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Abstract—Long short-term memory (LSTM) networks are
widely used for speech applications but pose difficulties for
efficient implementation on hardware due to large weight storage
requirements. We present an energy-efficient LSTM recurrent
neural network (RNN) accelerator, featuring an algorithm-
hardware co-optimized memory compression technique called
hierarchical coarse-grain sparsity (HCGS). Aided by HCGS-
based block-wise recursive weight compression, we demonstrate
LSTM networks with up to 16x fewer weights while achieving
minimal accuracy loss. The prototype chip fabricated in 65nm LP
CMOS achieves 8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs
trained with HCGS for TIMIT/TED-LIUM corpora.

Index Terms—long short-term memory, speech recognition,
hardware accelerator, weight compression, structured sparsity

I. INTRODUCTION

The emergence of internet of things (IoT) devices that
require edge computing with limited area and energy has
garnered intense interest in energy-efficient ASIC accelerators
for deep learning applications. The particular challenge of
performing on-device automatic speech recognition (ASR)
is that LSTMs that show high accuracy suffer from high
complexity and require a large number of parameters to be
trained and stored [1].

Recent works presented methods to reduce the complexity
and storage of ASR hardware. Magnitude-based pruning was
applied to LSTM hardware in [2], resulting in 20x model size
reduction, but element-wise sparsity incurs considerable index
memory and irregular memory access, hurting both perfor-
mance and power. To overcome this, structured sparsity tech-
niques have been proposed with row-/column-wise sparsity for
RNNs [3], with block-wise sparsity for multi-layer perceptrons
(MLPs) [4], and with block-circulant weight matrix for RNNs
[5] in speech processing applications. However, these works
exhibit limited weight compression of ~4x [3], [4] or high
error rate [5], and have not been implemented in ASIC [2]-[5].
While recent ASIC designs targeting RNNs focus on improved
energy-efficiency [6], [7], they do not incorporate compression
techniques and do not report RNN accuracy for representative
benchmarks, which are both necessary to accomplish practical
ASR on small-form-factor edge devices.

In this work, we present a new hierarchical coarse-grain
sparsity (HCGS) scheme that structurely compresses LSTM
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Fig. 1. Illustration of LSTM cell with computation equations.

weights by 16x with minimal accuracy loss. HCGS-based
LSTM accelerator which executes 2-/3-layer LSTMs for real-
time speech recognition was prototyped in 65nm LP CMOS.
It consumes 1.85/3.42 mW power and achieves 8.93/7.22
TOPS/W for TIMIT/TED-LIUM corpora.

II. LSTM AND HIERARCHICAL COARSE-GRAIN SPARSITY
A. LSTM-based Speech Recognition

LSTM is a type of recurrent neural network (RNN) that
shows state-of-the-art accuracy for speech recognition [1].
Each layer of a LSTM consists of neurons, which computes the
final output h; through four intermediate results called gates
(Fig. 1). From the LSTM equations in Fig. 1, we see that the
weight memory requirement of LSTMs is 8 x when compared
to MLPs with the same number of neurons per layer.

LSTM-based speech recognition typically consists of a
pipeline of a feature extraction module, followed by a LSTM
RNN and then by a Viterbi decoder. A commonly used feature
for speech recognition is feature-space Maximum Likelihood
Linear Regression (fMLLR). fMLLR features are extracted
from Mel Frequency Cepstral Coefficients (MFCC) features,
derived typically from 25 ms windows of audio samples with a
10 ms overlap between subsequent windows. The features for
the current window are combined with those of past and future
windows to provide context and the merged set of features are
inputs to the neural network. In our implementation, we merge
five past and five future windows to the current window to
create an input frame with 11 windows, leading to 440 fMLLR
features per frame. The output layer of the LSTM consists of
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Fig. 2. Tllustration of LSTM RNN weight compression featuring the proposed
hierarchical coarse-grain sparsity (HCGS).

probability estimates that are sent to the Viterbi decoder unit
to determine the best sequence of phonemes/words.

B. Hierarchical Coarse-Grain Sparsity

The proposed HCGS scheme maintains coarse-grain spar-
sity while further allowing fine-grain weight connectivity, lead-
ing to significant area and energy savings. Two-level HCGS is
illustrated in Fig. 2, where the first level compresses weights
(e.g. 4x compression) using a larger block size (e.g. 32x32)
and the remaining weights in the large blocks go through the
second level of compression (e.g. 4 x) with a smaller block size
(e.g. 8x8). The hierarchical structure of block-wise weights is
randomly selected before the RNN training process starts, and
is maintained throughout training and classification phases.
The dropped blocks remain at zero and do not contribute to
the physical memory footprint during both training and classi-
fication. TIMIT and TED-LIUM corpora are used to train the
RNNSs for phoneme and speech recognition, respectively. The
baseline 3-layer, 512-cell LSTM RNN that performs speech
recognition for TED-LIUM corpus requires 24 MB of weight
memory in floating-point precision. Aided by (1) the proposed
HCGS that reduces the number of weights by 16 x and (2) low-
precision (6-bit) representation of weights, the compressed
parameters of a 3-layer, 512-cell LSTM RNN are reduced to
only 288 kB (83x reduction in model size compared to 24
MB). The resultant LSTM network can be fully stored on-
chip, which results in energy-efficient acceleration.

III. ARCHITECTURE AND DESIGN OPTIMIZATIONS
A. Hardware Architecture

Fig. 3 shows the overall architecture of the proposed LSTM
accelerator. It consists of the HCGS selector, input and output
buffers, MAC unit, H-buffer, C-buffer, two memory banks (144
kB each) for weight storage, bias/index memory bank (8.5 kB),
and the global controller. The proposed architecture facilitates
the computation of one LSTM cell output per cycle after an
initial latency period and reuses the MAC unit as outputs are
computed in a layer-by-layer manner.
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Fig. 3. Overall architecture of the proposed LSTM RNN accelerator.

1) HCGS Selector: The HCGS selector (Fig. 3, top-left)
has two levels, where the first level of selector only enables
the propagation of activations associated with larger non-zero
weights blocks and the second level further filters through the
activations associated with smaller non-zero blocks. For 16x
HCGS compression, only 32 activation outputs are required
from a total of 512 activations, ensuring only activations
corresponding to non-zero weights propagate to the MAC unit,
greatly boosting energy-efficiency.

2) Input and Output buffers: An input frame consists of
fMLLR features as described in Sec. II-A. The input buffer is
used to store the fMLLR features of an input frame, which is
streamed in 13-bits at a time over 512 cycles. The output buffer
consists of two identical buffers for double buffering, which
enables continuous computation of the LSTM accelerator
while streaming out the final layer outputs. Each output buffer
employs a HCGS selector and a 6656:416 multiplexer to
feedback the output of the current layer output to the next
layer. The feedback from the output buffer to the input of the
MAC facilitates the reuse of the MAC unit.

3) H-buffer and C-buffer: The H-buffer and C-buffer store
the outputs of the previous frame (h;_1) and cell state (c;—1)
for each layer, respectively.

4) MAC Unit: The MAC unit consists of 64 parallel MACs
(computing vector-matrix multiplications) and the LSTM gate
computation module (computing intermediate LSTM gate and
final output values), which can effectively perform 2,064 oper-
ations in each cycle aided by the proposed HCGS compression.
The non-linear activation functions (sigmoid and hyperbolic
tangent) are implemented through piece-wise linear modules
using 20 linear segments.

5) Weight/bias storage and global controller: Weights are
stored in the interleaved fashion as described in Sec. III-B,
where each memory sub-bank (W1-W3) stores weights cor-
responding to a single layer. This allows sub-banks storing
weights of layers not currently being computed to be in sleep
mode, leading to improved energy-efficiency.
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Fig. 4. LSTM data flow and core computations.

B. Interleaved Memory Storage

Fig. 4 shows the LSTM module computation operations
and detailed state diagram of the MAC unit in our LSTM
accelerator. The LSTM cell stores the intermediate products
to compute the cell state (c¢;) and output (h;). Conventionally
the cell states and outputs of an entire layer are computed only
after every intermediate gate output for the corresponding layer
is completed, this leads to additional memory requirements
to store the intermediate gate outputs for all the LSTM cells
in the layer. Instead, by taking advantage of the structure of
the LSTM cell, the proposed architecture cycles between the
four states computing internal gates of the LSTM cell, namely
input gate (i), forget gate (f;), output gate (o;), and candidate
memory (¢;). Additionally, the vector-matrix multiplications of
x4 Wy and hy_1 Wy, can be computed in independent streams,
which increases throughput via parallelism.

To support this, we store each row of four matrices W,
Wat, Wao, and W, in a staggered manner (same for W) in
on-chip SRAM (Fig. 4, right-bottom), so that the computation
of new ¢; and h; values can be completed after every four
cycles, hence eliminating the requirement to store all interme-
diate gate outputs of the layer. In addition, the same random
hierarchical block selection for HCGS is applied to all four
matrices of W, Wy, Wyo, and Wy, (same for Wp,,) to
further reduce the index memory of the HCGS selector by
4x, resulting in only 1.17% index memory overhead.

C. Design Space Exploration

There are several important design parameters for HCGS
based LSTM hardware design, including HCGS block size,
compression ratio, and random block assignments. For this
design space exploration, we constructed a number of LSTM
RNNS; the simulation results are summarized in Fig. 5. For our
LSTM accelerator, we reduced the weight precision to 6-bit
and activation precision to 13-bit with negligible accuracy loss.
Compared to single-level CGS [4], the 2-level HCGS scheme
shows a favorable trade-off between phoneme error rate (PER)
for TIMIT corpus and weight compression (Fig. 5(a)). Differ-
ent random block assignments and sharing the HCGS masks
for four LSTM gates do not affect the RNN accuracy (Fig.
5(b)). Overall, the 512-cell LSTMs shows better PER than
the 256-cell LSTMs for various HCGS experiments. Based on
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these results, we selected the 512-cell LSTM and two-level
HCGS to achieve up to 16 x compression, for phoneme/speech
recognition using TIMIT/TED-LIUM corpora.

IV. MEASUREMENT & COMPARISON

The proposed LSTM RNN accelerator is fabricated in 65nm
LP CMOS. The chip micrograph and performance summary
are shown in Fig. 6. For chip testing, we initially load the
weights, biases and configuration bits to on-chip memory. To
verify real-time operation, 13-bit input fMLLR features are
streamed into the input buffer, while RNN outputs from the
chip are streamed out and stored.

Fig. 7 shows the chip measurement results, where the
accelerator operates up to 80OMHz at 1.1V while consum-
ing 67.3/72.5 mW for 2-/3-layer LSTMs, respectively. With
voltage scaling, the power consumption at 0.68V for the 2-
layer RNN for TIMIT is 1.85 mW at 8 MHz (Fig. 7(a)), and
at 0.75V for the 3-layer RNN for TED-LIUM is 3.42 mW
at 12 MHz (Fig. 7(b)). In all cases, the accelerator satisfies
the real-time speech/phoneme recognition requirement of 100
frames/second. The memory and logic power breakdown for
the 3-layer RNN at 0.75V is shown in Fig. 7(d). It can be seen
that logic power is dominant due to the highly compressed
weight memory despite the large number of RNN weight
matrices. Pipelined with the LSTM gate computation unit, the
MAC engines exhibit a high utilization ratio of 99.66%.

By leveraging HCGS, the LSTM accelerator achieves aver-
age energy-efficiency of 8.93/7.22 TOPS/W for running end-
to-end 2-/3-layer LSTM RNNs for TIMIT/TED-LIUM corpora
(Fig. 7(c)). We report the measured accuracy results of 20.6%
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Fig. 6. Prototype chip micrograph and performance summary.
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PER for TIMIT and 21.3% word error rate (WER) for TED-
LIUM in Fig. 8. Compared to the RNN ASIC works of [6]
and [7], this work shows 2.90x and 1.75x higher energy-
efficiency (TOPS/W), respectively. Table I shows the detailed
comparison with prior ASIC/FPGA works for RNNs.

Fig. 8 shows a comparison of frames/second/power (FPS/W)
and PER for TIMIT corpus with prior works [2], [5], [8] that
perform speech/phoneme recognition. The RNN accelerator
[9] reports low power consumption but can only support lim-
ited keyword spotting tasks and is not considered. Compared
to 28nm ASIC design supporting speech recognition [8], this
work shows 2.95x higher energy-efficiency (FPS/W) with
slightly better PER. Although FPS/W in [5] is comparable
to our work, we achieve considerably lower PER. Conversely,
[2] has comparable PER to our work but poor FPS/W. Overall,
this demonstrates the effectiveness of our proposed design due
to the algorithm-hardware co-optimization.

V. CONCLUSION

This paper presents a hierarchically compressed, energy-
efficient LSTM accelerator for speech recognition. Exploiting
the hierarchical block-wise sparsity and low-precision quanti-
zation, the accelerator stores the entire compressed weights
of 3-layer, 512-cell LSTMs in 288 kB of on-chip SRAM
and reduces the required computation by up to 16x. The
65nm prototype chip achieves average energy-efficiency of
8.93/7.22 TOPS/W for 2-/3-layer LSTMs for TIMIT/TED-
LIUM corpora.
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