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Abstract—For wearable devices that monitor personal health,
secure access to private medical data becomes a crucial feature.
Nowadays, device authentication based on biometrics such as
fingerprint or iris has become increasingly popular. In this work,
we investigate using electrocardiogram (ECG) signals as the
biometric modality for device authentication, and we present
accurate and low-power ECG-based authentication hardware.
Deep neural networks (DNNs) have been employed with a cost
function that maximizes inter-individual distance and minimizes
intra-individual distance over time. During DNN training, we also
introduce joint optimization of low-precision and structured
sparsity, so that the real-time authentication hardware can
consume minimal energy and area. Experimental results of custom
hardware designed in 65Snm LP CMOS technology exhibit low
power consumption of 59.4 uW for real-time ECG authentication
with a low equal error rate of 1.002% for a large 741-subject in-
house ECG database.
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I. INTRODUCTION

An increasingly large number of wearable devices are being
introduced to the commercial market and being used by
individuals during daily activities. Many wearable devices
feature health-monitoring functionalities by integrating various
physiological sensors, including electrocardiogram (ECQG),
photoplethysmogram (PPG), bio-impedance, etc. For instance, a
number of recent wearable devices [1-2] embed single-lead
ECG sensors for continuous cardiac monitoring capabilities.

Since a number of wearables already possess ECG sensors,
researchers have been exploring to use ECG as a new modality
for biometric authentication [3] towards enhanced security.
Since the health-monitoring wearables contain private medical
data, it becomes highly important to ensure secure access to such
devices, so that adversaries cannot access private data.

Compared to other conventional biometric modalities (e.g.
fingerprint, iris, face, voice, etc.), ECG-based authentication is
advantageous with regards to inherent detection of liveness and
the difficulty to be easily spoofed. Several prior works have
presented low-power hardware designs for ECG authentication
[4-7]. The authors of [4] implemented a deep neural network
(DNN) based ECG authentication algorithm on FPGA, but
consumed 1 MB of memory and 256 mW of power. In [5], a
cross-correlation based ECG authentication algorithm was

implemented on the ARM Cortex-M microcontroller in a
wearable watch. However, both works evaluated the
authentication accuracy only on relatively small databases (90
subjects for [4] and 28 subjects for [5]). The ECG authentication
ASIC hardware presented in [6] was benchmarked on a large
database of 645 subjects, but the reported equal error rate (EER)
was 1.7%, which is quite higher than the EER values of recent
fingerprint-based (0.8% [7]) and iris-based (0.82% [8])
authentication algorithms. In [9], an improved EER of 0.85%
was reported for ECG authentication by using a DNN algorithm
that maximizes the distance of ECG features for different
individuals, but only software implementation was reported.

In this paper, we investigate a low-power design of ECG-
based authentication hardware implementation adopting the
DNN algorithm in [9]. To fit in costly fully-connected DNN
within the power and area envelopes of wearable devices, we
further incorporated both low-precision quantization and
structured sparsity optimization in the overall DNN training
process. Then, we implemented the ECG signal processing and
the compressed and low-precision DNN in 65nm LP CMOS. For
real-time ECG authentication, 59.4 uW power consumption at
1.2V was measured from simulation, and 1.002% equal error
rate (EER) was achieved for an in-house 741-subject large
database.

II.  ECG SIGNAL PROCESSING AND DNN DESIGN

The raw digitized ECG signals go through signal processing
and DNN tasks, which extracts the optimal ECG features that
are used for ECG-based authentication. Fig. 1 shows the top-
level diagram of the this work.

A. ECG Signal Processing

Signal processing of raw ECG beats sequentially goes
through the steps of frequency domain filtering, detection of R-
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Fig. 1. Signal processing and DNN based ECG feature extraction for
ECG-based authentication.



peak, outlier detection/removal, and normalization. The system
can be programmed to perform authentication with either § beats
for faster operation and 30 beats for more stable operation.

Frequency domain filtering: A single-lead sensor acquires raw
ECG signals, which are digitized at 250 Hz sampling rate. The
raw ECG signal goes through a 40-tap high pass filter, a 42-tap
band pass filter, a differentiator and an 11-tap low pass filter.

R-peak detection: The outputs of aforementioned frequency
domain filters are buffered in four successive 64-ECG-sample
windows. The final low pass filter output is compared against a
dynamic threshold [10], such that only valid R-peak points of
ECG signals will be detected. With valid R-peak detection, 160
ECG samples that are aligned at the detected R-peak are saved.

Outlier detection/removal: As the valid ECG segments are
collected, outlier ECG beats are detected using techniques
reported in [11]. Outlier ECG beats that occur either due to
temporal variability of ECG signals, abnormal sensor contact,
or abrupt movement will be detected and removed, so that only
similar ECG beats will be averaged and form a representative
ECG beat for each individual [6]. The maximum, minimum
values and the cosine distance of every extracted beat is
compared with the mean maximum, minimum values and
cosine distance of the collected beats. A beat with at least 50%
variation in any of these comparisons is detected as an outlier
and removed.

Normalization: The filtered and segmented ECG data is
normalized before it is conveyed to the ensuing DNN. Every
ECG segment is normalized by its mean and standard deviation,
which is then additionally normalized by a global mean and a
global standard deviation of all data from the ECG database.

B. DNN Training with Authentication-Specific Cost Function

Typically, DNN training uses one-hot coding for labeled
outputs, where only the specific neuron output that correlates to
the given input is labeled as “1” and all other neuron outputs
are labeled as “0”. As was done in [9], the extracted features are
obtained at the last hidden layer, instead of the output layer, and
this will be used for our ECG authentication. We compute and
evaluate the cosine similarity between the registered ECG
features and the identification ECG features, and wearable
device access will be granted only when the cosine similarity is
higher than a threshold value. We denote cosine similarity of
two ECG feature vectors FV; and FV, as:
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Cosine distance (CD) is defined as:
deos = 1 — simgs - (2)

In order to achieve low authentication error, the overlap
between the intra-subject and inter-subject CD must be
minimized. The one-hot labels typically used for DNNs are not
most suitable for this specific purpose, due to the unawareness
of how the extracted ECG features obtained from the hidden

layers will be employed. For that purpose, we adopt the DNN
algorithm with authentication-specific cost function in [9]. The
authentication-specific cost function is:

cost = — Hintra — Hinter ) (3)

Ointra + Ointer

where Uinerq/ Hinter are means of intra-/inter-subject cosine
similarity distributions, and Ojn¢rq / Ointer are standard
deviations of intra-/inter-subject cosine similarity distributions.

at 0 =
, it has been shown that larger relative

If the threshold for authentication is set
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distance will result in smaller EER [9]. Therefore, by
minimizing the cost function, we can maximize the relative
distance and minimize the EER.

We trained a DNN with two hidden layers of 256 neurons,
where a simple network is judiciously chosen to fit under the
ultra-low-power budget of wearable devices. Rectified linear
unit (ReLU) activation function is used after both hidden layers.
During each batch of the DNN training, Uinter»> Hintras Ointer
and 0y,+, values are estimated. A relatively large batch size of
2,000 is used to have a sufficient number of pairs of intra-class
and inter-class examples. We employed dropout in the first
hidden layer with 0.1 dropout ratio. The 256-element vector
output of the DNN is fed to the cosine similarity loss block. The
cosine similarity block in Fig. 1 computes the cost function in
Eq. (3), which is used to train the DNN using back-propagation
with stochastic gradient descent.

C. DNN Training with Low-Precision and Structured Sparsity

Together with the aforementioned cost function, DNN
training in this work also collectively optimizes structured
compression and low-precision representation of weights.

Coarse-grain sparsity (CGS) [12] is a technique to generate
structured sparsity by randomly dropping blocks of DNN
throughout training. CGS block size and the compression ratio
determine the level of sparsity in the trained DNN. Dropping
blocks of weights (instead of pruning individual weights) has
the advantage of minimizing index storage overhead and
allowing the compressed DNN weights to be efficiently
mapped onto regular SRAM arrays.

On the low-precision aspect, prior works have shown that
low precision DNNs can substantially reduce the storage and
communication while maintaining the accuracy. BinaryConnect
[13] introduced DNN training techniques that can binarize the
weights without affecting accuracy, while other works reported
that low-precision weights such as 2-bit or 4-bit can lead to the
optimal trade-offs in energy and accuracy [14-15].

In this work, we have jointly optimized CGS sparsity
together with low-precision weight quantization during DNN
training, for the ECG authentication task. Weight blocks are
randomly dropped before training and throughout the training
process. Various CGS blocks sizes (4x4, 8x8 and 16x16) and
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Fig. 2. Joint optimization of structured sparsity and low precision for
the DNN for ECG authentication. CGS ratios for the points in each
line are 16X-8X-4X-2X-1X from left to right.

compression ratios (16X-8X-4X-2X-1X) are evaluated to
determine optimal CGS configuration. Compression ratios
16X-8X-4X-2X-1X correspond to 10%-20%-30%-40%-100%
and 6.25%-12.5%-25%-50%-100% sparsity in weight blocks
(100% means no compression) for first hidden layer weight
matrix and second layer weight matrix, respectively.

CGS-based DNNSs are trained using back propagation, also
with low-precision representation for DNN weights. Using the
BinaryConnect technique [13], during the forward phase of
training, we quantize high-precision weights and activations.
During the backward phase, gradients of cost function are
computed from output to input layer, and straight-through
estimator [15] is used to estimate the gradient for quantized
activations. During the weight update phase, the high precision
weights are updated only for CGS blocks of non-zero weights.

Normalized DNN input is quantized to 6-bit precision and
activations are quantized to 9-bit precision without EER
degradation. DNN accuracy is further analyzed for different
weight precisions of 1, 2, 4, 8 and 32 bits.

III. SOFTWARE RESULTS ON BENCHMARKS

The in-house ECG database we used for benchmarking this
work includes 741 subjects. Single-lead ECG acquisition
procedure was followed for collecting the raw ECG data in this
database, since our focus was on wearable devices. The single-
channel (right arm cathode to left arm anode) ECG data for each
subject has been acquired by analog front end (AFE) chip
ADS1292R by TI at 250 Hz with 15-bit resolution. We trained
DNNs with the authentication-specific cost function and joint
CGS/low-precision, as described in Section II. We have
separated the training and testing datasets. The training dataset
consists of 18,306 beats (15-30 beats per subject) and the testing
dataset consists of 52,849 beats (38-88 beats per subject).

Starting from floating-point precision, we swept a number of
low-precision representations as well as structured sparsity
schemes from dense to sparse designs. Fig. 2 shows the
corresponding EER values with low-precision weights and
CGS compression. Data point W>AoCGSsxsH3/16 represents 2-
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Fig. 3. Cosine distance distribution of intra-subject and inter-subject
feature vectors, for 2-bit weight precision and 8X compression.

bit weight (W>) and 9-bit activation (Ag) precision with CGS
block size of 8x8. H is the range of weights used for the
network. Hs/is means that quantized weights are in the range [-
3/16,+3/16]. It can be seen that CGS-compressed network with
2-bit weight precision leads to similar EER values the as 4-bit
weight network for most of the CGS ratio settings, with half of
the weight memory. Reducing weight precision to 1 bit hurts
the EER significantly. The DNN with 2-bit weights results in
~1% EER even with CGS compression of 8X.

Using the trained DNN, in the testing phase, the feature
vectors (FVs) are obtained from the final hidden layer output.
We evaluate the feature extraction performance by examining
the CD distributions for inter-subject and intra-subject FVs. To
mitigate the time-variant nature of the ECG beats, we average
eight extracted FVs obtained from the DNN with consecutive
ECG beats to obtain a single representative FV. Fig. 3 shows
the CDs for the trained DNN with 2-b weight precision and
CGS compression of 8X.

IV. HARDWARE IMPLEMENTATION RESULTS

We designed custom ECG authentication hardware in 65nm

LP CMOS, including signal processing modules and the

compressed, low-precision DNN. Supply voltage of 1.2V is

used and the overall design was synthesized at 10 kHz for real-
input
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Fig. 4. Hardware implementation of a single neuron using fixed-
point arithmetic units.
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Fig. 5. Neuron network memory reduction aided by joint optimization
of low-precision and structured compression (x-axis in log-scale).

time ECG authentication with extensive clock gating. DNN
weights are stored in SRAM arrays, which are generated from a
commercial memory compiler. EER and latency results are
obtained from post-synthesis simulation using the in-house 741-
subject ECG dataset. Power results are obtained from Synopsys
Primetime PX using data activity of post-synthesis simulation.

A. DNN Hardware Implementation

The CGS-based sparse DNN that we implemented employs
a pipelined datapath with synchronous clocking. We selected 2-
bit weight precision for the DNN based on the results from
Section III, which incurs negligible EER degradation compared
to higher precision schemes. Due to the structured sparsity of the
compressed DNN, the number of multiplications and additions
are fixed to 32 per neuron, as shown in Fig. 4. A sparsely
connected DNN containing 160 input neurons and two hidden
layers with 256 neurons (ReLU activation) was implemented in
hardware. With the CGS structure, the connectivity matrix of
each layer is partitioned into blocks of 8x8 and four non-zero
blocks are selected in each column and row. Thus, we only store
32 weights per neuron and the index of selected blocks.

In the DNN hardware design, one neuron in the first hidden
layer is evaluated in each clock cycle, and all the neurons in the
second hidden layer are computed simultaneously in each clock
cycle. Thus, by the time all the neurons in the first hidden layer
are evaluated, only one additional clock cycle is required to
obtain the final output of the network. The same fixed-point
arithmetic modules were used to sequentially evaluate the
neurons in the first hidden layer. The latency of the DNN for
generating one feature vector is 262 clock cycles.

B. EER, Area and Power Results

TABLE L ECG PROCESSOR POWER/AREA BREAKDOWN
Module Power (uW) | Area (mm?)
Pre-processing + Cosine Similarity 17.0 0.5
NN Logic 0.5 0.03
SRAMs (Pre-processing / NN) 28.0/13.9 0.04/0.02
Total 59.4 0.59

The total ECG processor area is 0.59 mm?. The power and
area breakdown is summarized in Table I. Compression and
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Fig. 6. False acceptance rate (FAR) and false rejection rate (FRR)
plots are shown. EER is the error value when FAR equals FRR.

low-precision optimization substantially reduced the area and
power consumption of the SRAM (39.6 uW out of 41.9 uW is
leakage power due to low frequency) and neural network logic.
Fig. 5 shows the total memory reduction aided by low precision
(2-b) weights (16X) and structured sparsity optimization (~6X).
Compared to the uncompressed fully-connected DNN used in
[9] with 32-bit floating-point precision, the total DNN memory
is reduced by 104X, with minimal EER degradation of 0.15%.

TABLE II. COMPARISON TO PRIOR WORK
Work Power (uW) | Memory (kB) t‘l’g:‘t‘;’ézzzs EER (%)
[6] ( @0.83"1‘0](1{2) 64 645 1.7
This work @ 1.2379";‘0“_[2) 14.25 741 1.002

Fig. 6 shows the false acceptance rate (FAR) and false
rejection rate (FRR) plots for the proposed ECG authentication
hardware. Low EER (when FAR equals FRR) of 1.002% is
achieved. Table II shows a comparison to previous ECG
authentication ASIC hardware [8] for EER, power and memory.
The proposed ECG processor design with a new DNN and
joint-optimization of precision and compression considerably
improves both memory footprint and EER for a larger database
of 741 subjects, while consuming similar power at nominal
supply voltage. Further power reduction is possible with
dynamic voltage scaling.

V. CONCLUSION

In this paper, we investigated ECG-based authentication
hardware employing a new cost function and collective
optimization of low-precision and compression during DNN
training. The corresponding hardware was implemented in
65nm LP CMOS, demonstrating low EER of 1.002% and low
power of 59.4 pW for real-time ECG authentication.
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