K-Nearest Neighbor Hardware Accelerator Using
In-Memory Computing SRAM

Jyotishman Saikia*, Shihui Yin*, Zhewei JiangT, Mingoo SeokT, Jae-sun Seo*
*School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
TDepartment of Electrical Engineering, Columbia University, New York, NY, USA
Email: jsaikia@asu.edu

Abstract—The k-nearest neighbor (KNN) is one of the most
popular algorithms in machine learning owing to its simplicity,
versatility, and implementation viability without any assumptions
about the data. However, for large-scale data, it incurs a
large amount of memory access and computational complexity,
resulting in long latency and high power consumption. In this
paper, we present a kNN hardware accelerator in 65nm CMOS.
This accelerator combines in-memory computing SRAM that
is recently developed for binarized deep neural networks and
digital hardware that performs top-£ sorting. We designed and
simulated the kENN accelerator, which performs up to 17.9
million query vectors per second while consuming 11.8 mW,
demonstrating >4.8X energy improvement over prior works.

Index Terms—Xk-nearest neighbor, content addressable mem-
ory, in-memory computing, hardware accelerator

I. INTRODUCTION

A number of machine learning (ML) tasks such as pattern
matching, data mining, and object recognition employ kNN
algorithm to obtain the k nearest vectors from a large database
upon an input vector query [1]. Compared to deep learning
algorithms that require extensive parameter training, kNN
algorithms do not require such parameters, allowing easy
adoption in many ML applications. kNN algorithms are based
on relatively simple arithmetic operations to calculate distance
metrics (e.g. Euclidean, Manhattan, etc.). However, executing
kNN tasks for large-scale databases consumes long latency
and high energy, because it requires a large amount of memory
accesses and arithmetic operations.

A EkNN algorithm typically consists of two computation
stages, namely distance calculation and a global top-k sort
computation, where the distance calculation poses a major
computational bottleneck. For distance calculation, prior works
proposed using binary/ternary content addressable memory
(BCAM/TCAM) [2], [3]. However, the challenge here is that
BCAMS/TCAMs only produce a binary result of whether a
search vector is matched with each storage vector or not,
instead of providing a distance value between them. To
address this limitation, prior works needed to use multiple
TCAM searches [2] or multiple stages of data storage and
computation [3]. But this inevitably increases latency/storage
requirement. Ideally, we want to have CAM-like hardware
that can quickly produce the distance value between a search

This work is in part supported by NSF grant 1652866 and C-BRIC, one of
six centers in JUMP, a SRC program sponsored by DARPA.

all rows turned on

Input simultaneously
Query
In-Memory Computing Can also
—) SRAM work as
—¥ (XNOR-and-accumulate) BCAM &
TCAM

L4

ADC / SA CAM Output

i 1 i kNN Output
utpu

Top-k Sort —p’

Fig. 1. Proposed kNN accelerator based on in-memory computing SRAM.

vector and each of its storage vectors, instead of just informing
whether there is a match or not.

Such ideal CAM hardware can actually be built based
on in-memory computing SRAM hardware [4]-[6] originally
developed for accelerating binarized deep neural networks
(DNNs) [7], [8]. Such in-memory computing SRAM can
compute bitwise XNOR between a wordline vector and a
storage vector of an SRAM column, and then accumulate the
bitwise XNOR values of the two vectors. The XNOR-and-
accumulate result is often represented as the analog bitline
voltage, which subsequently goes through an analog-to-digital
converter (ADC) at the column periphery.

For two binary vectors, since the bitwise XNOR-and-
accumulate computation also represents the Hamming (and
equivalently Manhattan) distance, we observe that the ADC
output of XNOR-based in-memory computing SRAM (e.g.
XNOR-SRAM [4]) can directly provide the distance infor-
mation for kNN applications. The only additional hardware
required is the module to perform the top-k sorting of the
distance values from the in-memory computing SRAM. Fig. 1
shows the envisioned architecture of such an accelerator that
combines the in-memory computing SRAM and the top-k
sorter. We designed this accelerator in 65nm CMOS and
simulated the performance and energy-efficiency. The results
demonstrate >4.8X energy improvement over prior arts on
kNN accelerators. Furthermore, by driving the wordlines of
XNOR-SRAM arrays slightly differently, we show that the
XNOR-SRAM array can be re-purposed to work as both
BCAM and TCAM.

The remainder of the paper is organized as follows. Section
IT presents related prior works in the field. We discuss the

XNOR-SRAM and its application in Section III. The imple-
mentation of the kNN accelerator is elaborated in Section IV,
and the experimental results are presented in Section V. The
paper is concluded in Section VI.

II. RELATED WORKS
A. Content Addressable Memory

Content addressable memories (CAMs) is a special type
of memory hardware, whose contents are accessed by the
contents itself rather than addresses. They can generate the
results of a search operation (i.e., whether a content of interest
is in the memory) in a single clock cycle. However, it requires
a large amount of parallel hardware, embedded both in bitcells
and peripheral circuits, which significantly increases dynamic
power dissipation [9].

Over the years, several approaches have been proposed
to improve the the performance and energy consumption of
CAMs. In [10], a butterfly architecture has been designed to
increase parallelism and reduce search time. A hierarchical
match line (ML) scheme was also introduced to reduce the
switching activity and consequently the power consumption.
An automated background checking (ABC) scheme was pre-
sented in [11], which monitors the ML sensing using two
dummy rows to track the optimal operating point. [12] imple-
mented BCAM and TCAM based on off-the-shelf 6T SRAMs
with new peripheral circuits in 28nm CMOS. A reconfigurable
logic is used for the SRAM to enable operation of a single
SRAM cell as a BCAM and two SRAM cells as a TCAM.
This reduces CAM area and improves energy-efficiency.

B. kNN accelerators

Several prior works presented ANN accelerators. [13]
present a 14nm kNN accelerator, which employed adaptive
precision to reduce the hardware requirement and improve
the latency. In this accelerator, after computing the current
accuracy within pre-defined bounds, only vectors that could
be possible winners are kept. This approach eliminates a
considerable number of vectors. It can also support both
Manhattan and Euclidean distance metrics.

[14] presented an approximate nearest-neighbor processor
based on a spatio-temporal locality searching scheme. This
architecture requires just four frames overlapping with the
query vector, reducing the external memory bandwidth. It
also incorporated a neuro-fuzzy module to alleviate the large
error owing to a dynamically moving target object. The
aforementioned CMOS ASIC based kNN accelerators [13],
[14] used off-the-shelf SRAM and registers, which incur a
large amount of memory accesses and data movements.

[15] investigated similarity search using Micron’s Automata
Processor (AP). AP’s near-data processing architecture can
minimize data movement and thus achieved superior kNN
acceleration performance over CPUs and GPUs.

Other works have presented non-volatile memory (NVM)
based CAMs for kNN acceleration. NNgine [3] presented
similarity search using MTJ based TCAMs. [16] and [17]
also investigated RRAM based kNN acceleration. On the other

hand, [18] proposed a design that can morph CAMs into a
binary neural network accelerator.

III. XNOR-SRAM: CusTOM SRAM MACRO FOR
IN-MEMORY COMPUTING

In [4], a mixed-signal in-memory computing SRAM
macro titled “XNOR-SRAM” was presented, targeting energy-
efficient DNN implementation. It performs XNOR-and-
accumulate (XAC) operations in binarized neural networks
(BNNs) [7], [8], which replaces multiply-and-accumulate
(MAC) operations in non-binary DNNs, with high speed and
energy-efficiency.

Fig. 2(a) presents the reported XNOR-SRAM array and
peripheries, which can map convolution and fully-connected
layers of convolutional neural networks (CNNs) and multi-
layer perceptrons (MLPs). It consists of a 256-by-64 custom
SRAM array, a row decoder, and a read periphery including a
3.46-bit (11-level) flash ADC.

Fig. 2(b) shows the 12T SRAM bitcell proposed in [4]. T1 to
T6 form the conventional 6T SRAM bitcell; T7 to T10 form
complimentary pull-up/-down circuits for the XNOR mode;
T11 and T12 can power-gate the pull-up/-down circuits, if the
corresponding column is not enabled, to save power. As shown
in Fig. 2(c), the RWL driver translates each ternary/binary
input of an input vector to four RWLs accordingly. Parallel
pull-up and pull-down paths from all bitcells (controlled by
bitwise XNOR outputs) in a column form a resistive voltage
divider, where RBL is the output node. Vip is a monotonic
function of XNOR bitcount (Fig. 2(d)); therefore, we can
obtain the XAC results by digitizing Vrpr with the ADC. In
one cycle, XNOR-SRAM supports computation with binary
weights (+1/-1) and binary inputs (+1/-1 or +1/0) as well as
ternary inputs (+1/0/-1). The embedded ADC plays a key role
in speed and DNN accuracy. Employing 11 levels (3.46 bit)
reportedly provides relatively high accuracy, and non-linear
quantization based on statistical distribution of XAC values
can further improve it. Fig. 2(d) shows the measured Vg, for
different XAC values. In the non-linear quantization scheme,
the worst-case 3-0 deviation is equivalent to 1.78-LSB.

XNOR-SRAM macro prototyped in 65nm CMOS achieves
81.28 pJ and 178 ns for 64 operations of 256-input XAC at
0.6V, which represents 2.48 fJ per operation or 403 GOPS/W.
For MNIST, a 3-layer MLP (512 neurons per layer) was used.
The CNN for CIFAR-10 had six convolution layers and three
fully-connected layers [8]. Performing accumulation of the
XNOR-SRAM outputs, max-pooling, and batch normalization
in digital simulation, the DNNs with XNOR-SRAM (digital
baseline) achieve 85.7% (90.7%) accuracy for CIFAR-10 and
98.3% (98.8%) for MNIST [4].

One thing to note is that XNOR-SRAM performs column-
by-column operation, sharing the ADC among 64 columns. Al-
though XNOR-SRAM as well as other in-memory computing
SRAMs show promising energy-efficiency at the single-array-
level, none have demonstrated kNN or CAM functionalities
with the same hardware.

(a) Binary Binary Ternary Binary (b) wBL RENB |RBL |REN WBLB, (d)O 6
Input Weights Input Weights ww VDD VDD -9 JMeasurement had
XNOR-ACcumulate 14+ +1-141 J_ ™ ™ J_ 0.5
(XAC, bitcount) X | +1 4+ x| 414141 ju |°1 [°| i]
operations A4 A4 H t T H 0.4
T3 ’—I LIG;‘)
- [5a] - [z27]] o320
2 03— Y ST
RWL_P P Ay Y POy PP - =
WR Dat RWLB_P T 1 2 AP, 0.28v
[Write BL Driver iy . y | 1 S20.24 1.78LsB
wee weiao] [wein weia] e R 1 ..,' [‘r-j H !
— P — ! 01
! 14
= s e O = =i I 5 : :
[o f i i X i ' 0.0
77 2 [|| foote [[Homef oteef H ; Gf T“:a : 256 128 0 128 256
O [mienm wgy | @ RWL_N - |
3 RMB_N—f—=—————r Fr—f———f =" XNOR-ACcumulate (XAC) Value
- [a]
2 oo [T PR e 1A N (c)
WR_EN 3 i
-+ '§ PG Pootet oot Sl , RWL Driver Logl: .
'WR_Add! In put|
o M g e’ RWL ? " A even row | odd row
.le . . . S| ® RWLP | vDD [}) VDD
. . . . = 70
N E0 RWLN | vbp] VDD 0 [SIXNOR SRAM
I~ v i2ss)| E‘ RWLB_P 0 vDD 0 VDD
g I I&W I‘ﬁz{“’ ese ’ﬂﬁz_‘n‘ g RWLB_N [) VDD VDD [}
M= =
20 :x;’”m L[}o-.oﬁ]J Lr?mwﬁ.‘| ll?owq.-' XNOR Value Mapping Table
o RBL[0] RBL[1] RBL[63] ~ PUPD| Stong | Weak | Strong | Weak
/ CoLSeIEhT Column Decoder + Analog Mux (64:1) \ XNOR pull-up | pull-up | pull-down | pull-down
llrolrs oN v v v T v e o) - I I I
together 3.46-bit -
¢ R RV ATATA AR AR A LTS Y] I S R
Tapy Tary Tar Tagy T Tars Tare Tar Tars Tam Ofoddrow)| 1 [} 1 [

Fig. 2. (a) XNOR-SRAM [4] architecture can map XNOR-and-accumulate (XAC) operations

. (b) Bitcell schematic. T7 to T12 are added to a 6T SRAM.

(c) XAC operation with ternary activations and binary weights. (d) Measured Vr gy, over corresponding logical results of 256-input XAC operations. (e)

Classification accuracy for MNIST and CIFAR-10 datasets.

IV. PROPOSED BCAM/TCAM DESIGN AND KNN
ACCELERATOR ARCHITECTURE

A. BCAM/TCAM Design

Using the same XNOR-SRAM array, BCAM and TCAM
functionalities can be accomplished with small modifications.
Out of 10 sense amplifiers (SAs) that comprised the flash ADC
of XNOR-SRAM, we use only one SA for BCAM/TCAM
functionalities, similar to conventional BCAM/TCAMs. If the
input query vector and storage column vector are identical,
then the resulting RBL voltage will be ~Vdd. Therefore, we
will use a high voltage value (e.g. 0.95xVdd) for the reference
voltage of the single SA.

The overall BCAM and TCAM operations using the XNOR-
SRAM bitcells are illustrated in Fig. 3. Compared to the
requirement of four different RWL signals in XNOR-SRAM,
it can be seen that we only need two RWL signals “RWL”
and “RWLB” for BCAM/TCAM functionalities. For BCAM,
we simply drive the RWL and RWLB in a differential manner,
so that the two signals have opposite values. When the input
bit and the storage bit matches, the corresponding bitcell will
drive RBL towards Vdd, otherwise RBL will driven towards
OV. For TCAM, we also need to incorporate the ‘X’ input. As
shown in Fig. 3, this functionality can be achieved by driving
both RWL and RWLB to Vdd, so that T7-T10 transistors are
all driven to Vdd. This way, no matter whether the input bit
value matches with the bitcell value or not, the corresponding
bitcell will drive RBL towards Vdd.

B. kNN Accelerator Design

1) Overall Operation: For the kNN accelerator, we em-
ploy the in-memory computing XNOR-SRAM for distance
calculation. As described in Section III, the ADC output
of each XNOR-SRAM column represents the XNOR-and-

[RENB |RBL Weight =1

RBL

Ll

0

]

i

! o

1

! _ﬁ dl
i

) Input=0 <

-

Weight = 0
RBL

e,
[HE

wwe

Input =1

RWL
RWLB

uqi

XNOR
=0

th,

RWLB
RWL

XNOR
0 =0 VoD =1
RWL Driver Logic XNOR Value Mapping Table Voo oo
put Weak | Strong | Weak
RWL e x IXNOR T el il e _ﬁ "‘ ITB Fl_
rwL |vop| o |voD 1 1 1 0 0 Input=X < VoD VDD, 0
RWLB 0 |vDD|VDD T10] T
R I I N l b XNOR l XNOR
PU: pull-up, PD: pull-down vob =1 VoD =1

Fig. 3. XNOR-SRAM bitcell operation for BCAM (input: 1 or 0) and TCAM
(input: 1, 0, or X) functionalities.

accumulate value of two 256-input vectors. Since XNOR-
SRAM employed a flash ADC with 10 SAs, the ADC output is
a 11-bit thermometer code. As XNOR-SRAM is accountable
for distance calculation, we implemented a digital module that
sorts the top-k results from the XNOR-SRAM columns.

Considering that the XNOR-SRAM (one array consists of
64 columns) operates on a column-by-column basis [4], the
digital sort module receives a new ADC output every cycle.
Immediately after 64 cycles of receiving inputs, the digital
sort module will output the top-£ column addresses out of the
sorted results.

The block diagram of the digital sort module is shown
in Fig. 4. The digital sort module first converts the 11-bit
thermometer code input to a 4-bit binary value. The remainder
of the digital sort module consists of a comparison unit, data
unit and address unit. The data unit holds the input vectors
in descending order of their values, while the address unit
maintains the input sequence number of the vectors in the
same order. The data unit consists of shift registers to hold

Comparison Unit
In_bin
Input_th 10-bit Thermometer to (4-b) {64 64
(10-b))| 4.bit Binary Encoder
[I
. E—
4-bit _
Comparator F=(la).b
g
d
Data Unit
a l En s

(256-b) (64-b) (64-b)
- {
s Address Unit
=

In_bin
- = 64
S / 448
-)
En .
addr 12ddrll| ppe
Sinl (448-b) (i"" block) Top-k
En[n] - = vectors
Inmp| > 4 En E[i7]
ofn]
D am) 4 count 7-5) j

o[n+1] DFF

7-bit Counter 6-bit Decoder

n" shift block

Kk
(6-b)

Fig. 4. Block diagram of digital sort computation module.

the input sequence numbers, one for each of the input vectors.
Initially, all the shift registers in the data unit will have values
of zero. As the new ADC outputs from the XNOR-SRAM
arrive sequentially each cycle, the comparison unit compares
the new 4-bit input value with the existing sorted results at
the data block to determine its corresponding location for
maintaining the updated sorted order. All the vectors with
lower values are shifted by one slot to make space for the
new input. In the address unit, the next sequence number is
generated on the arrival of a new vector and it is placed at the
slot corresponding to the new vector after shifting the sequence
numbers of the shifted vectors in the data unit. After the 64"
column of XNOR-SRAM is processed, the digital sort module
will output the sorted addresses of the columns that hold k-
nearest neighbor vectors to the input query vector.

The overall timing diagram of the sorting operation is shown
in Fig. 5. At the start of every cycle, a new data input comes
into the sorting module from the ADC output of XNOR-
SRAM. The shift registers in the data and address units hold
the sorted list of data, which will be updated every cycle
with respect to new input data. After the 67" cycle, all data
are sorted at the data unit, and the address unit outputs the
addresses of the top-k vectors.

2) Sub-module Functionality: The comparison unit gener-
ates two signals, ‘En’ and ‘S’, which control the data and
address units. The ‘S’ signal handles shifting of the values
smaller than the input ‘In_bin’ towards LSB, and the ‘En’
signal is responsible for appropriate placement of ‘In_bin’ in
the sorted list. The binary input is compared with the existing
vectors in the shift registers of the data block. For all values
greater than d (sorted data), we obtain 1, or otherwise 0. As
there are 64 such computations, the comparison unit outputs a
64-bit ‘En’ result, which will have a distinct edge. This edge
corresponds to the address in the sorted data at which the new
input fits. By comparing two consecutive ‘En’ bit values, this
edge is determined as ‘S’, which is used to target the specific
address in the data unit where the new vector will be placed.

! 64 clock cycles |

XNOR-SRAM
ADC output

Data Unit #0

Data Unit #1

Data Unit #2

Data Unit #62

Data Unit #63

67 clock cycles '

[4-b Encoded XNOR-SRAM ADC Output (Sorter Input) [sorted Data in Data Unit

Fig. 5. Timing diagram and operation of the kNN accelerator.

In the data unit, we have 64 shift registers (shift blocks)
that maintain the sorted data. Each shift register consists of
a multiplexer and a D-flip-flop (DFF). The ‘En’ signal helps
the multiplexer toggle between either the binary input or the
output of the previous shift register. The ‘S’ signal is active
when the input is greater than the existing data values, such
that the data at these values will be shifted towards the LSB.

The address unit shares the same ‘En’ and ‘S’ signals with
the data unit, and continually updates the sorted address values
of XNOR-SRAM columns. The k£ parameter is an input to the
address unit, which ensures that the k highest values are sent
out as the final output of the proposed kNN accelerator.

3) Scalability to Larger Vector Sizes: The aforementioned
digital sort module performs sorting of 64 distance values,
since one XNOR-SRAM array has 64 columns. To scale up
the number of vectors in our kNN accelerator from 64 to
128 and 256, we employ two and four XNOR-SRAM arrays,
respectively, and we also design corresponding digital sort
modules for 128 and 256 vector sizes. Compared to the 64-
vector digital sort module, the main difference in the 128-
vector and 256-vector digital sort modules is that the number
of comparators in the comparison unit, the number of shift
registers in the data/address units increased from 64 to 128
and 256, respectively.

V. EXPERIMENTAL RESULTS

The two main modules that comprise the proposed kNN
accelerator design are the XNOR-SRAM arrays and the digital
top-k sort module. We implemented both in a 65nm CMOS
technology. The XNOR-SRAM has been fabricated in a pro-
totype chip and the measurement results have been reported
in [4]. The digital sort module has been synthesized with
Synopsys Design Compiler and place-and-routed using Ca-
dence Innovus in the standard cell design flow. We have used
Synopsys PrimeTime to perform post-layout static timing and
power analysis simulation. We used RC parasitic annotated
netlists and actual node toggling activity to obtain the latency
and power results. Fig. 6 shows the conceptual physical design
of the kNN accelerator based on the die photo of the XNOR-
SRAM prototype and the digital sorter module layout view.

450pm
450pm

220pm
220pm

1000pm

(b)

Fig. 6. Physical design diagram of the proposed kNN accelerator. The
accelerators supporting (a) 64-vector and (b) 256-vector operations.

50000
40000
30000
20000+
10000+

Density

Ik l‘ h ik

128 -64 0 64 128
XNOR-and-Accumulate Value

0 r T
-256 -192 192 256

Fig. 7. Random data distribution of XNOR-and-accumulate values for each
column.

For the kNN workload, we used random data for both the
input query vector and the storage vectors. For one million
pairs of 256-bit random data, we found the distribution of
XNOR-and-accumulate values, which is shown in Fig. 7.
Based on this distribution information, we found the average
power using the power consumption for each XNOR-and-
accumulate value reported from [4]. Since the distribution is
highly centered around zero, the average power is similar to
the power consumed by XNOR-SRAM array when the XNOR-
and-accumulate value is zero, which is 4.4 mW at 1.2 GHz
with 1.0V supply.

Fig. 8 shows the power breakdown of the kNN accelerator.
Thanks to the high power-efficiency of XNOR-SRAM, it
shows balanced power dissipation among the major building
blocks. Specifically, the comparison unit responsible for gen-
erating the sorting signals takes less than (1/5)!" of the total
power. The data unit responsible for sorting the data consumes
just over (1/5)t" of the total power. The address unit handles
a higher values requiring more architecture and as a result
consumes about (2/5)!" of the total power.

As we scale up the kNN vector size, we need to include

0 5 10 15 20
Power (mW)

u XNOR-SRAM = Comp. Unit Data Unit Addr. Unit = Misc.

Fig. 8. Power breakdown of the kNN accelerator for vector size of 64.

40 sortmodule®
3y 00 medmdTees
—~ 304
% 254
3 20+ —8—vector size = 64
g 15: —e— vector size = 128
o 4 —A— vector size = 256
10 :
5] i XNOR-SRAM's
4 : maximum frequency
o L]) - L)) L) L)
0.0 0.5 1.0 1.5 2.0 25 3.0
Frequency (GHz)

Fig. 9. Frequency and power consumption of the digital sort module for 64,
128 and 256 vector sizes.

20 60
m 1.0V, 25C —e— Throughput
(] ’ ghp
G (-2 GHz —s—Power @1.2GHz |5
‘6 = U= Power @ 0.6GHz
= 15 =
g £
S E
=)
=10 2
3 [«]
Q o
£
S5
o
S
=
'—

0 T 0

64 128) 256
kNN Vector Size

Fig. 10. Throughput and power consumption of the proposed kNN acceler-
ator, including both XNOR-SRAM and digital top-k sorter.

additional hardware in the ANN accelerator. In particular,
the sort module becomes more complex and also has longer
interconnects, which adversely affects the maximum clock
frequency of the accelerator. As shown in Fig. 9, the digital
sort module of the kNN accelerator for the vector size of
64, 128 and 256 can operate up to 3 GHz, 1.2 GHz, and
0.6 GHz, respectively. The vector size increase also leads to
higher power dissipation (Fig. 9). Also, the number of cycles
required per query increases with larger vector size due to the
increased waiting time for inputs. For vector size of 64, our
kNN accelerator can perform 17.9 million query vectors per

16

1.0V, 25C

Energy per Query (nJ)

64 128 256

kNN Vector Size

Fig. 11. Energy consumption of the proposed KNN accelerator across different
vector sizes.

TABLE 1
kNN ACCELERATOR COMPARISON

This work Kaul [13] Hong [14] Kim [19]
CMOS Tech. 65nm 14nm 130nm 130nm
X‘:’;“’r Dimen- | 5664/1256x128 | 128x128 128x128 272x128
Area (mm?2) 0.177034 033 226 1.44
Supply (V) 1.0 0.85 12 12
Frequency
(Gl 12 0.42 0.2 0.2
Throughput 17.9M / 9.15M 21.5M 0.13M 0.06M
(vectors/s)
Power (mW) 1847370 73 65 a4
Normalized En-| ", 09 ;4 3 19.6 170 250
ergy/Query

1Energy is normalized to 65nm, assuming capacitance scales by 0.7 in each
technology generation, and used supply voltage values in the table.

second, consuming 16.2 mW when both XNOR-SRAM and
the digital sort module operates at 1.2 GHz. When we increase
the vector size to 128 and 256 for the kNN accelerator design,
the throughput decreases (Fig. 10) and the energy per query
linearly increases (Fig. 11).

In Table I, we compare our kNN accelerator results with
prior hardware implementations. The design area for our work
is at least 1.94X smaller than the next closest design [13]. Our
kNN accelerator runs at a comparatively higher frequency,
which helps to achieve higher throughput. With normalized
energy values to 65nm CMOS using Dennard scaling, our
work achieves >4.8X improvement in energy per query vector,
compared to prior works for the case of 128 storage vectors.

In Table II, we compare our design in the CAM mode with
prior BCAM/TCAM works. Due to the resistive divider nature
of the XNOR-and-accumulate operation in XNOR-SRAM [4],
the energy/search/bit is higher than other CAM-only works.
Capacitive in-memory computing SRAM designs such as [5]
do not exhibit crowbar current, and could help to reduce the
energy/search/bit in the CAM mode. In our work, note that
the same SRAM is capable of not only working as CAM, but
also performing distance calculation for kNN applications, as
well as for binary MAC computations for DNN applications.

TABLE II
CAM COMPARISON

This work Do [11] Huang [10] Jeloka [12]
CMOS Tech. 65nm 32nm 65nm 28nm
Transistors 12T 10T 14T 6T/12T
/cell
Area/cell 3.92 33 7.05 0.15
(pm?)
Energy/search | 4.62 (0.6V) 0.77 (1.2V) 0.165 (1V) 0.6 (1V)
/bit (fJ)
Frequency 360 500 400 370
(MHz)
Array Size 256x64 128x128 256x144 64x64
CAM Modes BCAM BCAM TCAM BCAM
/TCAM /TCAM
Match-line XNOR-acc. NOR Butterfly Two single-
Technique + one SA match-line ended SAs

VI. CONCLUSION

In this work, we have presented the design of a EKNN
accelerator based on XNOR-based in-memory computing

SRAM. It supports variable vector sizes from 64 to 256, and
it can also be configured to work as a binary/ternary CAM.
The proposed kNN accelerator designed in 65nm CMOS
achieves up to 17.9 million query vectors per second at 1.2
GHz frequency. Our work demonstrates >4.8X improvement
in energy per query vector compared to prior works on KNN
accelerators.

REFERENCES

[1] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: a lazy learning approach to
multi-label learning,” Pattern Recognition, vol. 40, no. 7, pp. 2038-2048,
2007.

[2] A. Bremler-Barr et al., “Ultra-fast similarity search using ternary content
addressable memory,” in International Workshop on Data Management
on New Hardware, pp. 12:1-12:10, 2015.

[3] M. Imani, Y. Kim, and T. Rosing, “NNgine: Ultra-efficient nearest neigh-
bor accelerator based on in-memory computing,” in /EEE International
Conference on Rebooting Computing (ICRC), pp. 1-8, Nov 2017.

[4] Z. Jiang, S. Yin, M. Seok, and J. Seo, “XNOR-SRAM: in-memory
computing SRAM macro for binary/ternary deep neural networks,” in
IEEE Symposium on VLSI Technology, 2018.

[5] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized convolutional-neural-network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in /[EEE
Symposium on VLSI Circuits, 2018.

[6] R. Liu et al., “Parallelizing SRAM arrays with customized bit-cell for
binary neural networks,” in ACM/IEEE Design Automation Conference
(DAC), 2018.

[71 M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (ECCV), 2016.

[8] I. Hubara et al., “Binarized Neural Networks,” in Advances in Neural
Information Processing Systems (NIPS), pp. 4107-4115, 2016.

[9] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712-727, 2006.

[10] P-T. Huang and W. Hwang, “A 65 nm 0.165 fl/bit/search 256x 144
TCAM macro design for IPv6 lookup tables,” IEEE Journal of Solid-
State Circuits, vol. 46, no. 2, pp. 507-519, 2011.

[11] A. T. Do, C. Yin, K. S. Yeo, and T. T.-H. Kim, “Design of a power-
efficient cam using automated background checking scheme for small
match line swing,” in [EEE European Solid-State Circuits Conference
(ESSCIRC), pp. 209-212, 2013.

[12] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 4, pp. 1009-1021, 2016.

[13] H. Kaul et al., “A 21.5 M-query-vectors/s 3.37 nJ/vector reconfigurable
k-nearest-neighbor accelerator with adaptive precision in 14nm tri-gate
CMOS,” in IEEE International Solid-State Circuits Conference, 2016.

[14] I. Hong et al., “A 125,582 vector/s throughput and 95.1% accuracy ANN
searching processor with neuro-fuzzy vision cache for real-time object
recognition,” in IEEE Symposium on VLSI Circuits, 2013.

[15] V. T. Lee et al., “Similarity search on automata processors,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pp. 523-534, 2017.

[16] Y.lJiang, J. Kang, and X. Wang, “RRAM-based parallel computing archi-
tecture using k-nearest neighbor classification for pattern recognition,”
Scientific Reports, vol. 7, no. 45233, 2017.

[17] R. Kaplan, L. Yavits, and R. Ginosar, “PRINS: Processing-in-storage ac-
celeration of machine learning,” IEEE Transactions on Nanotechnology,
vol. 17, pp. 889-896, Sep. 2018.

[18] W. Choi, K. Jeong, K. Choi, K. Lee, and J. Park, “Content addressable
memory based binarized neural network accelerator using time-domain
signal processing,” in ACM/IEEE Design Automation Conference (DAC),
2018.

[19] G. Kim, J. Oh, S. Lee, and H.-J. Yoo, “An 86 mW 98 GOPS ANN-
searching processor for full-HD 30 fps video object recognition with ze-
roless locality-sensitive hashing,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 7, pp. 1615-1624, 2013.

