
Automatic Compiler Based FPGA Accelerator
for CNN Training

Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi∗, Aravind Dasu†, Yu Cao, Jae-sun Seo
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

∗Intel Labs, Intel Corporation, Hillsboro, OR, USA
†Programmable Solutions Group, Intel Corporation, San Jose, CA, USA

Email: skvenka5@asu.edu

Abstract—Training of convolutional neural networks (CNNs)
on embedded platforms to support on-device learning is earning
vital importance in recent days. Designing flexible training hard-
ware is much more challenging than inference hardware, due to
design complexity and large computation/memory requirement.
In this work, we present an automatic compiler based FPGA
accelerator with 16-bit fixed-point precision for complete CNN
training, including Forward Pass (FP), Backward Pass (BP)
and Weight Update (WU). We implemented an optimized RTL
library to perform training-specific tasks, and developed an RTL
compiler to automatically generate FPGA-synthesizable RTL
based on user-defined constraints. We present a new cyclic weight
storage/access scheme for on-chip BRAM and off-chip DRAM
to efficiently implement non-transpose and transpose operations
during FP and BP phases, respectively. Representative CNNs
for CIFAR-10 dataset are implemented and trained on Intel
Stratix 10 GX FPGA using proposed hardware architecture,
demonstrating up to 479 GOPS performance.
Index Terms—Convolution neural networks, neural network

training, back-propagation, hardware accelerator, FPGA

I. INTRODUCTION

CNNs have shown tremendous performance in many prac-

tical tasks including computer vision [1] and speech recogni-

tion [2]. Deep CNNs achieve high accuracy on large datasets,

but an enormous amount of computation is required for

training such networks. To support the high computation

requirement, training tasks have been typically performed

on datacenters with high-end GPUs. Nowadays, training on

resource-constrained platforms is becoming more crucial for

training networks with each user’s private data. However,

executing computation-/memory-intensive training tasks on

hardware platforms with power and resource constraints be-

come very challenging. This gives an opportunity to map these

algorithms on FPGAs, which provide high configurability

and power-efficiency compared to those of GPUs. They also

provide a large volume of off-chip memory (DRAM) and

shorter design time when compared to ASIC designs.

For CNN inference tasks, a number of FPGA accelerators

have been proposed [3]–[7]. However, training deep neu-

ral networks on FPGA platform has not been investigated

comprehensively. Compared to inference, the training phase

The authors would like to thank Intel Corporation for supporting and
funding this research work. This work was also partially supported by NSF
grant 1652866 and C-BRIC, one of six centers in JUMP, a SRC program
sponsored by DARPA.

involves a much higher number of operations (>3X) with
increased complexity [8]. The training phase also involves

high intermediate data volume, necessitating high memory

bandwidth and large storage. GPUs have been the de-facto

for training tasks to meet immense computation requirements.

However, GPUs’ energy-efficiency is poor [9], and they are not

well-suited for on-device learning with limited power budget.

To address this issue on the algorithm side, researchers have

proposed low-precision training [10], [11], frequency domain

training [12], and sparse weight update [13]. Techniques

such as sparse weight update introduce irregular parallelism,

making it more suitable for flexible FPGAs compared to

GPUs [14]. FPGAs are well-suited for low-precision DNN

algorithms as it provides large improvement in throughput and

energy efficiency with low-precision arithmetic [15]. To that

end, implementing configurable training hardware on FPGA

becomes crucial to exploit these algorithmic advances.

On the hardware side, several prior FPGA works have

implemented training of fully-connected neural networks [16]–

[18]. A floating-point FPGA accelerator [19] reported training

of small CNNs using an uniform computation structure with

a fixed number of multiply-and-accumulate (MAC) units. F-

CNN [20] presented a training framework where convolutions

are done in FPGA and weight updates are performed in CPU.

TrainWare [8] implemented dedicated hardware for weight

update using a fixed Nkx×Nky MAC array as the local

gradients window is reused only Nkx×Nky times during

weight gradient computation. However, this is not suitable

for FP/BP convolutions where there exists more kernel reuse.

DeepTrain [21] presents an embedded platform for DNN train-

ing, but does not include back-propagation of pooling layers

and DNN weight updates, which needs significant memory

access. Overall, these works have not presented a compiler-

based FPGA accelerator that supports all phases of training for

various CNNs. Designing a standalone FPGA accelerator for

CNN training involves managing limited memory resources to

support batch operations and different CNN configurations.

In this work, we propose a flexible FPGA accelerator that

performs stochastic gradient descent (SGD) based training of

various CNNs. We extracted and designed training-specific

operations and then developed a library based automatic RTL

compiler to flexibly support training operations with different

sizes of CNNs. The user provides the high-level CNN network

166

2019 29th International Conference on Field Programmable Logic and Applications (FPL)

1946-1488/19/$31.00 ©2019 IEEE
DOI 10.1109/FPL.2019.00034

Fig. 1: SGD based CNN training dataflow illustrated for a

simple 2C-2P-1FC model.

configurations along with the design variables to characterize

FPGA hardware usage to the RTL compiler. The RTL compiler

generates a FPGA compatible training accelerator based on the

user’s requirements. The key contributions of this work are:

• We present a comprehensive investigation of CNN train-

ing operations and challenges in FP, BP and WU stages.

• We developed a training-specific RTL module library

and an RTL compiler to automatically implement CNN

training accelerator with 16-bit fixed-point precision.

• A configurable FPGA hardware is presented for FP, BP

and WU phases of the entire CNN training process using

SGD with momentum.

• Our accelerator using Intel Stratix 10-GX FPGA is eval-

uated on training three different CNNs for CIFAR-10

dataset, achieving up to 479 GOPS of throughput.

II. CNN TRAINING ALGORITHM

Fig. 1 illustrates the dataflow of SGD based weight update

for a simple 2C-2P-1FC CNN model. The CNN design vari-

ables and naming conventions are described in Table I. Output

activation value olx,y is given by Eq. (1), where w
l
x,y are kernel

values and al−1
x,y are activations from layer l − 1.

olx,y =
∑

x'

∑

y'

wl
x,ya

l−1
(x+x'),(y+y')

(1)

TABLE I: CNN design variables

Kernel size
width/height

Output feature map
width/height/depth

Input feature map
width/height/depth

Convolution
dimensions

Nkx, Nky Nox, Noy , Nof Nix, Niy , Nif

Loop unroll
factors

Pkx, Pky Pox, Poy , Pof Pix, Piy , Pif

(a) Feedforward convolutions. (b) Backward convolutions.

Fig. 2: Convolution operations and changes in kernels during

FP and BP (Nof = 2, Nif = 3).

In supervised training, each input is associated with a label.

After the completion of the FP, the performance of the network

is estimated using a cost function. Eq. (2) shows a quadratic

cost function of output layer L, where ai is the obtained output
value and yi is the label. The derivative of the cost function
with respect to output is also given in Eq. (2).

C =
1

2

L∑

i

(ai − yi)2, ∂C

∂aLi
= (ai − yi) (2)

Error values are back-propagated to all hidden layers and the

required deviation of weight parameters to minimize the error

is calculated. The derivative of the cost function with respect

to weight parameters provides the required deviation for the

weight parameters Δw to minimize the error. By applying

the basic chain rule, weight deviation Δw can be obtained by
convolving the derivative of the cost function with layer output

activations, which we term as local gradients and feedforward

activations. Local gradients of layer (l) can be obtained by
convolving the gradients of the previous layer (l− 1) with its
own convolution kernel.

During these backward convolutions, the original kernel

tensors are flipped. The differences of BP and FP convolutions

are shown in Fig. 2. Fig. 2a shows FP convolutions of input

image with three input channels (Nif = 3) and two sets
of kernels to obtain two output feature maps (Nof = 2).
During BP, convolutions are performed using local gradients

of previous layer and FP kernels, where the number of input

channels and convolution depth are interchanged. In Fig. 2b,

it is shown that Nif = 2 and Nof = 3. Flipped kernels are
used in BP convolutions to compute the local gradients.

δlx,y = ϕ'l(o
l
x,y)

∑

x'

∑

y'

δl+1
x',y'w

l+1
(x−x'),(y−y')

(3)

Δwn =
∂C

∂wL
x,y

=
∑

x'

∑

y'

δlx',y'a
l−1
(x+x'),(y+y')

(4)

wl
i,j(n) = −αΔwn + wl

i,j(n− 1) (5)

wl
i,j(n) = βΔwn−1 − αΔwn + wl

i,j(n− 1) (6)

Local gradients of each layer l is computed using Eq. (3),
where w is the flipped kernel. Eq. (4) is used for weight gradi-
ent computation, where l is local gradients of a layer and ϕ'l(x)
is activation gradients of layer l. The weight gradients of layer
l is obtained by the convolution of local gradient layer l and

167

feedforward input activations of layer l, involving large kernel
sizes. One feature map of feedforward activation is convolved

with one feature map of local gradients to obtain one kernel

gradient (intra-tile accumulation). Hence, this weight gradient

convolution results in a 4D output. These weight gradients

are averaged over a batch and new weights are computed

using gradient descent algorithm given by Eq. (5), where α is
learning rate, wl

i,j(n−1) is weights of previous batch andΔwn

is the average weight gradient. The weight update process can

be accelerated by using past weight gradients as momentum.

Eq. (6) shows the weight update in SGD with momentum,

where β is a hyper-parameter.
The operations during BP are different to those of FP. In

backward convolutions, the inputs are scaled by activation

gradients, and convolutions are performed by applying 180-

degree-rotated kernels. Similarly, fully-connected layers in

BP also use transposed weight matrix to compute the local

gradients. At the max-pooling node, the gradients propagate

only through the selected maximum pixel location and all

other pixels in the pooling window will be zero. Based on

the pooling pixel index selected during FP, the gradients are

upsampled and propagated back to the next layers.

During FP, we need to store not only the output activations,

but also the activation gradients and max-pooling indices

at all ReLU activations and max-pooling nodes. For ReLU,

activation gradients are binary as the derivative of ReLU with

respect to activations results in a step function. Our RTL

library currently supports only ReLU activation function as

it is less complex and widely used. During weight update of

fully-connected layers, the weight gradients Δw are obtained
by performing the outer product of the local gradient vector

and the error vector. In convolution kernel updates, kernel

gradient calculation involves convolution of input activations

using local gradients as kernels, which are very large kernels.

Each of these convolutions is considered as an FP convolution

with Nif = 1 and results in Nof kernel gradients. To reuse

FP convolution control logic, we employed an additional outer

loop to iterate through the actual Nif local gradients.

Unlike CNN inference, CNN training usually requires

higher precision. In this work, weights, activations, and lo-

cal/weight gradients are represented with 16-bit fixed-point

precision to ensure good training accuracy [10], [22]. Com-

pared to floating-point precision, fixed-point precision training

leads to more energy-efficient FPGA design, but requires more

dedicated resolution/range assignment for different variables.

III. CNN TRAINING HARDWARE

A. RTL Compiler and Algorithm Mapping

To map various CNN algorithms with user defined hardware

constraints onto FPGA, an RTL compiler for CNN training

was developed. Fig. 3 shows the compiler tool flow from high-

level CNN description to CNN training accelerator. According

to the operations in each layer and FPGA design parameters

(e.g. unroll and tiling factors), optimized handwritten Verilog

modules are chosen from the RTL library to automatically

generate a CNN training accelerator. The RTL library consists

Fig. 3: Proposed RTL compiler automatically generates FPGA

training accelerator from high-level CNN description.

Fig. 4: Top-level block diagram of CNN training accelerator.

of Verilog modules that are specially designed to support

training operations. Only the selected modules from the RTL

library based on the training algorithm will be synthesized.

Execution of training operations in one iteration of a batch can

be scheduled sequentially similar to layer-by-layer execution

of inference tasks. Each training image in a batch is processed

sequentially. The scheduling of layer execution is done using

the RTL compiler, and control logic parameters are generated.

B. Training Accelerator Architecture

Fig. 4 shows the top-level diagram and dataflow of the

CNN training accelerator. The global control logic governs

all modules to ensure proper CNN functionalities with layer-

by-layer computation, and is controlled by the parameters

generated by the RTL compiler. DRAM stores all the initial

weight parameters, intermediate activations and computed

weight/loss gradients using 16-bit fixed-point precision. DMA

control generates the required DMA descriptors based on the

layer type and tile sizes to read from and write to DRAM. A

tile is a portion of data stored in on-chip buffers after/before

168

Fig. 5: Proposed transposable weight buffer stores weights in

a circulant matrix, enabling both normal and transpose read.

reading/writing back to DRAM. Convolution, max-pooling

and upsampling operations are considered as key layers, and
ReLU, flatten, loss unit, and scaling unit are referred to as

affiliated layers. Key layers read new data from DRAM and

affiliated layers use outputs of key layers.

On-chip buffers store activation gradients and max-pooling

indices. The pooling window size (e.g. 2x2) determines the

bitwidth of max-pooling indices (e.g. 2-bit). After FP, loss is

computed using outputs and labels. Our RTL library currently

supports square hinge loss and euclidean loss functions, and

this can be easily expanded to support other loss functions.

Data scatter and data gather modules are used to convert the

DRAM storage pattern to on-chip buffer storage pattern and

vice versa. Data router reads the data from input buffers and

routes it to the selected key layer according to the array sizes.

Weight update unit and weight gradient buffers are used to

compute new weights based on SGD with momentum.

C. MAC array

Fig. 6 shows the 2D systolic MAC array used for the

training accelerator. MAC array size is determined by the RTL

compiler based on the loop unroll factors Pox, Poy, Pof . In

Fig. 6, each MAC row has a different set of weights but share

the same input feature map data computing Pof output pixels.

Each column shares the same weights, but different input data

computing Pox or Poy output pixels in parallel. Data router

reads the input data and routes it to MAC units considering

pad and stride sizes of the layer. Weight router distributes

weights or local gradients based on the training phase. Table in

Fig. 6 summarizes how the MAC array is reused with different

inputs/outputs for training phases of FP, BP and WU.

D. Transposable Weight Buffer

BP involves convolution of flipped kernels and the local

gradients. Therefore, every convolution kernel is used twice

in one iteration: 1) normal weights are applied during FP,

and 2) rotated weights are used in BP (Fig. 2). To achieve

this without duplicating kernel storage, the kernels are stored

in special transposable buffers that we propose, where data

Fig. 6: Systolic MAC array is reused for training phases of FP,

BP and WU, by feeding different activations/gradients/kernels.

can be read both in non-transpose and transpose modes. As

shown in Fig. 5, the proposed transposable buffer stores the

kernels in the form of a circulant matrix using column buffers.

For 2D kernels, each Nkx ×Nky kernel is considered as one

block and each row has Pof blocks of kernels, where Pof

represents the number of output feature maps that can be

computed in parallel. During backward convolution, not only

the kernel is rotated by 180 degrees but also the input and

output feature maps will be interchanged. In the proposed

transposable buffer, every row of kernel blocks is circularly

rotated and stored in the form of a circulant matrix in the

single-port column buffers (Fig. 5). In the non-transpose mode,

each column buffer shares the same read address, and in

transpose mode, each column buffer obtains shifted addresses

from the address translator unit. Address translator generates

read/write addresses for column buffers for every transposable

block. In each transposable block, the address vectors and the

data are circularly shifted using shift registers.

E. Weight Update Unit

Weight gradients are calculated by convolving the feedfor-

ward activations with the local gradients. Convolution control

logic is configurable to support tile-by-tile computation, intra-

tile accumulation and large kernel sizes needed for weight

gradient computation. Fig. 7 shows the dataflow after the

computation of weight gradients. For every new training image

in a batch, newly computed weight gradients are accumulated

with old weight gradients. This accumulation is done tile-by-

tile and repeated for the entire batch of images while the

accumulated gradients are stored in DRAM. At the end of the

batch, as the weight gradients get accumulated, old weights

and past weight gradients are also read from DRAM, and new

weights are computed following Eq. (6).

169

Fig. 7: Block diagram of weight update unit.

Weights are initially stored in transposable format in DRAM

as aforementioned. The entire transposable weights of layer l
are read from DRAM to the old weight buffer. New weights

are computed tile-by-tile and written back in transposable

format to the new weight buffer. After completing the last tile’s

computation, the new weights are written back to DRAM.

Control logic translates the address for transposable read/write

operations, generates DRAM descriptors according to tile

count and generates addresses to read newly computed weight

gradients. Fully-connected weight update follows the same

dataflow, but gradients are computed by outer product of

local gradient vector and activation vector. 16-bit fixed-point

precision is used for all weights and gradient computation.

F. Efficient MAC Usage in Weight Update layers

During FP and BP, the MAC array is designed to compute

convolutions for Pox×Poy×Pof pixels in parallel. Regarding

convolutions required for weight updates, however, the output

feature map size Nox, Noy is less as the outputs are kernel

gradients. This results in inefficient usage of MAC units, since

most of them will be idle. It also consumes more output buffer

storage in order to store Pox×Poy×Pof block of output data.

To overcome this, MAC load balance unit was designed to

utilize the idle MAC units.

The MAC load balance unit employs additional input buffers

to feed the data to the MAC units in parallel. If buffer usage is

critical, this optimization can be disabled by the RTL compiler.

Fig. 8 shows the operation of MAC load balancing unit, when

Pox=8, Poy=8, Pof=16 and kernel size is Nox=3, Noy=3,

Nof=16. In this example, four kernel gradients are computed

in parallel, reducing the latency by 4X without additional

MAC units. The output buffer is also efficiently used.

G. Upsampling and Scaling module

During BP, the local gradient at the max-pooling node is

propagated to convolution layers only through the maximum

pixel position selected in FP. The gradients of unselected pixels

are zero, as they do not contribute to the error. If the max-

pooling unit receives the input from ReLU node, then the

upsampled gradients should also be scaled by the feedforward

activation gradients to compute the gradients of ReLU node.

Fig. 8: Operation of MAC load balancing unit during convo-

lution weight gradient computation.

During FP, max-pooling indices are stored tile-by-tile inside

the on-chip index buffers. Each layer has its own index and

activation gradient buffers. The local gradients computed in

the previous iteration is read from DRAM and stored in input

buffers. Data router unit rearranges the data of index, input

and activation gradient buffers and sends it to the upsampling

unit. Each upsampling unit consists of a demultiplexer and a

multiplier unit. The gradient is conveyed as the demultiplexer

input and the index serves as the select signal. For pooling

window size of k, each processing block produces k×k pixel
data corresponding to k rows of the output feature map. After
each operation, k rows of activation gradients are read and the
demultiplexer outputs are scaled.

IV. RESULTS

A. Experimental Setup

The FPGA accelerator generated by the compiler was

synthesized using Intel Quartus 17.1 at 240MHz frequency.

We used Stratix 10 GX FPGA as the target hardware, which

includes 240 Mbits of BRAM, 5,760 DSP blocks, and 93K

ALMs. The development kit [23] is equipped with 4Gb DDR3

DRAM with 16.9Gb/s bandwidth. Weights, weight/local gra-

dients, and activations use 16-bit fixed point precision. We

trained representative CNNs for CIFAR-10 dataset. ‘1X’ CNN

has the structure of 16C3-16C3-P-32C3-32C3-P-64C3-64C3-

P-FC. 2X and 4X CNN models exhibit 2X and 4X more

input/output feature maps for each layer, and could achieve

higher accuracy. Unroll factor of 8 was used for output image

x and y dimensions. For output feature maps, 16, 32, 64 was
used as unroll factors for 1X, 2X and 4X CNNs, resulting in

8x8x16 (1,024), 8x8x32 (2,048), 8x8x64 (4,096) MAC arrays,

respectively. Batch size (BS) of up to 40 and learning rate

of 0.002 was used for training. Latency was measured using

simulation of the synthesized accelerator. DRAM modules

and Intel IPs were used in the testbench adhering to DRAM

protocols. We also developed a custom fixed-point precision

training model using PyTorch [24] to verify the functionality

of the FPGA design with the same precision.

170

TABLE II: Evaluation of CNN training accelerator on Stratix 10 FPGA , using 16-bit fixed point precision. CIFAR10-1X refers

to network structure of 16C3-16C3-P-32C3-32C3-P-64C3-64C3-P-FC, and 2X/4X designs refer to accordingly wider CNNs.

CNN network
Resource Power (W) Latency per epoch (s) Throughput

DSP ALM BRAM DSP RAM Logic clock Pstatic BS-10 BS-20 BS-40 GOPs
CIFAR-10 1X 1699 (30%) 20.8K (19%) 10.6(4.4%) 0.58 5.7 2.4 1.68 10.28 18.19 18.07 18.01 163
CIFAR-10 2X 3363 (58%) 415K (44%) 22.8(9.5%) 1.05 11.2 6.6 2.97 11 41.7 41.30 41 282
CIFAR-10 4X 5760(100%) 720K(76.2%) 54.5(22.4%) 3.48 14.6 11 4.95 16.47 98.2 96.87 96.18 479

TABLE III: Performance comparison with GPU.

Throughput (GOPs) Efficiency (GOPs/W)
Device Titan XP FPGA Titan XP FPGA
Batch size 1 40 1/40 1 40 1/40

CIFAR-10 1X 45.67 551.87 163 0.50 3.68 7.90
CIFAR-10 2X 128.84 1337.98 282 1.30 8.26 8.59
CIFAR-10 4X 331.41 2353.79 479 2.91 13.45 9.49

B. Results and Analysis

Table II shows the comparison of CNN training performance

and resource utilization for three different CNNs for CIFAR-10

dataset. The FPGA accelerator was generated from the RTL

compiler using high-level description of training parameters

and design variables. FPGA power numbers are obtained after

routing stage from Quartus power analyzer and Intel Early

Power Estimator tools using the data toggling activity from

functional simulation at the junction temperature of 65°C.

Tiling of activations and weight gradients greatly reduces the

on chip buffer usage. BRAM utilization is low because of

the tiling and size of the intermediate activations and number

of parameters. Training of each image in a batch is done

sequentially, larger batch sizes results in less number of weight

updates in one epoch resulting in improvement in latency.

Performance comparison of our accelerator implementation

on Stratix 10 FPGA and Titan XP GPU is shown in Table

III. Our performance remains the same for different batch

sizes as the images in a batch are processed sequentially

one after the other. Our implementation shows better energy

efficiency for smaller batch sizes. For batch size of 40, the

4X model shows less energy-efficiency than GPU, due to

limited DRAM bandwidth (30X less than Titan XP). Stable

and reliable training can also be achieved with smaller batch

sizes as it provides more up-to-date gradient calculations [25].

To flexibly support arbitrary sizes of CNNs, all interme-

diate outputs are stored in DRAM. Fig. 9 shows the latency

breakdown during different stages of training. Weight update

layers will have large DRAM access latency due to access of

Fig. 9: Latency breakdown of CIFAR-10 4X CNN for FP, BP

and WU for the last iteration of a batch.

Fig. 10: Buffer usage breakdown of CIFAR-10 4X CNN.

past weight gradients, weights and storing back the updated

values. 51% percent of the overall latency in one iteration of a

batch is consumed in weight update layers. By sacrificing the

flexibility of the hardware, this latency could be significantly

reduced by using on-chip buffers for weight/gradient storage.

Old weight gradients are read from DRAM tile-by-tile dur-

ing computation of current weight gradients. Double buffering

scheme is employed to hide the memory access latency [3],

which reduced the latency of weight update layers by 11%.

The logic latency in weight update layers is reduced by 4X,

using the load balancing technique for MAC arrays. Logic

in weight update layers refer to convolution operations to

generate weight gradients and weight update is referred to

computation of new weights. Tile sizes are carefully chosen to

efficiently map compute-/memory-bounded layers. All buffers

can be controlled by tile sizes apart from weight buffers, where

the entire weights are read from transposable DRAM.

Fig. 10 shows the breakdown of buffer utilization for three

different phases of training. The weight buffer size is decided

by the largest layer weights. Double buffering technique is

used for all other buffers, thereby hiding DRAM latency. The

1X design achieves 73% CIFAR-10 accuracy at 50 epochs

with learning rate of 0.002 and batch size of 40 (similar to

baseline with floating-point precision). Higher accuracy will

be achievable with addition of integer batch normalization and

adaptive fixed point features [22] to our RTL module library.

V. CONCLUSION

In this paper, we presented an automatic RTL compiler

based end-to-end CNN training accelerator. CNN training

operations are implemented by optimized and parameterized

custom Verilog modules, and the accelerator is flexible to

support various FPGA design parameters. The training per-

formance is evaluated on Intel Stratix-10 GX FPGA for three

different CNNs for CIFAR-10 dataset. The proposed training

accelerator achieves throughput of up to 479 GOPS at 240MHz

for CNNs with 2M parameters.

171

REFERENCES

[1] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7132–7141, 2018.

[2] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent, Y. Bengio,
and A. Courville, “Towards end-to-end speech recognition with deep
convolutional neural networks,” in INTERSPEECH, 2016.

[3] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 161–170, 2015.

[4] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo, “An automatic RTL compiler
for high-throughput FPGA implementation of diverse deep convolutional
neural networks,” in Proceedings of the International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–8, 2017.

[5] J. Zhang and J. Li, “Improving the performance of OpenCL-based
FPGA accelerator for convolutional neural network,” in Proceedings of
the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), pp. 25–34, 2017.

[6] H. Zeng, R. Chen, C. Zhang, and V. Prasanna, “A framework for generat-
ing high throughput CNN implementations on FPGAs,” in Proceedings
of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), pp. 117–126, 2018.

[7] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott,
L. Lavagno, K. Vissers, J. Wawrzynek, and K. Keutzer, “Synetgy:
Algorithm-hardware co-design for ConvNet accelerators on embedded
FPGAs,” in Proceedings of the ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pp. 23–32, 2019.

[8] S. Choi, J. Sim, M. Kang, and L.-S. Kim, “TrainWare: A memory
optimized weight update architecture for on-device convolutional neural
network training,” in Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED), 2018.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
ACM/IEEE Annual International Symposium on Computer Architecture
(ISCA), pp. 1–12, 2017.

[10] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the In-
ternational Conference on Machine Learning (ICML), pp. 1737–1746,
2015.

[11] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W. Constable,
O. Elibol, S. Gray, S. Hall, L. Hornof, A. Khosrowshahi, C. Kloss, R. J.
Pai, and N. Rao, “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Advances in Neural Information
Processing Systems, pp. 1742–1752, 2017.

[12] J. H. Ko, B. Mudassar, T. Na, and S. Mukhopadhyay, “Design of
an energy-efficient accelerator for training of convolutional neural
networks using frequency-domain computation,” in Proceedings of the
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2017.

[13] X. Sun, X. Ren, S. Ma, and H. Wang, “meProp: sparsified back
propagation for accelerated deep learning with reduced overfitting,”
in Proceedings of the International Conference on Machine Learning
(ICML), pp. 3299–3308, 2017.

[14] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, et al.,
“Can FPGAs beat GPUs in accelerating next-generation deep neural
networks?,” in Proceedings of ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA), pp. 5–14, 2017.

[15] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. Cheung,
and G. A. Constantinides, “Deep neural network approximation for
custom hardware: Where we’ve been, where we’re going,” arXiv preprint
arXiv:1901.06955, 2019.

[16] Q. Liu, J. Liu, R. Sang, J. Li, T. Zhang, and Q. Zhang, “Fast neural
network training on FPGA using quasi-newton optimization method,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 8, pp. 1575–1579, 2018.

[17] A. Gomperts, A. Ukil, and F. Zurfluh, “Development and implementation
of parameterized FPGA-based general purpose neural networks for
online applications,” IEEE Transactions on Industrial Informatics, vol. 7,
no. 1, pp. 78–89, 2011.

[18] G. Rafael, C. Ricardo, C. Joaquı́n, C. Angel, and W. M. Maeda, “FPGA
implementation of a pipelined on-line backpropagation,” Journal of VLSI
Signal Processing, vol. 40, no. 2, pp. 189–213, 2005.

[19] Z. Liu, Y. Dou, J. Jiang, Q. Wang, and P. Chow, “An FPGA-based
processor for training convolutional neural networks,” in Proceedings
of the International Conference on Field Programmable Technology
(ICFPT), pp. 207–210, 2017.

[20] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-CNN: An FPGA-based framework for training convolutional neu-
ral networks,” in Proceedings of the IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
pp. 107–114, 2016.

[21] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay, “Deeptrain: A
programmable embedded platform for training deep neural networks,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2360–2370, 2018.

[22] X. Chen, X. Hu, H. Zhou, and N. Xu, “FxpNet: training a deep convo-
lutional neural network in fixed-point representation,” in Proceedings of
the IEEE International Joint Conference on Neural Networks (IJCNN),
pp. 2494–2501, 2017.

[23] “Intel Stratix 10 GX Development Kit.” https://www.intel.com/content/
www/us/en/programmable/products/boards and kits/dev-kits/altera/
kit-s10-fpga.html.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NIPS 2017 Autodiff Workshop, 2017.

[25] D. Masters and C. Luschi, “Revisiting small batch training for deep
neural networks,” arXiv preprint arXiv:1804.07612, 2018.

172

