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Abstract—Long short-term memory (LSTM) networks are
widely used for speech applications but pose difficulties for
efficient implementation on hardware due to large weight storage
requirements. We present an energy-efficient LSTM recurrent
neural network (RNN) accelerator, featuring an algorithm-
hardware co-optimized memory compression technique called
hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-
based block-wise recursive weight compression, we demonstrate
LSTM networks with up to 16× fewer weights while achieving
minimal accuracy loss. The prototype chip fabricated in 65nm LP
CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs
trained with HCGS for TIMIT/TED-LIUM corpora.

Index Terms—long short-term memory, speech recognition,
hardware accelerator, weight compression, structured sparsity

I. INTRODUCTION

The emergence of internet of things (IoT) devices that

require edge computing with limited area and energy has

garnered intense interest in energy-efficient ASIC accelerators

for deep learning applications. The particular challenge of

performing on-device automatic speech recognition (ASR)

is that LSTMs that show high accuracy suffer from high

complexity and require a large number of parameters to be

trained and stored [1].

Recent works presented methods to reduce the complexity

and storage of ASR hardware. Magnitude-based pruning was

applied to LSTM hardware in [2], resulting in 20× model size

reduction, but element-wise sparsity incurs considerable index

memory and irregular memory access, hurting both perfor-

mance and power. To overcome this, structured sparsity tech-

niques have been proposed with row-/column-wise sparsity for

RNNs [3], with block-wise sparsity for multi-layer perceptrons

(MLPs) [4], and with block-circulant weight matrix for RNNs

[5] in speech processing applications. However, these works

exhibit limited weight compression of ∼4× [3], [4] or high

error rate [5], and have not been implemented in ASIC [2]–[5].

While recent ASIC designs targeting RNNs focus on improved

energy-efficiency [6], [7], they do not incorporate compression

techniques and do not report RNN accuracy for representative

benchmarks, which are both necessary to accomplish practical

ASR on small-form-factor edge devices.

In this work, we present a new hierarchical coarse-grain

sparsity (HCGS) scheme that structurely compresses LSTM
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Fig. 1. Illustration of LSTM cell with computation equations.

weights by 16× with minimal accuracy loss. HCGS-based

LSTM accelerator which executes 2-/3-layer LSTMs for real-

time speech recognition was prototyped in 65nm LP CMOS.

It consumes 1.85/3.42 mW power and achieves 8.93/7.22

TOPS/W for TIMIT/TED-LIUM corpora.

II. LSTM AND HIERARCHICAL COARSE-GRAIN SPARSITY

A. LSTM-based Speech Recognition

LSTM is a type of recurrent neural network (RNN) that

shows state-of-the-art accuracy for speech recognition [1].

Each layer of a LSTM consists of neurons, which computes the

final output ht through four intermediate results called gates

(Fig. 1). From the LSTM equations in Fig. 1, we see that the

weight memory requirement of LSTMs is 8× when compared

to MLPs with the same number of neurons per layer.

LSTM-based speech recognition typically consists of a

pipeline of a feature extraction module, followed by a LSTM

RNN and then by a Viterbi decoder. A commonly used feature

for speech recognition is feature-space Maximum Likelihood

Linear Regression (fMLLR). fMLLR features are extracted

from Mel Frequency Cepstral Coefficients (MFCC) features,

derived typically from 25 ms windows of audio samples with a

10 ms overlap between subsequent windows. The features for

the current window are combined with those of past and future

windows to provide context and the merged set of features are

inputs to the neural network. In our implementation, we merge

five past and five future windows to the current window to

create an input frame with 11 windows, leading to 440 fMLLR

features per frame. The output layer of the LSTM consists of



Fig. 2. Illustration of LSTM RNN weight compression featuring the proposed
hierarchical coarse-grain sparsity (HCGS).

probability estimates that are sent to the Viterbi decoder unit

to determine the best sequence of phonemes/words.

B. Hierarchical Coarse-Grain Sparsity

The proposed HCGS scheme maintains coarse-grain spar-

sity while further allowing fine-grain weight connectivity, lead-

ing to significant area and energy savings. Two-level HCGS is

illustrated in Fig. 2, where the first level compresses weights

(e.g. 4× compression) using a larger block size (e.g. 32×32)

and the remaining weights in the large blocks go through the

second level of compression (e.g. 4×) with a smaller block size

(e.g. 8×8). The hierarchical structure of block-wise weights is

randomly selected before the RNN training process starts, and

is maintained throughout training and classification phases.

The dropped blocks remain at zero and do not contribute to

the physical memory footprint during both training and classi-

fication. TIMIT and TED-LIUM corpora are used to train the

RNNs for phoneme and speech recognition, respectively. The

baseline 3-layer, 512-cell LSTM RNN that performs speech

recognition for TED-LIUM corpus requires 24 MB of weight

memory in floating-point precision. Aided by (1) the proposed

HCGS that reduces the number of weights by 16× and (2) low-

precision (6-bit) representation of weights, the compressed

parameters of a 3-layer, 512-cell LSTM RNN are reduced to

only 288 kB (83× reduction in model size compared to 24

MB). The resultant LSTM network can be fully stored on-

chip, which results in energy-efficient acceleration.

III. ARCHITECTURE AND DESIGN OPTIMIZATIONS

A. Hardware Architecture

Fig. 3 shows the overall architecture of the proposed LSTM

accelerator. It consists of the HCGS selector, input and output

buffers, MAC unit, H-buffer, C-buffer, two memory banks (144

kB each) for weight storage, bias/index memory bank (8.5 kB),

and the global controller. The proposed architecture facilitates

the computation of one LSTM cell output per cycle after an

initial latency period and reuses the MAC unit as outputs are

computed in a layer-by-layer manner.

 
 
 

 
 

 

Fig. 3. Overall architecture of the proposed LSTM RNN accelerator.

1) HCGS Selector: The HCGS selector (Fig. 3, top-left)

has two levels, where the first level of selector only enables

the propagation of activations associated with larger non-zero

weights blocks and the second level further filters through the

activations associated with smaller non-zero blocks. For 16×
HCGS compression, only 32 activation outputs are required

from a total of 512 activations, ensuring only activations

corresponding to non-zero weights propagate to the MAC unit,

greatly boosting energy-efficiency.

2) Input and Output buffers: An input frame consists of

fMLLR features as described in Sec. II-A. The input buffer is

used to store the fMLLR features of an input frame, which is

streamed in 13-bits at a time over 512 cycles. The output buffer

consists of two identical buffers for double buffering, which

enables continuous computation of the LSTM accelerator

while streaming out the final layer outputs. Each output buffer

employs a HCGS selector and a 6656:416 multiplexer to

feedback the output of the current layer output to the next

layer. The feedback from the output buffer to the input of the

MAC facilitates the reuse of the MAC unit.

3) H-buffer and C-buffer: The H-buffer and C-buffer store

the outputs of the previous frame (ht−1) and cell state (ct−1)

for each layer, respectively.

4) MAC Unit: The MAC unit consists of 64 parallel MACs

(computing vector-matrix multiplications) and the LSTM gate

computation module (computing intermediate LSTM gate and

final output values), which can effectively perform 2,064 oper-

ations in each cycle aided by the proposed HCGS compression.

The non-linear activation functions (sigmoid and hyperbolic

tangent) are implemented through piece-wise linear modules

using 20 linear segments.

5) Weight/bias storage and global controller: Weights are

stored in the interleaved fashion as described in Sec. III-B,

where each memory sub-bank (W1-W3) stores weights cor-

responding to a single layer. This allows sub-banks storing

weights of layers not currently being computed to be in sleep

mode, leading to improved energy-efficiency.
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Fig. 4. LSTM data flow and core computations.

B. Interleaved Memory Storage

Fig. 4 shows the LSTM module computation operations

and detailed state diagram of the MAC unit in our LSTM

accelerator. The LSTM cell stores the intermediate products

to compute the cell state (ct) and output (ht). Conventionally

the cell states and outputs of an entire layer are computed only

after every intermediate gate output for the corresponding layer

is completed, this leads to additional memory requirements

to store the intermediate gate outputs for all the LSTM cells

in the layer. Instead, by taking advantage of the structure of

the LSTM cell, the proposed architecture cycles between the

four states computing internal gates of the LSTM cell, namely

input gate (it), forget gate (ft), output gate (ot), and candidate

memory (c̃t). Additionally, the vector-matrix multiplications of

xtWx∗ and ht−1Wh∗ can be computed in independent streams,

which increases throughput via parallelism.

To support this, we store each row of four matrices Wxi,

Wxf , Wxo, and Wxc in a staggered manner (same for Wh∗) in

on-chip SRAM (Fig. 4, right-bottom), so that the computation

of new ct and ht values can be completed after every four

cycles, hence eliminating the requirement to store all interme-

diate gate outputs of the layer. In addition, the same random

hierarchical block selection for HCGS is applied to all four

matrices of Wxi, Wxf , Wxo, and Wxc (same for Wh∗) to

further reduce the index memory of the HCGS selector by

4×, resulting in only 1.17% index memory overhead.

C. Design Space Exploration

There are several important design parameters for HCGS

based LSTM hardware design, including HCGS block size,

compression ratio, and random block assignments. For this

design space exploration, we constructed a number of LSTM

RNNs; the simulation results are summarized in Fig. 5. For our

LSTM accelerator, we reduced the weight precision to 6-bit

and activation precision to 13-bit with negligible accuracy loss.

Compared to single-level CGS [4], the 2-level HCGS scheme

shows a favorable trade-off between phoneme error rate (PER)

for TIMIT corpus and weight compression (Fig. 5(a)). Differ-

ent random block assignments and sharing the HCGS masks

for four LSTM gates do not affect the RNN accuracy (Fig.

5(b)). Overall, the 512-cell LSTMs shows better PER than

the 256-cell LSTMs for various HCGS experiments. Based on

Fig. 5. HCGS design space exploration. (a) RNN width and the number of
CGS levels. (b) HCGS block size and random block selection.

these results, we selected the 512-cell LSTM and two-level

HCGS to achieve up to 16× compression, for phoneme/speech

recognition using TIMIT/TED-LIUM corpora.

IV. MEASUREMENT & COMPARISON

The proposed LSTM RNN accelerator is fabricated in 65nm

LP CMOS. The chip micrograph and performance summary

are shown in Fig. 6. For chip testing, we initially load the

weights, biases and configuration bits to on-chip memory. To

verify real-time operation, 13-bit input fMLLR features are

streamed into the input buffer, while RNN outputs from the

chip are streamed out and stored.

Fig. 7 shows the chip measurement results, where the

accelerator operates up to 80MHz at 1.1V while consum-

ing 67.3/72.5 mW for 2-/3-layer LSTMs, respectively. With

voltage scaling, the power consumption at 0.68V for the 2-

layer RNN for TIMIT is 1.85 mW at 8 MHz (Fig. 7(a)), and

at 0.75V for the 3-layer RNN for TED-LIUM is 3.42 mW

at 12 MHz (Fig. 7(b)). In all cases, the accelerator satisfies

the real-time speech/phoneme recognition requirement of 100

frames/second. The memory and logic power breakdown for

the 3-layer RNN at 0.75V is shown in Fig. 7(d). It can be seen

that logic power is dominant due to the highly compressed

weight memory despite the large number of RNN weight

matrices. Pipelined with the LSTM gate computation unit, the

MAC engines exhibit a high utilization ratio of 99.66%.

By leveraging HCGS, the LSTM accelerator achieves aver-

age energy-efficiency of 8.93/7.22 TOPS/W for running end-

to-end 2-/3-layer LSTM RNNs for TIMIT/TED-LIUM corpora

(Fig. 7(c)). We report the measured accuracy results of 20.6%

Technology

On-chip SRAM

Supply Voltage

65nm LP CMOS

288 KB (weights)
8.5 KB (index & bias)

0.68V – 1.1V

RNN Precision 6-bit (weights)
13-bit (activations)

Speech Dataset TIMIT TED-LIUM

# of RNN Layers 2 3

1.85 mW
8.93 TOPS/W
(0.68V, 8MHz)

3.42 mW
7.24 TOPS/W

(0.75V, 12MHz)

Power (@ real-time perf.)

Energy-Efficiency
(Vdd, Freq.)

Error Rate PER=20.6% WER=21.3%

Fig. 6. Prototype chip micrograph and performance summary.
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Fig. 7. Power and frequency measurement results with voltage scaling for
(a) 2-layer LSTM for TIMIT and (b) 3-layer LSTM for TED-LIUM. (c)
Measurement results for energy-efficiency (TOPS/W) and leakage power. (d)
Power breakdown of 3-layer LSTM at 0.75V supply.

PER for TIMIT and 21.3% word error rate (WER) for TED-
LIUM in Fig. 8. Compared to the RNN ASIC works of [6]
and [7], this work shows 2.90× and 1.75× higher energy-
efficiency (TOPS/W), respectively. Table I shows the detailed
comparison with prior ASIC/FPGA works for RNNs.

Fig. 8 shows a comparison of frames/second/power (FPS/W)
and PER for TIMIT corpus with prior works [2], [5], [8] that
perform speech/phoneme recognition. The RNN accelerator
[9] reports low power consumption but can only support lim-
ited keyword spotting tasks and is not considered. Compared
to 28nm ASIC design supporting speech recognition [8], this
work shows 2.95× higher energy-efficiency (FPS/W) with
slightly better PER. Although FPS/W in [5] is comparable
to our work, we achieve considerably lower PER. Conversely,
[2] has comparable PER to our work but poor FPS/W. Overall,
this demonstrates the effectiveness of our proposed design due
to the algorithm-hardware co-optimization.

V. CONCLUSION

This paper presents a hierarchically compressed, energy-
efficient LSTM accelerator for speech recognition. Exploiting
the hierarchical block-wise sparsity and low-precision quanti-
zation, the accelerator stores the entire compressed weights
of 3-layer, 512-cell LSTMs in 288 kB of on-chip SRAM
and reduces the required computation by up to 16×. The
65nm prototype chip achieves average energy-efficiency of
8.93/7.22 TOPS/W for 2-/3-layer LSTMs for TIMIT/TED-
LIUM corpora.

ACKNOWLEDGMENT

This work was in part supported by NSF grant 1652866,
Samsung, ONR, and C-BRIC, one of six centers in JUMP, a

100 1k 10k 100k
19

20

21

22

23

24

25

26

2.95XPE
R

 (%
)

FPS/W

 ESE [1] (FPGA)
 C-LSTM (Small LSTM) [4]  (FPGA)
 TrueNorth (HGMM) [8]*  (28nm)
 This Work (65nm)

16x16

8x8

8X
16X

* [8]
classification error from HGMM.

Fig. 8. Comparison of TIMIT PER and energy efficiency (frames per
second/power, FPS/W) with prior LSTM implementations.

TABLE I
COMPARISON OF RNN PERFORMANCE WITH PRIOR WORKS.

[2] [5] [6] [7] This Work

Technology FPGA FPGA 65nm
CMOS

65nm
CMOS

65nm
CMOS

Area (mm2) - - 1.57 19.36 7.74
On-Chip Memory

(KB) 4.2 MB 280 82 348 297

Number of MACs - - 96 - 65
Bit-Precision

Weights / Activations 12/16 16/16 8/16 16/16 6/13

Core Voltage (V) - - 1.24/0.75 1.2/0.67 1.1/0.68
Frequency (MHz) 200 200 168/20 200/10 80/8

Power (mW) 41W 22W 29/1.2 447/4 67.3/1.85
Peak Performance

(GOPS) 2500 - - - 164.95/24.60

Energy-Efficiency
(TOPS/W) 0.061 2.08 1.11/3.08 1.06/5.09 2.45/8.93

PER (TIMIT) 20.7% 25.3% - - 20.6%
(measured)

WER (TED-LIUM) - - - - 21.3%
(measured)

SRC program sponsored by DARPA.

REFERENCES

[1] W. Xiong et al., “The Microsoft 2017 conversational speech recognition
system,” in IEEE Int. Conf. on Acoustics, Speech and Signal Proc., 2018.

[2] S. Han et al., “ESE: Efficient speech recognition engine with sparse
LSTM on FPGA,” in ACM/SIGDA Int. Symp. on Field-Programmable
Gate Arrays, 2017.

[3] W. Wen et al., “Learning intrinsic sparse structures within long short-term
memory,” in Int. Conf. on Learning Representations (ICLR), 2018.

[4] D. Kadetotad et al., “Efficient memory compression in deep neural
networks using coarse-grain sparsification for speech applications,” in
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 2016.

[5] S. Wang et al., “C-LSTM: Enabling efficient LSTM using structured
compression techniques on FPGAs,” in ACM/SIGDA Int. Symp. on Field-
Programmable Gate Arrays, 2018.

[6] F. Conti et al., “Chipmunk: A systolically scalable 0.9 mm2, 3.08
Gop/s/mW @ 1.2 mW accelerator for near-sensor recurrent neural net-
work inference,” in IEEE Custom Integrated Circuits Conf. (CICC), 2018.

[7] S. Yin et al., “A 1.06-to-5.09 TOPS/W reconfigurable hybrid-neural-
network processor for deep learning applications,” in IEEE Symp. on
VLSI Circuits, 2017.

[8] S. K. Esser et al., “Convolutional networks for fast, energy-efficient
neuromorphic computing,” Proc. of the National Academy of Sciences
of the United States of America, vol. 113, no. 41, 2016.

[9] J. Giraldo and M. Verhelst, “Laika: A 5µW programmable LSTM
accelerator for always-on keyword spotting in 65nm CMOS,” in IEEE
European Solid State Circuits Conf. (ESSCIRC), 2018.


