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Abstract—For wearable devices that monitor personal health, 

secure access to private medical data becomes a crucial feature. 

Nowadays, device authentication based on biometrics such as 

fingerprint or iris has become increasingly popular. In this work, 

we investigate using electrocardiogram (ECG) signals as the 

biometric modality for device authentication, and we present 

accurate and low-power ECG-based authentication hardware. 

Deep neural networks (DNNs) have been employed with a cost 

function that maximizes inter-individual distance and minimizes 

intra-individual distance over time. During DNN training, we also 

introduce joint optimization of low-precision and structured 

sparsity, so that the real-time authentication hardware can 

consume minimal energy and area. Experimental results of custom 

hardware designed in 65nm LP CMOS technology exhibit low 

power consumption of 59.4 µW for real-time ECG authentication 

with a low equal error rate of 1.002% for a large 741-subject in-

house ECG database. 

Keywords—ECG; authentication; deep neural network; 

structural sparsity; low-power hardware 

I. INTRODUCTION 

An increasingly large number of wearable devices are being 

introduced to the commercial market and being used by 

individuals during daily activities. Many wearable devices 

feature health-monitoring functionalities by integrating various 

physiological sensors, including electrocardiogram (ECG), 

photoplethysmogram (PPG), bio-impedance, etc. For instance, a 

number of recent wearable devices [1-2] embed single-lead 

ECG sensors for continuous cardiac monitoring capabilities. 

Since a number of wearables already possess ECG sensors, 

researchers have been exploring to use ECG as a new modality 

for biometric authentication [3] towards enhanced security. 

Since the health-monitoring wearables contain private medical 

data, it becomes highly important to ensure secure access to such 

devices, so that adversaries cannot access private data.  

Compared to other conventional biometric modalities (e.g. 

fingerprint, iris, face, voice, etc.), ECG-based authentication is 

advantageous with regards to inherent detection of liveness and 

the difficulty to be easily spoofed. Several prior works have 

presented low-power hardware designs for ECG authentication 

[4-7]. The authors of [4] implemented a deep neural network 

(DNN) based ECG authentication algorithm on FPGA, but 

consumed 1 MB of memory and 256 mW of power. In [5], a 

cross-correlation based ECG authentication algorithm was 

implemented on the ARM Cortex-M microcontroller in a 

wearable watch. However, both works evaluated the 

authentication accuracy only on relatively small databases (90 

subjects for [4] and 28 subjects for [5]). The ECG authentication 

ASIC hardware presented in [6] was benchmarked on a large 

database of 645 subjects, but the reported equal error rate (EER) 

was 1.7%, which is quite higher than the EER values of recent 

fingerprint-based (0.8% [7]) and iris-based (0.82% [8]) 

authentication algorithms. In [9], an improved EER of 0.85% 

was reported for ECG authentication by using a DNN algorithm 

that maximizes the distance of ECG features for different 

individuals, but only software implementation was reported. 

In this paper, we investigate a low-power design of ECG-

based authentication hardware implementation adopting the 

DNN algorithm in [9]. To fit in costly fully-connected DNN 

within the power and area envelopes of wearable devices, we 

further incorporated both low-precision quantization and 

structured sparsity optimization in the overall DNN training 

process. Then, we implemented the ECG signal processing and 

the compressed and low-precision DNN in 65nm LP CMOS. For 

real-time ECG authentication, 59.4 µW power consumption at 

1.2V was measured from simulation, and 1.002% equal error 

rate (EER) was achieved for an in-house 741-subject large 

database. 

II. ECG SIGNAL PROCESSING AND DNN DESIGN 

The raw digitized ECG signals go through signal processing 

and DNN tasks, which extracts the optimal ECG features that 

are used for ECG-based authentication. Fig. 1 shows the top-

level diagram of the this work.  

A.  ECG Signal Processing 

Signal processing of raw ECG beats sequentially goes 

through the steps of frequency domain filtering, detection of R-
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Fig. 1. Signal processing and DNN based ECG feature extraction for 

ECG-based authentication. 

 

 



peak, outlier detection/removal, and normalization. The system 

can be programmed to perform authentication with either 8 beats 

for faster operation and 30 beats for more stable operation. 

Frequency domain filtering: A single-lead sensor acquires raw 

ECG signals, which are digitized at 250 Hz sampling rate. The 

raw ECG signal goes through a 40-tap high pass filter, a 42-tap 

band pass filter, a differentiator and an 11-tap low pass filter.  

R-peak detection: The outputs of aforementioned frequency 

domain filters are buffered in four successive 64-ECG-sample 

windows. The final low pass filter output is compared against a 

dynamic threshold [10], such that only valid R-peak points of 

ECG signals will be detected. With valid R-peak detection, 160 

ECG samples that are aligned at the detected R-peak are saved. 

Outlier detection/removal: As the valid ECG segments are 

collected, outlier ECG beats are detected using techniques 

reported in [11]. Outlier ECG beats that occur either due to 

temporal variability of ECG signals, abnormal sensor contact, 

or abrupt movement will be detected and removed, so that only 

similar ECG beats will be averaged and form a representative 

ECG beat for each individual [6]. The maximum, minimum 

values and the cosine distance of every extracted beat is 

compared with the mean maximum, minimum values and 

cosine distance of the collected beats. A beat with at least 50% 

variation in any of these comparisons is detected as an outlier 

and removed. 

Normalization: The filtered and segmented ECG data is 

normalized before it is conveyed to the ensuing DNN. Every 

ECG segment is normalized by its mean and standard deviation, 

which is then additionally normalized by a global mean and a 

global standard deviation of all data from the ECG database. 

B. DNN Training with Authentication-Specific Cost Function 

Typically, DNN training uses one-hot coding for labeled 

outputs, where only the specific neuron output that correlates to 

the given input is labeled as “1” and all other neuron outputs 

are labeled as “0”. As was done in [9], the extracted features are 

obtained at the last hidden layer, instead of the output layer, and 

this will be used for our ECG authentication. We compute and 

evaluate the cosine similarity between the registered ECG 

features and the identification ECG features, and wearable 

device access will be granted only when the cosine similarity is 

higher than a threshold value. We denote cosine similarity of 

two ECG feature vectors 𝐹𝑉1 and 𝐹𝑉2 as: 

𝑠𝑖𝑚cos =
𝐹𝑉1 ∙ 𝐹𝑉2

‖𝐹𝑉1‖2‖𝐹𝑉2‖2

 .                      (1) 

Cosine distance (CD) is defined as: 

𝑑cos = 1 − 𝑠𝑖𝑚𝑐𝑜𝑠 .                             (2) 

In order to achieve low authentication error, the overlap 

between the intra-subject and inter-subject CD must be 

minimized. The one-hot labels typically used for DNNs are not 

most suitable for this specific purpose, due to the unawareness 

of how the extracted ECG features obtained from the hidden 

layers will be employed. For that purpose, we adopt the DNN 

algorithm with authentication-specific cost function in [9]. The 

authentication-specific cost function is: 

𝑐𝑜𝑠𝑡 = −
𝜇𝑖𝑛𝑡𝑟𝑎 − 𝜇𝑖𝑛𝑡𝑒𝑟

𝜎𝑖𝑛𝑡𝑟𝑎 + 𝜎𝑖𝑛𝑡𝑒𝑟

  ,                         (3) 

where 𝜇𝑖𝑛𝑡𝑟𝑎 / 𝜇𝑖𝑛𝑡𝑒𝑟  are means of intra-/inter-subject cosine 

similarity distributions, and 𝜎𝑖𝑛𝑡𝑟𝑎 / 𝜎𝑖𝑛𝑡𝑒𝑟  are standard 

deviations of intra-/inter-subject cosine similarity distributions.  

If the threshold for authentication is set at 𝜃 =
𝜇𝑖𝑛𝑡𝑒𝑟𝜎𝑖𝑛𝑡𝑟𝑎+𝜇𝑖𝑛𝑡𝑟𝑎𝜎𝑖𝑛𝑡𝑒𝑟

𝜎𝑖𝑛𝑡𝑒𝑟+𝜎𝑖𝑛𝑡𝑟𝑎
, it has been shown that larger relative 

distance will result in smaller EER [9]. Therefore, by 

minimizing the cost function, we can maximize the relative 

distance and minimize the EER.  

We trained a DNN with two hidden layers of 256 neurons, 

where a simple network is judiciously chosen to fit under the 

ultra-low-power budget of wearable devices. Rectified linear 

unit (ReLU) activation function is used after both hidden layers. 

During each batch of the DNN training, 𝜇𝑖𝑛𝑡𝑒𝑟 , 𝜇𝑖𝑛𝑡𝑟𝑎, 𝜎𝑖𝑛𝑡𝑒𝑟  

and 𝜎𝑖𝑛𝑡𝑟𝑎 values are estimated. A relatively large batch size of 

2,000 is used to have a sufficient number of pairs of intra-class 

and inter-class examples. We employed dropout in the first 

hidden layer with 0.1 dropout ratio. The 256-element vector 

output of the DNN is fed to the cosine similarity loss block. The 

cosine similarity block in Fig. 1 computes the cost function in 

Eq. (3), which is used to train the DNN using back-propagation 

with stochastic gradient descent. 

C. DNN Training with Low-Precision and Structured Sparsity 

 Together with the aforementioned cost function, DNN 

training in this work also collectively optimizes structured 

compression and low-precision representation of weights.  

Coarse-grain sparsity (CGS) [12] is a technique to generate 

structured sparsity by randomly dropping blocks of DNN 

throughout training. CGS block size and the compression ratio 

determine the level of sparsity in the trained DNN. Dropping 

blocks of weights (instead of pruning individual weights) has 

the advantage of minimizing index storage overhead and 

allowing the compressed DNN weights to be efficiently 

mapped onto regular SRAM arrays. 

On the low-precision aspect, prior works have shown that 

low precision DNNs can substantially reduce the storage and 

communication while maintaining the accuracy. BinaryConnect 

[13] introduced DNN training techniques that can binarize the 

weights without affecting accuracy, while other works reported 

that low-precision weights such as 2-bit or 4-bit can lead to the 

optimal trade-offs in energy and accuracy [14-15]. 

In this work, we have jointly optimized CGS sparsity 

together with low-precision weight quantization during DNN 

training, for the ECG authentication task. Weight blocks are 

randomly dropped before training and throughout the training 

process. Various CGS blocks sizes (4×4, 8×8 and 16×16) and 



compression ratios (16X-8X-4X-2X-1X) are evaluated to 

determine optimal CGS configuration. Compression ratios 

16X-8X-4X-2X-1X correspond to 10%-20%-30%-40%-100% 

and 6.25%-12.5%-25%-50%-100% sparsity in weight blocks 

(100% means no compression) for first hidden layer weight 

matrix and second layer weight matrix, respectively.  

CGS-based DNNs are trained using back propagation, also 

with low-precision representation for DNN weights. Using the 

BinaryConnect technique [13], during the forward phase of 

training, we quantize high-precision weights and activations. 

During the backward phase, gradients of cost function are 

computed from output to input layer, and straight-through 

estimator [15] is used to estimate the gradient for quantized 

activations. During the weight update phase, the high precision 

weights are updated only for CGS blocks of non-zero weights.   

Normalized DNN input is quantized to 6-bit precision and 

activations are quantized to 9-bit precision without EER 

degradation. DNN accuracy is further analyzed for different 

weight precisions of 1, 2, 4, 8 and 32 bits.  

III. SOFTWARE RESULTS ON BENCHMARKS 

The in-house ECG database we used for benchmarking this 

work includes 741 subjects. Single-lead ECG acquisition 

procedure was followed for collecting the raw ECG data in this 

database, since our focus was on wearable devices. The single-

channel (right arm cathode to left arm anode) ECG data for each 

subject has been acquired by analog front end (AFE) chip 

ADS1292R by TI at 250 Hz with 15-bit resolution. We trained 

DNNs with the authentication-specific cost function and joint 

CGS/low-precision, as described in Section II. We have 

separated the training and testing datasets. The training dataset 

consists of 18,306 beats (15-30 beats per subject) and the testing 

dataset consists of 52,849 beats (38-88 beats per subject).  

Starting from floating-point precision, we swept a number of 

low-precision representations as well as structured sparsity 

schemes from dense to sparse designs. Fig. 2 shows the 

corresponding EER values with low-precision weights and 

CGS compression. Data point W2A9CGS8x8H3/16 represents 2-

bit weight (W2) and 9-bit activation (A9) precision with CGS 

block size of 8x8. H is the range of weights used for the 

network. H3/16 means that quantized weights are in the range [-

3/16, +3/16].  It can be seen that CGS-compressed network with 

2-bit weight precision leads to similar EER values the as 4-bit 

weight network for most of the CGS ratio settings, with half of 

the weight memory. Reducing weight precision to 1 bit hurts 

the EER significantly. The DNN with 2-bit weights results in 

~1% EER even with CGS compression of 8X.  

Using the trained DNN, in the testing phase, the feature 

vectors (FVs) are obtained from the final hidden layer output. 

We evaluate the feature extraction performance by examining 

the CD distributions for inter-subject and intra-subject FVs. To 

mitigate the time-variant nature of the ECG beats, we average 

eight extracted FVs obtained from the DNN with consecutive 

ECG beats to obtain a single representative FV. Fig. 3 shows 

the CDs for the trained DNN with 2-b weight precision and 

CGS compression of 8X. 

IV. HARDWARE IMPLEMENTATION RESULTS 

We designed custom ECG authentication hardware in 65nm 

LP CMOS, including signal processing modules and the 

compressed, low-precision DNN. Supply voltage of 1.2V is 

used and the overall design was synthesized at 10 kHz for real-

Fig. 2. Joint optimization of structured sparsity and low precision for 

the DNN for ECG authentication. CGS ratios for the points in each 

line are 16X-8X-4X-2X-1X from left to right. Fig. 3. Cosine distance distribution of intra-subject and inter-subject 

feature vectors, for 2-bit weight precision and 8X compression. 

Fig. 4. Hardware implementation of a single neuron using fixed-

point arithmetic units. 



time ECG authentication with extensive clock gating. DNN 

weights are stored in SRAM arrays, which are generated from a 

commercial memory compiler. EER and latency results are 

obtained from post-synthesis simulation using the in-house 741-

subject ECG dataset. Power results are obtained from Synopsys 

Primetime PX using data activity of post-synthesis simulation.  

A. DNN Hardware Implementation 

The CGS-based sparse DNN that we implemented employs 

a pipelined datapath with synchronous clocking. We selected 2-

bit weight precision for the DNN based on the results from 

Section III, which incurs negligible EER degradation compared 

to higher precision schemes. Due to the structured sparsity of the 

compressed DNN, the number of multiplications and additions 

are fixed to 32 per neuron, as shown in Fig. 4. A sparsely 

connected DNN containing 160 input neurons and two hidden 

layers with 256 neurons (ReLU activation) was implemented in 

hardware. With the CGS structure, the connectivity matrix of 

each layer is partitioned into blocks of 8×8 and four non-zero 

blocks are selected in each column and row. Thus, we only store 

32 weights per neuron and the index of selected blocks.  

In the DNN hardware design, one neuron in the first hidden 

layer is evaluated in each clock cycle, and all the neurons in the 

second hidden layer are computed simultaneously in each clock 

cycle. Thus, by the time all the neurons in the first hidden layer 

are evaluated, only one additional clock cycle is required to 

obtain the final output of the network. The same fixed-point 

arithmetic modules were used to sequentially evaluate the 

neurons in the first hidden layer. The latency of the DNN for 

generating one feature vector is 262 clock cycles. 

B. EER, Area and Power Results 

TABLE I.  ECG PROCESSOR POWER/AREA BREAKDOWN 

Module Power (µW) Area (mm2) 

Pre-processing + Cosine Similarity 17.0 0.5 

NN Logic 0.5 0.03 

SRAMs (Pre-processing / NN) 28.0 / 13.9 0.04 / 0.02 

Total 59.4 0.59 
 

The total ECG processor area is 0.59 mm2. The power and 

area breakdown is summarized in Table I. Compression and 

low-precision optimization substantially reduced the area and 

power consumption of the SRAM (39.6 µW out of 41.9 µW is 

leakage power due to low frequency) and neural network logic. 

Fig. 5 shows the total memory reduction aided by low precision 

(2-b) weights (16X) and structured sparsity optimization (~6X). 

Compared to the uncompressed fully-connected DNN used in 

[9] with 32-bit floating-point precision, the total DNN memory 

is reduced by 104X, with minimal EER degradation of 0.15%. 

TABLE II.   COMPARISON TO PRIOR WORK 

Work Power (µW) Memory (kB) 
# of subjects 

in database 
EER (%) 

[6] 
50.4  

(@0.8V, 10kHz) 
64 645 1.7 

This work 
59.4  

(@1.2V, 10kHz) 
14.25 741 1.002 

 

Fig. 6 shows the false acceptance rate (FAR) and false 

rejection rate (FRR) plots for the proposed ECG authentication 

hardware. Low EER (when FAR equals FRR) of 1.002% is 

achieved. Table II shows a comparison to previous ECG 

authentication ASIC hardware [8] for EER, power and memory. 

The proposed ECG processor design with a new DNN and 

joint-optimization of precision and compression considerably 

improves both memory footprint and EER for a larger database 

of 741 subjects, while consuming similar power at nominal 

supply voltage. Further power reduction is possible with 

dynamic voltage scaling. 

V. CONCLUSION 

In this paper, we investigated ECG-based authentication 

hardware employing a new cost function and collective 

optimization of low-precision and compression during DNN 

training. The corresponding hardware was implemented in 

65nm LP CMOS, demonstrating low EER of 1.002% and low 

power of 59.4 µW for real-time ECG authentication.  
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