indicates
the opposite.

Fig. 1. Business model: Premium users can unlock the IC to get superior performance on paying extra money, while regular users get an IC with inferior
performance. Threat model: The trusted and untrusted entities are shown in green and red, respectively.

design can be considered as "unlocked." LOCK is an extra
state added for performance locking. Whenever the execution
enters this state, it remains there for N clock cycles, and no
useful computation is performed during these clock cycles,
effectively stalling the system. However, upon applying a
correct key these N stalling cycles are skipped, and the
execution remains in the NORMAL/UNLOCK state.
We now describe how this FSM is embedded into a target

design such that it is secure against SAT [14], removal [15],
and bypass attacks [16].
Step 2: Architecture. The locking mechanism consists of

restore unit and an XOR gate as shown in Fig. 3. Here,
without loss of generality, we explain the locking mechanism
with the help of a Stall signal, which is used to stall the
execution. In this paper, we modify the internal logic of the
Stall signal to create another signal Stallyerturb. The idea is
to set the Stallyerturb signal to logic 1 whenever a particular
input pattern, called the performance-degrading input pattern
(PDIP), arrives at the input. The Stallyerturb is set high for
N clock cycles, effectively stalling the execution for N cycles.
The restore unit is used to restore Stallyerturb to its original
value. It consists of bit comparators between the input bits
and the key bits. Thus, whenever the key value equals the
correct key, and the PDIP arrives at the input, the Stall_restore
signal goes high and restores the original value of Stall. Note
that a similar approach presented in [11] can protect only
combinational designs.
Consider the example shown in Fig. 3 having n == k == 3,

where nand k denote the input and key sizes, respectively.
The Stall signal is modified for the input pattern 011 to logic
1 as shown in Stallyerturb column in the table. However,
it is restored to its correct value (logic 0) only on applying
the correct key 011 in the restore unit. Otherwise, for an
incorrect key, it goes high. This keeps the Stall signal at logic
1, degrading the performance.

II. PERFORMANCE LOCKING: DESIGN AND ANALYSIS

A. Locking mechanism

Idea. To degrade performance, we insert additional states in
the FSM. In these additional states, no useful computation is
performed. Hence, transitioning through these additional states
reduces the performance. On applying the correct key, these
additional states are skipped, providing superior performance.
Otherwise, the design transits through these additional states,
degrading the performance.
While similar approaches have been proposed in the context

of IP piracy, they do not necessarily protect against attacker
having access to a functional chip [5, 6, 8, 9, 13]. For
performance locking, this means that a malicious user is able
to recover the key and unlock the superior performance when
these techniques are employed, as demonstrated by SAT [14],
removal [15], and bypass attacks [16].
Hence, in this work, we design an architecture that can be

used for performance locking, and more importantly, provides
provable security guarantees. To this end, we take a two-step
approach. In the first step, we lock the FSM by incorporating
the additional states. In the second step, we design an archi­
tecture to securely integrate the FSM with a target design,
ensuring performance degradation.
Step 1: FSM locking. Performance locking can be im­

plemented using an FSM having two sets of states, namely,
NORMAL/UNLOCK and LOCK. Fig. 2 shows the state tran­
sition graph. The original FSM of the system is represented
in the NORMAL/UNLOCK state, where the system performs
as intended without any degradation. Thus, in this state, the

Fig. 2. The state transition graph of the inserted FSM. N indicates the
number of stall cycles. Normal execution indicates the design is in NOR­
MAUUNLOCK state. Lock indicates the design is in LOCK state.
I --~-'---"--';b---------------- -: IN/Kelt IIXJiiJ Illn. 10'10 IOU 100 un nD u:n ShIll 11l.'!litUib

: !iii! rb I coo I L - I -

: l 001 - II - --=l - - - ~
I ~ltnOI--L-I--

! '~f Oll L. L I L -J l. L l.)

I 11001- -1- - l - ~

: : :tOI - - - - - ~ - -
~ J uo 1 - - ~ - 1 - - a. ~

jjU - - - ----=l - - - L

Design, Automation And Test in Europe (DATE 2018) 1593

3Here, "negligible" indicates it is asymptotically smaller than any polyno­
mial function [20].

clock cycle, respectively. Thus, a PL technique £, is a triplet
of algorithms, (Gen, Lock, Activate), where:

1) Gen is an algorithm to generate random keys, Gen :
{a, l}k ----+ z, where k denotes the key size,

2) Lock is an algorithm to implement PL, cktzock +­
Lockz(ckt) such that Vi E P,
cktzock(C,Mt-l,it) i- ckt(C,Mt-1,it), where P de­
notes the set of performance-degrading input patterns
(PDIPs), and

3) Act ivate is an algorithm to unlock the circuit's
superior performance, cktactv +- Act i vat e z (cktzock)
such that V t, ViE I, cktactv (C, M t- 1, it)
ckt(C, M t- 1, it), where I is the set ofall input patterns.

Threat model. We consider the same threat model described
in [12, 14-16, 18, 19]. The attacker has access to an oracle,
denoted by ckt(·), which is a high-performance functional chip
with the correct key (bought from the market). The attacker
can apply certain input patterns to the chip and observe the
corresponding responses. Also, the reverse-engineered netlist
cktzock, locked using a PL technique £', is available to the
attacker. In this setting, the attack success for an attacker A ~ ,
following an attack strategy ~, implies recovering a circuit
cktrec such that

SAT attack resilience. SAT attack is the strongest form of
attack against logic locking that iteratively prunes the key
space [14]. At each iteration of the attack, the oracle cktzock (.)
is queried with an input pattern, called a distinguishing input
pattern (DIP), which eliminates multiple incorrect keys. A DIP
is an input pattern which when applied to the oracle produces
different outputs for two different sets of keys. The attack
terminates when no further DIP can be found and returns a
key z'. An attacker A§A1f uses it to reconstruct the circuit
cktrec +- Activatez,(cktzock) such that Eq. (1) is satisfied.

Definition 2. PL technique £, is A-secure against a probabilis­
tic polynomial time (PPT) attacker A§A1f, making a polynomial

number ofqueries q(A) to the oracle, if s/he cannot reconstruct
cktrec with probability greater than E(A), where E(A) is a
negligible3 quantity in A [17].

Theorem 1. PL is k-secure against SAT attack.

Proof. PL ensures that the number of DIPs required by the
SAT attack is exponential in the key size. This is achieved
by restricting each DIP to eliminate only one incorrect key
value. However, in a fortuitous attempt, the attacker may hit
the PDIP, thereby, eliminating all incorrect keys immediately.
But, as the attacker is oblivious to the PDIP, the probability
of such an event is exponentially smallln the key size.

For proof, we define two sets, P and P which denote the set
of PDIPs and non-PDIPs, respectively. Now, for performance

locking IPI == 1 and IPI == 2k
- 1, as P is a singleton set.

As described the above the attacker can recover the key, and
thus, the high-performance design if s/he can find any PDIP

Vt, Vi E I, cktrec (C, M t- 1, it)

A~

ckt(C, M t- 1, it);

cktzock ----+ cktrec (1)

in the set P. However, the probability of finding this PDIP
with a polynomial number of queries q(k) to the oracle is

IPI + IPI IPI ~ q2(kk) < E(k)
2k 2k -1···2k -q(k)

So, from Definition 2, PL is k-secure against SAT attack. D

Removal attack resilience. Removal attack is a structural
attack, where the attacker removes the protection unit from
the locked netlist [15]. It can be viewed as a transformation
T : cktzock ----+ cktrec such that Eq. 1 is satisfied without any
knowledge of the key value z. However, for a removal attack
against PL cktrec(C,Mt-l,it) i- ckt(C,Mt-1,it),Vt,Vi E

P, where P denotes the set of PDIP.

Definition 3. PL technique £, is A-resilient against a removal
attack, where A denotes the number of input patterns for which
the output of cktrec differs from that of the oracle [17].

Theorem 2. PL is 2n - k-resilient against removal attack.

Proof. The high bias of the restore signal towards zero can
be easily identified and subsequently, removed to recover the
modified design [15]. However, for PL, the recovered circuit
is different from the original one, because recovered circuit
stalls the design for the PDIP. Note that for the general case
of n > k, each PDIP in P has n - k don't care bits, thereby,
representing 2n - k input patterns. Let r denotes the set of all
input patterns represented by all the PDIPs in P,

cktrec(C, M t - 1, it) i- ckt(C, M t- 1, it), Vt, Vi E r
Irl IPI x 2n - k == 1 x 2n - k == 2n - k

From Definition 3, PL is 2n
-
k-resilient against removal attack.

D

Bypass attack resilience. Bypass attack randomly selects
an incorrect key, finds the corresponding DIP for which it
produces an incorrect output, and then uses a bypass logic to
flip the incorrect output to the correct value for that DIP [16].
Hence, it can be viewed as a transformation T : cktzock ----+
cktrec such that Eq. 1 is satisfied.

Definition 4. PL technique £, is A-secure against an attacker
AIEIF if the probability of finding all the incorrect outputs for
an incorrect key is less than E(A).

Theorem 3. PL is k-secure against bypass attack.

Proof. The bypass attack terminates only after one iteration of
SAT attack by finding an incorrect key and its corresponding
DIP. However, as the attacker is oblivious to the PDIP, s/he
fails to reconstruct the bypass logic for the PDIP. Moreover,
the probability of the DIP being the PDIP is 1/2k < E(k).
Thus, from Definition 4, PL is k-secure against bypass attack.

D

III. CASE STUDY: PERFORMANCE LOCKING IN

FABSCALAR MICROPROCESSOR

We implement the performance locking as a case study
on an open-source microprocessor named FabScalar [21].
FabScalar toolset generates synthesizable RTL code of pa­
rameterizable superscalar microprocessor. In this work, we
implement performance locking by modifying the internal

1594 Design, Automation And Test in Europe (DATE 2018)

Retire

BB
~ Physical

register file

88
Register

Issue read Execute Write-back

....---_-+r_.·_···_···.....,···· ···r-···_···+-1__---,

DispatchRenameDecodeFetch

j-' _. _. _. _. - ._. _. _. . _. _. _._. _. _.-

1.----------,

1

~.~
1

1

L.~

Fig. 4. Performance locking implemented in three modules of the FabScalar: (a) Instruction buffer (IB), (b) Dispatch (DP), and (c) Issue queue (IQ).

IV. RESULTS

TABLE I
MICROARCHITECTURAL FEATURES USED IN THE FABSCALAR CORE-I

Performance locking unit (in Fig. 4) checks if the IQ module
received a PDIP, and if the user provided key is correct. For
a wrong key and a high valid signal, the lock resets the valid
signal, stalling the pipeline, and thus, degrading performance.

B. Impact on performance

Correctness. Using functional simulation, we verified that
embedding performance locking into the FabScalar micropro­
cessor did not change its functionality. The outputs matched
with those of the baseline processor. To check whether per­
formance locking impacts performance, we first collected
the instruction per cycle (IPC) for each benchmark for the
FabScalar microprocessor. Next, we reran the simulation for
the FabScalar microprocessor with performance locking with
the correct key in place. The IPC of the latter case is the same

2
2
2/2

1

10

Value

Fetch depth
Rename depth
Issue depth

Register read depth
Fetch-to-execute pipeline depth

Microarchitecture feature

4
4

16
32

32/32

Value

Fetch to dispatch width
Issue to retire width

Fetch queue
Issue queue

Load/store queue

Microarchitecture feature

A. Experimental setup

We used the modified core-1 version of the FabScalar
processor to implement performance locking. Table I lists its
microarchitectural details. The toolset runs 10M instructions,
which are selected by the Simpoints tool from each of the
six SPEC2000 integer benchmarks [21]. This toolset uses Ca­
dence NC-Verilog for RTL simulation and C++ for functional
simulation. The design was synthesized using Synopsys EDK
90nm library [22]. The security analyses have been performed
on a 64-core Intel Xeon processor running at 2.2 GHz with 264
GB of RAM. We implemented two versions of performance
locking on FabScalar microprocessor: one with N == lK and
the other with N == 2K, where N is the number of stall cycles.
To obtain the baseline performance values, we executed

all six benchmarks on the original FabScalar microprocessor.
For IB, we protected the four incoming instructions. For DP,
one of the four incoming instructions is protected, and for
IQ, we protected the first incoming instruction. Each of these
protected entities is 80-bits long except for DP, where it is
76-bits. Note that for modern security standards 80-bits key
is considered sufficient [23]. Using simulations, we selected
the instructions (i.e., PDIPs) that occur predominantly, so as
to activate the performance locking often. The number of
occurrences of these instructions (PDIPs) at IB, DP, and IQ is
139K, 157K, and 138.5K, respectively, on an average across
all the six benchmarks.

control logic of three modules: instruction buffer (IB), dispatch
(DP), and issue queue (IQ) modules.

1) Instruction buffer (IB): This module is placed in between
the fetch and rename stages. In every cycle, a maximum
of four instructions can be placed in the IB queue, later to
be forwarded to the rename stage. Whenever the number
of incoming instructions exceeds the available empty slots
in the IB queue, a stall signal is asserted to prevent new
fetches by the fetch module. During the stalled cycles, current
instructions in the IB queue are processed to free the slots for
new instructions. Once enough empty slots are available, the
stall signal is set low to fetch new instructions.

We exploit the stall feature to implement our performance
locking, shown in Fig. 4. For the correct key, the functionality
and the performance of the IB remain the same as the original
one. When the user provides an incorrect key, the performance
locking stalls the module whenever the module receives a
PDIP at its inputs. If the output signal is low, the stall signal
is set high, creating intentional stalls in the IB module. This
is performed by stopping the fetch module from fetching any
new instructions. The overall performance is degraded as no
new instruction is allowed to enter the pipeline, effectively
stalling the processor.

2) Dispatch (DP): DP holds the instructions to be pro­
cessed by the next pipeline stages and is responsible for check­
ing for empty slots in the load/store, retire, and issue queues.
If enough empty slots are available, the new instructions are
released by the DP module. During this time, the stall signal
for the DP is kept low, indicating a normal pipeline operation.
If any of the queues are full, the stall signal goes high and
stalls various modules in the pipeline (shown in Fig. 4). The
pipeline processes existing instructions in the queues to free up
spaces, after which the DP releases the instructions by setting
the stall signal low.

We leverage this stall signal to incorporate our performance
locking in the DP module. Whenever the module receives a
PDIP at its inputs, the performance locking unit checks for the
stall signal and checks if the user has provided the correct key.
With a wrong key and a low stall signal, the lock is activated
to set the stall signal high. This informs the other modules
in the pipeline that the queues are not empty to accept new
instructions, degrading performance.

3) Issue Queue (IQ): IQ is placed in the issue stage to
hold instructions from the dispatch module, which are then
forwarded to the execution stage, where there are multiple
functional modules operating in parallel. Each functional
module also receives a valid signal from IQ, confirming that
the instruction is ready to be executed. If the valid signal
becomes low, the functional module refrains from executing
the instruction until the signal is set high.

Design, Automation And Test in Europe (DATE 2018) 1595

bzip gap mef parser vortexgzipgapbzip

1.2

1.0

() 0.8

Q: 0.6

0.4

0.2

0.0
mef parser vortexgzipgapbzip

1.2

1.0

() 0.8

Q: 0.6

0.4

0.2

0.0

1.2

1.0

() 0.8

Q: 0.6

0.4

0.2
O.O..l..LLL~lU.......ILo~~~~

gzip mef parser vortex

~

400 ~
~

1600
,-..

1200~
S

800 ..0

216 ~~~~~~~~~~~~~-------~~~------::::;JIn 216

IB ~ DP -&- IQM/
2
15

•••••••:;;ii::::::::•••········••·m
~ 214 ----y;;;;;;;;•••••.•

~2131·····~ ...······"IiiiiiI········
~ ~ ~

=l:I: 2
12

24 ~
211 ~

210 ~~~~~~-----l....12~~~~~-----L.13~~~~~~14 2°
Key size

Fig. 7. Effect of stall cycles on security for a fixed key size of 14 bits.

which acts as a threshold. Since for performance locking the
error rate is 21k ' the attack terminates within a few seconds.
Yet, it fails to extract the correct key.

In functional locking, the key returned by AppSAT can
render the recovered netlist produce correct outputs for many
input patterns. However, in performance locking, the key
returned by AppSAT fails to boost the performance of the
locked FabScalar. Fig. 8 shows the IPC results on using the key
returned by AppSAT. On average, the IPC degrades by 77%,
63%, and 60% for IB, DP, and IQ, respectively. This result
is similar to the one on using a random incorrect key. This
experimentally validates our claim that performance locking
is resilient to AppSAT.

Double DIP attack requires that at least two incorrect keys
be eliminated with each DIP [19]. Since performance locking
can only eliminate one incorrect key per DIP, as shown in
Fig. 3, a Double DIP attack would immediately terminate.

2) Removal attack resilience: As shown in Fig. 8, the IPC
degradation for a removal attack is 77%, 63%, and 60% for
IB, DP, and IQ, respectively. This is because if an attacker
recovers a netlist, s/he only has access to the modified one
with the same performance as the locked design.

D. Overhead analysis

Table II shows the overhead of performance locking. Both
the IB and IQ has < 2% overhead for area and delay. However,
the overhead for DP module is high because the original DP is
a combinational circuit with less than hundred gates and per­
formance locking inserts registers into this module. However,
when compared with baseline FabScalar microprocessor, the

(a) (b) (c)

Fig. 5. Performance degradation in terms of IPe for three locked modules with N=IK and N=2K compared with the baseline. (a) instruction buffer (IB), (b)
dispatch (DP), and (c) issue queue (IQ).

as that of the baseline. This indicates that performance locking
does not impact IPC when the correct key is in place.
Fig. 5(a) shows IPC for the locked IB module. IPC degrades

on an average by 72% and 77% for lK and 2K stall cycles,
respectively. The mef benchmark shows an average degrada­
tion of only 1.29%, because its PDIP occurs only 46 times,
thus, triggering the lock only 46 times out of 10M.
An average IPC degradation of 58% and 63% for lK and 2K

stall cycles, respectively is shown in Fig. 5(b) for the locked Fig. 6. Results for performance locking for k={11,12,13,14}; # DIPs required
and execution time in seconds for the SAT attack [14].DP module. The mef and bzip benchmarks show an average

degrndationofoclyO.86%and9%,respectivcl~becau~ilie~ I~O~~~~~-#-D-W-S-~~~~T-i-m-e-.~~~.-.~~_-_-.a-.~

PDIP occur only 12 and 3K times out of 10M, respectively. '" 1000 ~ M ••=--::.:::::.11'••••••••••••.
The locked IQ module shows an average IPC degradation of ~ ••••••• - M k

h a 600 •••53% and 60% for lK and 2K stall cycles, respectively sown '**' .e••••••••••
in Fig 5(c). The mef benchmark shows little degradation 200 ••••••••••••••

b~oo~~PDWo~urr~oo~12tim~0~~10M. ~~~~~~~~-1~0~~~~15~~~~2~0-0

Stall cyclesC. Security analysis results

In this section, we analyze the effectiveness of our technique
against the state-of-the-art attacks [14-16, 18, 19].
1) SAT attack resilience: Fig. 6 reports the number of DIPs

and the execution time required for a SAT attack for key sizes,
11, 12, 13, and 14, respectively. For our experiments, we have
repeated the experiments 100 times for each module, and show
the average value in Fig. 6. This way, we cancel out the effect
of any outliers. Although these key sizes will not be used in
real-life applications, we use them to show the trend in terms
of number of DIPs and the execution time required by the
SAT attack, which is exponential in the size of key bits.
Impact of the key size. Fig. 6 shows that the number of

DIPs required increases exponentially with the key size. This
is in accordance with our theoretical claim that the SAT attack
requires 2k

-
1 DIPs on average to find the secret key.

Impact of the number of stall cycles. Fig. 7 illustrates
the effect of the number of stall cycles on the resiliency
against the SAT attack. We report the number of DIPs and
execution time for the DP module for a fixed key size of 14
bits. Even if the number of stall cycles increases, the execution
time increases only linearly. Nonetheless, it has no effect on
the number of DIPs required, which remains almost constant
across a different number of stall cycles. This shows that the
number of stall cycles does not guarantee security but only
impacts the performance of the attack.
AppSAT attack recovers an approximate netlist, thereby,

improving the run-time of SAT attack against SAT-resilient
techniques [18]. Approximate netlist differs from the original
netlist for a polynomial number of input patterns. The ter­
minating criterion is dictated by a predetermined error rate4 ,

4Error rate is the fraction of input patterns for which the output differs
from that of the original design.

1596 Design, Automation And Test in Europe (DATE 2018)

1.5 ~Baseline~AppSAT-IB ~AppSAT-DP ~AppSAT-IQ

II1II Removal-IB lllIIllIII Removal-DP ~ Removal-IQ

TABLE II
AREA, POWER, AND DELAY OVERHEAD

overhead for locking all three modules is 0.6%, 0.2%, and 0%
for area, power, and delay, respectively.

work, we plan to implement the logic synthesis such that these
traces are provably "hidden" from the attacker.
Nevertheless, our proposed performance locking technique

is agnostic to the type of module to be locked and can be
implemented to any design.

ACKNOWLEDGEMENT

This work was supported in part by the National Sci­
ence Foundation Computing and Communication Founda­
tions (NSF/CCF) under Grant 1319841, the National Science
Foundation, Division of Computer and Network Systems
(NSF/CNS), under Grant number 1652842; and the New York
University/New York University Abu Dhabi (NYU/NYUAD)
Center for Cyber Security (CCS).

REFERENCES

[1] c. Doctorow, "Intel + DRM: a crippled processor that you have to pay extra to
unlock," https://boingboing.netI2010/09/19/intel-drm-a-crippled.html, 2010.

[2] A. Kingsley, "Facepalm of the Day: Intel charges customers $50 to unlock CPU
features," https://goo.gl/ZNY6Z4, 2013.

[3] M. Buchanan, "AMD Phenom X3 Triple Core Processors Are Crippled Quad Cores
in Disguise," http://goo.gl/Uj4CBM, 2008.

[4] S. Herbert and D. Marculescu, "Variation-aware dynamic voltage/frequency scal­
ing," IEEE International Symposium on High Performance Computer Architecture,
pp. 301-312, 2009.

[5] R. Chakraborty and S. Bhunia, "HARPOON: An Obfuscation-Based SoC Design
Methodology for Hardware Protection," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28, pp. 1493-1502, 2009.

[6] Y. Alkabani, F. Koushanfar, and M. Potkonjak, "Remote activation of ICs for piracy
prevention and digital right management," IEEEIACM International Conference on
Computer-aided Design, pp. 674-677,2007.

[7] Y. Alkabani and F. Koushanfar, "Active hardware metering for intellectual property
protection and security," USENIX Security Symposium, pp. 20:1-20:16, 2007.

[8] L. Li and H. Zhou, "Structural transformation for best-possible obfuscation of
sequential circuits," IEEE International Symposium on Hardware-Oriented Security
and Trust, pp. 55-60, 2013.

[9] T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, "Revisit Sequential Logic
Obfuscation: Attacks and Defenses," IEEE International Symposium on Circuits
& Systems, 2017.

[10] Y. Xie and A. Srivastava, "Delay Locking: Security Enhancement of Logic Locking
Against IC Counterfeiting and Overproduction," IEEEIACM Design Automation
Conference, pp. 9:1-9:6, 2017.

[11] M. Yasin, A. Sengupta, B. Schafer, Y. Makris, O. Sinanoglu, and 1. Rajendran,
"What to Lock?: Functional and Parametric Locking," ACM Great Lakes Sympo­
sium on VLSI, pp. 351-356, 2017.

[12] 1. Roy, F. Koushanfar, and I. Markov, "Ending Piracy of Integrated Circuits," IEEE
Computer, vol. 43, pp. 30-38, 2010.

[13] Y. Alkabani and F. Koushanfar, "Active control and digital rights management
of integrated circuit IP cores," ACM International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, pp. 227-234, 2008.

[14] P. Subramanyan, S. Ray, and S. Malik, "Evaluating the Security of Logic Encryption
Algorithms," IEEE International Symposium on Hardware Oriented Security and
Trust, pp. 137-143, 2015.

[15] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, "Removal Attacks on
Logic Locking and Camouflaging Techniques," IEEE Transactions on Emerging
Topics in Computing, vol. PP, pp. 1-1,2017.

[16] X. Xu, B. Shakya, M. Tehranipoor, and D. Forte, "Novel Bypass Attack and BDD­
based Tradeoff Analysis Against all Known Logic Locking Attacks," Cryptology
ePrint Archive, 2017, https://eprintiacr.orgI2017/621.

[17] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and O. Sinanoglu,
"Provably-secure logic locking: From theory to practice," ACMISIGSAC Conference
on Computer & Communications Security, pp. 1601-1618,2017.

[18] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Pan, and Y. Jin, "AppSAT: Approximately
Deobfuscating Integrated Circuits," IEEE International Symposium on Hardware
Oriented Security and Trust, pp. 95-100, 2017.

[19] Y. Shen and H. Zhou, "Double DIP: Re-Evaluating Security of Logic Encryption
Algorithms," Cryptology ePrint Archive, 2017, https://eprintiacr.orgI20171290.

[20] 1. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC, 2014.

[21] N. Choudhary, S. Wadhavkar, T. Shah, H. Mayukh, 1. Gandhi, B. Dwiel, S. Navada,
H. Najaf-abadi, and E. Rotenberg, "FabScalar: Composing synthesizable RTL
designs of arbitrary cores within a canonical superscalar template," ACM SIGARCH
Computer Architecture News, vol. 39, pp. 11-22, 2011.

[22] R. Goldman, K. Bartleson, T. Wood, K. Kranen, C. Cao, V. Melikyan, and
G. Markosyan, "Synopsys' open educational design kit: Capabilities, deployment
and future," IEEE International Conference on Microelectronic Systems Education,
pp. 20-24, 2009.

[23] N. Smart, "ECRYPT II Yearly Report on Algorithms and Keysizes (2011-2012),"
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf, 2012.

[24] R. Teodorescu and 1. Torrellas, "Variation-Aware Application Scheduling and
Power Management for Chip Multiprocessors," IEEE International Symposium on
Computer Architecture, pp. 363-374, 2008.

parser vortexmefgzipgapbzip

0.5

Modules # Inputs # Outputs # Gates Overhead (%)

Area Power Delay

IB 1021 509 38423 1.3 -0.6 0

DP 614 818 76 1110 244 1.7
IQ 715 590 39272 1.7 6.3 0

FabScalar 291 33 277252 0.6 0.2 0

1.0
t)
a..

Fig. 8. Performance locking vs. AppSAT [18] and removal attacks [15].
Both the attacks return keys which does not improve the IPC, confirming that
performance locking is resilient against AppSAT and removal attacks.

E. Discussion

Why not dynamic voltage and frequency scaling (DVFS)
and speed binning? To implement different performances,
manufacturers typically use speed binning, DVFS techniques,
or design a completely different microprocessor [4]. While
speed binning depends on process variations, it is hard for
the designer to accurately predict the process variations for
a target chip. DVFS enables different performance levels in
microprocessors during runtime. Typically, this technique is
used for power savings [24]. DVFS techniques can be easily
extended to provide different performance levels by tuning
the voltage and frequency. However, DVFS techniques are
not secure because an attacker can control the voltage and
frequency, thereby, increasing the performance.

V. CONCLUSION

The performance locking presented in this work enables
a designer to design a secure and controllable single chip
capable of having different performances. This approach can
significantly reduce the time to market associated with IC
design. We experimentally and theoretically proved that our
performance locking technique is resilient to all the state-of­
the-art attacks [14-16,18], while entailing rvl% overhead in
power, area, and delay.
We also showed that through careful PDIP selection, sig­

nificant performance degradation can be achieved. In future,
we plan to incorporate the locking in more modules with
minimum 80-bits of PDIP.
Next, we implemented performance locking with lK and

2K stall-cycles. Our future work will include selecting the
optimum number of wait cycles for the locked modules in a
processor. This will be done by analyzing the performance
impact of each module and the overhead they entail for
protection. Finally, it is possible that during synthesis, the
"KEY" logic checking circuit might add "and" logic tree
depending how the synthesis tool is optimized [15]. This tree
can then be traced and removed by an attacker. In our future

Design, Automation And Test in Europe (DATE 2018) 1597

