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Abstract—Training of convolutional neural networks (CNNs)
on embedded platforms to support on-device learning is earning
vital importance in recent days. Designing flexible training hard-
ware is much more challenging than inference hardware, due to
design complexity and large computation/memory requirement.
In this work, we present an automatic compiler based FPGA
accelerator with 16-bit fixed-point precision for complete CNN
training, including Forward Pass (FP), Backward Pass (BP)
and Weight Update (WU). We implemented an optimized RTL
library to perform training-specific tasks, and developed an RTL
compiler to automatically generate FPGA-synthesizable RTL
based on user-defined constraints. We present a new cyclic weight
storage/access scheme for on-chip BRAM and off-chip DRAM
to efficiently implement non-transpose and transpose operations
during FP and BP phases, respectively. Representative CNNs
for CIFAR-10 dataset are implemented and trained on Intel
Stratix 10 GX FPGA using proposed hardware architecture,
demonstrating up to 479 GOPS performance.

Index Terms—Convolution neural networks, neural network
training, back-propagation, hardware accelerator, FPGA

[. INTRODUCTION

CNNs have shown tremendous performance in many prac-
tical tasks including computer vision [1] and speech recogni-
tion [2]. Deep CNNs achieve high accuracy on large datasets,
but an enormous amount of computation is required for
training such networks. To support the high computation
requirement, training tasks have been typically performed
on datacenters with high-end GPUs. Nowadays, training on
resource-constrained platforms is becoming more crucial for
training networks with each user’s private data. However,
executing computation-/memory-intensive training tasks on
hardware platforms with power and resource constraints be-
come very challenging. This gives an opportunity to map these
algorithms on FPGAs, which provide high configurability
and power-efficiency compared to those of GPUs. They also
provide a large volume of off-chip memory (DRAM) and
shorter design time when compared to ASIC designs.

For CNN inference tasks, a number of FPGA accelerators
have been proposed [3]-[7]. However, training deep neu-
ral networks on FPGA platform has not been investigated
comprehensively. Compared to inference, the training phase
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involves a much higher number of operations (>3X) with
increased complexity [8]. The training phase also involves
high intermediate data volume, necessitating high memory
bandwidth and large storage. GPUs have been the de-facto
for training tasks to meet immense computation requirements.
However, GPUs’ energy-efficiency is poor [9], and they are not
well-suited for on-device learning with limited power budget.

To address this issue on the algorithm side, researchers have
proposed low-precision training [10], [11], frequency domain
training [12], and sparse weight update [13]. Techniques
such as sparse weight update introduce irregular parallelism,
making it more suitable for flexible FPGAs compared to
GPUs [14]. FPGAs are well-suited for low-precision DNN
algorithms as it provides large improvement in throughput and
energy efficiency with low-precision arithmetic [15]. To that
end, implementing configurable training hardware on FPGA
becomes crucial to exploit these algorithmic advances.

On the hardware side, several prior FPGA works have
implemented training of fully-connected neural networks [16]—
[18]. A floating-point FPGA accelerator [19] reported training
of small CNNs using an uniform computation structure with
a fixed number of multiply-and-accumulate (MAC) units. F-
CNN [20] presented a training framework where convolutions
are done in FPGA and weight updates are performed in CPU.
TrainWare [8] implemented dedicated hardware for weight
update using a fixed Np,xNy, MAC array as the local
gradients window is reused only Np,xNp, times during
weight gradient computation. However, this is not suitable
for FP/BP convolutions where there exists more kernel reuse.
DeepTrain [21] presents an embedded platform for DNN train-
ing, but does not include back-propagation of pooling layers
and DNN weight updates, which needs significant memory
access. Overall, these works have not presented a compiler-
based FPGA accelerator that supports all phases of training for
various CNNs. Designing a standalone FPGA accelerator for
CNN training involves managing limited memory resources to
support batch operations and different CNN configurations.

In this work, we propose a flexible FPGA accelerator that
performs stochastic gradient descent (SGD) based training of
various CNNs. We extracted and designed training-specific
operations and then developed a library based automatic RTL
compiler to flexibly support training operations with different
sizes of CNNs. The user provides the high-level CNN network
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Fig. 1: SGD based CNN training dataflow illustrated for a
simple 2C-2P-1FC model.

configurations along with the design variables to characterize
FPGA hardware usage to the RTL compiler. The RTL compiler
generates a FPGA compatible training accelerator based on the
user’s requirements. The key contributions of this work are:

o We present a comprehensive investigation of CNN train-
ing operations and challenges in FP, BP and WU stages.

o We developed a training-specific RTL module library
and an RTL compiler to automatically implement CNN
training accelerator with 16-bit fixed-point precision.

o A configurable FPGA hardware is presented for FP, BP
and WU phases of the entire CNN training process using
SGD with momentum.

o Our accelerator using Intel Stratix 10-GX FPGA is eval-
uated on training three different CNNs for CIFAR-10
dataset, achieving up to 479 GOPS of throughput.

II. CNN TRAINING ALGORITHM

Fig. 1 illustrates the dataflow of SGD based weight update
for a simple 2C-2P-1FC CNN model. The CNN design vari-
ables and naming conventions are described in Table 1. Output

activation value o!, » 18 given by Eq. (1), where wh ., are kernel
values and aéjyl are activations from layer [ — 1.
ZZw rr®ata), (4) M

TABLE I: CNN design variables

Kernel size Output feature map | Input feature map
width/height | width/height/depth | width/height/depth
Convolution
dimensions Nia» Nky Noz, Noy’ Naf Nig, Niys Nif
Loop unroll
factors sz’ Pk:y Poyz, Pay, Pof Pima Piy, Pif
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Fig. 2: Convolution operations and changes in kernels during
FP and BP (N, = 2, N;;y = 3).

In supervised training, each input is associated with a label.
After the completion of the FP, the performance of the network
is estimated using a cost function. Eq. (2) shows a quadratic
cost function of output layer L, where a; is the obtained output
value and y; is the label. The derivative of the cost function
with respect to output is also given in Eq. (2).

1

i

oC
— )%, dar = (ai — yi) (2)

Error values are back-propagated to all hidden layers and the
required deviation of weight parameters to minimize the error
is calculated. The derivative of the cost function with respect
to weight parameters provides the required deviation for the
weight parameters Aw to minimize the error. By applying
the basic chain rule, weight deviation Aw can be obtained by
convolving the derivative of the cost function with layer output
activations, which we term as local gradients and feedforward
activations. Local gradients of layer (I) can be obtained by
convolving the gradients of the previous layer (I — 1) with its
own convolution kernel.

During these backward convolutions, the original kernel
tensors are flipped. The differences of BP and FP convolutions
are shown in Fig. 2. Fig. 2a shows FP convolutions of input
image with three input channels (N;y = 3) and two sets
of kernels to obtain two output feature maps (Noy = 2).
During BP, convolutions are performed using local gradients
of previous layer and FP kernels, where the number of input
channels and convolution depth are interchanged. In Fig. 2b,
it is shown that N;y = 2 and N,y = 3. Flipped kernels are

used in BP convolutions to compute the local gradients.

l+1

! I+1
g ZZ@ W), (y—y) 3
Aun Z Z 2 Y (mﬂc) (y+y) )
wi](n) aAwn + w! s(n—1) )
wi,j (n) = BAw, 1 — aAw, + wi,j (n—1) (6)

Local gradients of each layer [ is computed using Eq. (3),
where w is the flipped kernel. Eq. (4) is used for weight gradi-
ent computation, where [ is local gradients of a layer and gpyl (x)
is activation gradients of layer /. The weight gradients of layer
[ is obtained by the convolution of local gradient layer [ and



feedforward input activations of layer [/, involving large kernel
sizes. One feature map of feedforward activation is convolved
with one feature map of local gradients to obtain one kernel
gradient (intra-tile accumulation). Hence, this weight gradient
convolution results in a 4D output. These weight gradients
are averaged over a batch and new weights are computed
using gradient descent algorithm given by Eq. (5), where « is
learning rate, wf’ ;(n—1) is weights of previous batch and Aw,
is the average weight gradient. The weight update process can
be accelerated by using past weight gradients as momentum.
Eq. (6) shows the weight update in SGD with momentum,
where 3 is a hyper-parameter.

The operations during BP are different to those of FP. In
backward convolutions, the inputs are scaled by activation
gradients, and convolutions are performed by applying 180-
degree-rotated kernels. Similarly, fully-connected layers in
BP also use transposed weight matrix to compute the local
gradients. At the max-pooling node, the gradients propagate
only through the selected maximum pixel location and all
other pixels in the pooling window will be zero. Based on
the pooling pixel index selected during FP, the gradients are
upsampled and propagated back to the next layers.

During FP, we need to store not only the output activations,
but also the activation gradients and max-pooling indices
at all ReLU activations and max-pooling nodes. For ReL.U,
activation gradients are binary as the derivative of ReL.U with
respect to activations results in a step function. Our RTL
library currently supports only ReLU activation function as
it is less complex and widely used. During weight update of
fully-connected layers, the weight gradients Aw are obtained
by performing the outer product of the local gradient vector
and the error vector. In convolution kernel updates, kernel
gradient calculation involves convolution of input activations
using local gradients as kernels, which are very large kernels.
Each of these convolutions is considered as an FP convolution
with N;; = 1 and results in N,; kernel gradients. To reuse
FP convolution control logic, we employed an additional outer
loop to iterate through the actual N;; local gradients.

Unlike CNN inference, CNN training usually requires
higher precision. In this work, weights, activations, and lo-
cal/weight gradients are represented with 16-bit fixed-point
precision to ensure good training accuracy [10], [22]. Com-
pared to floating-point precision, fixed-point precision training
leads to more energy-efficient FPGA design, but requires more
dedicated resolution/range assignment for different variables.

III. CNN TRAINING HARDWARE
A. RTL Compiler and Algorithm Mapping

To map various CNN algorithms with user defined hardware
constraints onto FPGA, an RTL compiler for CNN training
was developed. Fig. 3 shows the compiler tool flow from high-
level CNN description to CNN training accelerator. According
to the operations in each layer and FPGA design parameters
(e.g. unroll and tiling factors), optimized handwritten Verilog
modules are chosen from the RTL library to automatically
generate a CNN training accelerator. The RTL library consists
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Fig. 3: Proposed RTL compiler automatically generates FPGA
training accelerator from high-level CNN description.
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Fig. 4: Top-level block diagram of CNN training accelerator.

of Verilog modules that are specially designed to support
training operations. Only the selected modules from the RTL
library based on the training algorithm will be synthesized.
Execution of training operations in one iteration of a batch can
be scheduled sequentially similar to layer-by-layer execution
of inference tasks. Each training image in a batch is processed
sequentially. The scheduling of layer execution is done using
the RTL compiler, and control logic parameters are generated.

B. Training Accelerator Architecture

Fig. 4 shows the top-level diagram and dataflow of the
CNN training accelerator. The global control logic governs
all modules to ensure proper CNN functionalities with layer-
by-layer computation, and is controlled by the parameters
generated by the RTL compiler. DRAM stores all the initial
weight parameters, intermediate activations and computed
weight/loss gradients using 16-bit fixed-point precision. DMA
control generates the required DMA descriptors based on the
layer type and tile sizes to read from and write to DRAM. A
tile is a portion of data stored in on-chip buffers after/before
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reading/writing back to DRAM. Convolution, max-pooling
and upsampling operations are considered as key layers, and
ReLU, flatten, loss unit, and scaling unit are referred to as
affiliated layers. Key layers read new data from DRAM and
affiliated layers use outputs of key layers.

On-chip buffers store activation gradients and max-pooling
indices. The pooling window size (e.g. 2x2) determines the
bitwidth of max-pooling indices (e.g. 2-bit). After FP, loss is
computed using outputs and labels. Our RTL library currently
supports square hinge loss and euclidean loss functions, and
this can be easily expanded to support other loss functions.
Data scatter and data gather modules are used to convert the
DRAM storage pattern to on-chip buffer storage pattern and
vice versa. Data router reads the data from input buffers and
routes it to the selected key layer according to the array sizes.
Weight update unit and weight gradient buffers are used to
compute new weights based on SGD with momentum.

C. MAC array

Fig. 6 shows the 2D systolic MAC array used for the
training accelerator. MAC array size is determined by the RTL
compiler based on the loop unroll factors P, Py, Poy. In
Fig. 6, each MAC row has a different set of weights but share
the same input feature map data computing P, output pixels.
Each column shares the same weights, but different input data
computing F,, or P,, output pixels in parallel. Data router
reads the input data and routes it to MAC units considering
pad and stride sizes of the layer. Weight router distributes
weights or local gradients based on the training phase. Table in
Fig. 6 summarizes how the MAC array is reused with different
inputs/outputs for training phases of FP, BP and WU.

D. Transposable Weight Buffer

BP involves convolution of flipped kernels and the local
gradients. Therefore, every convolution kernel is used twice
in one iteration: 1) normal weights are applied during FP,
and 2) rotated weights are used in BP (Fig. 2). To achieve
this without duplicating kernel storage, the kernels are stored
in special transposable buffers that we propose, where data
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Fig. 6: Systolic MAC array is reused for training phases of FP,
BP and WU, by feeding different activations/gradients/kernels.

can be read both in non-transpose and transpose modes. As
shown in Fig. 5, the proposed transposable buffer stores the
kernels in the form of a circulant matrix using column buffers.
For 2D kernels, each Ny, x Ny, kernel is considered as one
block and each row has P, blocks of kernels, where P,
represents the number of output feature maps that can be
computed in parallel. During backward convolution, not only
the kernel is rotated by 180 degrees but also the input and
output feature maps will be interchanged. In the proposed
transposable buffer, every row of kernel blocks is circularly
rotated and stored in the form of a circulant matrix in the
single-port column buffers (Fig. 5). In the non-transpose mode,
each column buffer shares the same read address, and in
transpose mode, each column buffer obtains shifted addresses
from the address translator unit. Address translator generates
read/write addresses for column buffers for every transposable
block. In each transposable block, the address vectors and the
data are circularly shifted using shift registers.

E. Weight Update Unit

Weight gradients are calculated by convolving the feedfor-
ward activations with the local gradients. Convolution control
logic is configurable to support tile-by-tile computation, intra-
tile accumulation and large kernel sizes needed for weight
gradient computation. Fig. 7 shows the dataflow after the
computation of weight gradients. For every new training image
in a batch, newly computed weight gradients are accumulated
with old weight gradients. This accumulation is done tile-by-
tile and repeated for the entire batch of images while the
accumulated gradients are stored in DRAM. At the end of the
batch, as the weight gradients get accumulated, old weights
and past weight gradients are also read from DRAM, and new
weights are computed following Eq. (6).
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Weights are initially stored in transposable format in DRAM
as aforementioned. The entire transposable weights of layer [
are read from DRAM to the old weight buffer. New weights
are computed tile-by-tile and written back in transposable
format to the new weight buffer. After completing the last tile’s
computation, the new weights are written back to DRAM.
Control logic translates the address for transposable read/write
operations, generates DRAM descriptors according to tile
count and generates addresses to read newly computed weight
gradients. Fully-connected weight update follows the same
dataflow, but gradients are computed by outer product of
local gradient vector and activation vector. 16-bit fixed-point
precision is used for all weights and gradient computation.

FE. Efficient MAC Usage in Weight Update layers

During FP and BP, the MAC array is designed to compute
convolutions for P, x P, x P,y pixels in parallel. Regarding
convolutions required for weight updates, however, the output
feature map size N,., N,y is less as the outputs are kernel
gradients. This results in inefficient usage of MAC units, since
most of them will be idle. It also consumes more output buffer
storage in order to store P, xP,, x P, block of output data.
To overcome this, MAC load balance unit was designed to
utilize the idle MAC units.

The MAC load balance unit employs additional input buffers
to feed the data to the MAC units in parallel. If buffer usage is
critical, this optimization can be disabled by the RTL compiler.
Fig. 8 shows the operation of MAC load balancing unit, when
P,.=8, P,,=8, P,;=16 and kernel size is N,;=3, N,,=3,
N,;=16. In this example, four kernel gradients are computed
in parallel, reducing the latency by 4X without additional
MAC units. The output buffer is also efficiently used.

G. Upsampling and Scaling module

During BP, the local gradient at the max-pooling node is
propagated to convolution layers only through the maximum
pixel position selected in FP. The gradients of unselected pixels
are zero, as they do not contribute to the error. If the max-
pooling unit receives the input from ReLU node, then the
upsampled gradients should also be scaled by the feedforward
activation gradients to compute the gradients of ReLU node.
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During FP, max-pooling indices are stored tile-by-tile inside
the on-chip index buffers. Each layer has its own index and
activation gradient buffers. The local gradients computed in
the previous iteration is read from DRAM and stored in input
buffers. Data router unit rearranges the data of index, input
and activation gradient buffers and sends it to the upsampling
unit. Each upsampling unit consists of a demultiplexer and a
multiplier unit. The gradient is conveyed as the demultiplexer
input and the index serves as the select signal. For pooling
window size of k, each processing block produces kxk pixel
data corresponding to k rows of the output feature map. After
each operation, k£ rows of activation gradients are read and the
demultiplexer outputs are scaled.

IV. RESULTS
A. Experimental Setup

The FPGA accelerator generated by the compiler was
synthesized using Intel Quartus 17.1 at 240MHz frequency.
We used Stratix 10 GX FPGA as the target hardware, which
includes 240 Mbits of BRAM, 5,760 DSP blocks, and 93K
ALMs. The development kit [23] is equipped with 4Gb DDR3
DRAM with 16.9Gb/s bandwidth. Weights, weight/local gra-
dients, and activations use 16-bit fixed point precision. We
trained representative CNNs for CIFAR-10 dataset. ‘1X° CNN
has the structure of 16C3-16C3-P-32C3-32C3-P-64C3-64C3-
P-FC. 2X and 4X CNN models exhibit 2X and 4X more
input/output feature maps for each layer, and could achieve
higher accuracy. Unroll factor of 8 was used for output image
x and y dimensions. For output feature maps, 16, 32, 64 was
used as unroll factors for 1X, 2X and 4X CNNs, resulting in
8x8x16 (1,024), 8x8x32 (2,048), 8x8x64 (4,096) MAC arrays,
respectively. Batch size (BS) of up to 40 and learning rate
of 0.002 was used for training. Latency was measured using
simulation of the synthesized accelerator. DRAM modules
and Intel IPs were used in the testbench adhering to DRAM
protocols. We also developed a custom fixed-point precision
training model using PyTorch [24] to verify the functionality
of the FPGA design with the same precision.



TABLE II: Evaluation of CNN training accelerator on Stratix 10 FPGA , using 16-bit fixed point precision. CIFAR10-1X refers
to network structure of 16C3-16C3-P-32C3-32C3-P-64C3-64C3-P-FC, and 2X/4X designs refer to accordingly wider CNNs.

CNN network Resource Power (W) Latency per epoch (s) Throughput
DSP ALM BRAM DSP | RAM | Logic | clock | Pstatic | BS-10 | BS-20 | BS-40 GOPs
CIFAR-10 1X | 1699 (30%) | 20.8K (19%) 10.6(4.4%) | 0.58 5.7 2.4 1.68 10.28 18.19 18.07 18.01 163
CIFAR-10 2X | 3363 (58%) | 415K (44%) 22.8(9.5%) 1.05 11.2 6.6 2.97 11 41.7 41.30 41 282
CIFAR-10 4X | 5760(100%) | 720K(76.2%) | 54.5(22.4%) | 3.48 14.6 11 4.95 16.47 98.2 96.87 | 96.18 479
TABLE II: Performance comparison with GPU.
FP| Inputpx Input weights Line buf | Other
Throughput (GOPs) Efficiency (GOPs/W) @ :—
Device Titan XP FPGA Titan XP FPGA =
Batch size 1 40 1/40 1 40 1/40 ‘;—1 Act. gradients &
CIFAR-10 1X | 45.67 551.87 163 0.50 | 3.68 7.90 £ pooling indices
CIFAR-10 2X | 128.84 | 1337.98 282 1.30 | 8.26 8.59 '§
CIFAR-10 4X | 331.41 | 2353.79 479 291 | 13.45 9.49 L
_ Weight gradients l Load

B. Results and Analysis

Table II shows the comparison of CNN training performance
and resource utilization for three different CNNs for CIFAR-10
dataset. The FPGA accelerator was generated from the RTL
compiler using high-level description of training parameters
and design variables. FPGA power numbers are obtained after
routing stage from Quartus power analyzer and Intel Early
Power Estimator tools using the data toggling activity from
functional simulation at the junction temperature of 65°C.
Tiling of activations and weight gradients greatly reduces the
on chip buffer usage. BRAM utilization is low because of
the tiling and size of the intermediate activations and number
of parameters. Training of each image in a batch is done
sequentially, larger batch sizes results in less number of weight
updates in one epoch resulting in improvement in latency.

Performance comparison of our accelerator implementation
on Stratix 10 FPGA and Titan XP GPU is shown in Table
III. Our performance remains the same for different batch
sizes as the images in a batch are processed sequentially
one after the other. Our implementation shows better energy
efficiency for smaller batch sizes. For batch size of 40, the
4X model shows less energy-efficiency than GPU, due to
limited DRAM bandwidth (30X less than Titan XP). Stable
and reliable training can also be achieved with smaller batch
sizes as it provides more up-to-date gradient calculations [25].

To flexibly support arbitrary sizes of CNNs, all interme-
diate outputs are stored in DRAM. Fig. 9 shows the latency
breakdown during different stages of training. Weight update
layers will have large DRAM access latency due to access of
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©
£
o
g’ BP inpx/weight read - }MAC
€
E ‘inpxlweight read weight update
[l
wu MAC ' DRAM - weight gradients -
0 200 400 600 800 1000 1200
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Fig. 9: Latency breakdown of CIFAR-10 4X CNN for FP, BP
and WU for the last iteration of a batch.
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past weight gradients, weights and storing back the updated
values. 51% percent of the overall latency in one iteration of a
batch is consumed in weight update layers. By sacrificing the
flexibility of the hardware, this latency could be significantly
reduced by using on-chip buffers for weight/gradient storage.

Old weight gradients are read from DRAM tile-by-tile dur-
ing computation of current weight gradients. Double buffering
scheme is employed to hide the memory access latency [3],
which reduced the latency of weight update layers by 11%.
The logic latency in weight update layers is reduced by 4X,
using the load balancing technique for MAC arrays. Logic
in weight update layers refer to convolution operations to
generate weight gradients and weight update is referred to
computation of new weights. Tile sizes are carefully chosen to
efficiently map compute-/memory-bounded layers. All buffers
can be controlled by tile sizes apart from weight buffers, where
the entire weights are read from transposable DRAM.

Fig. 10 shows the breakdown of buffer utilization for three
different phases of training. The weight buffer size is decided
by the largest layer weights. Double buffering technique is
used for all other buffers, thereby hiding DRAM latency. The
1X design achieves 73% CIFAR-10 accuracy at 50 epochs
with learning rate of 0.002 and batch size of 40 (similar to
baseline with floating-point precision). Higher accuracy will
be achievable with addition of integer batch normalization and
adaptive fixed point features [22] to our RTL module library.

V. CONCLUSION

In this paper, we presented an automatic RTL compiler
based end-to-end CNN training accelerator. CNN training
operations are implemented by optimized and parameterized
custom Verilog modules, and the accelerator is flexible to
support various FPGA design parameters. The training per-
formance is evaluated on Intel Stratix-10 GX FPGA for three
different CNNs for CIFAR-10 dataset. The proposed training
accelerator achieves throughput of up to 479 GOPS at 240MHz
for CNNs with 2M parameters.
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