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Abstract—Long short-term memory (LSTM) networks are widely used
for speech applications but pose difficulties for efficient implementa-
tion on hardware due to large weight storage requirements. We present
an energy-efficient LSTM recurrent neural network (RNN) accelera-
tor, featuring an algorithm-hardware co-optimized memory compression
technique called hierarchical coarse-grain sparsity (HCGS). Aided by
HCGS-based block-wise recursive weight compression, we demonstrate
LSTM networks with up to 16× fewer weights while achieving minimal
accuracy loss. The prototype chip fabricated in 65-nm LP CMOS achieves
8.93/7.22 TOPS/W for 2-/3-layer LSTM RNNs trained with HCGS for
TIMIT/TED-LIUM corpora.

Index Terms—Hardware accelerator, long short-term memory (LSTM),
speech recognition, structured sparsity weight compression.

I. INTRODUCTION

The emergence of Internet of Things (IoT) devices that require
edge computing with limited area and energy has garnered intense
interest in energy-efficient ASIC accelerators for deep learning appli-
cations. The particular challenge of performing on-device automatic
speech recognition (ASR) is that long short-term memories (LSTMs)
that show high accuracy suffer from high complexity and require a
large number of parameters to be trained and stored [1].

Recent works presented methods to reduce the complexity and
storage of ASR hardware. Magnitude-based pruning was applied to
LSTM hardware in [2], resulting in 20× model size reduction, but
element-wise sparsity incurs considerable index memory and irregular
memory access, hurting both performance and power. To overcome
this, structured sparsity techniques have been proposed with row-
/column-wise sparsity for recurrent neural networks (RNNs) [3], with
block-wise sparsity for multilayer perceptrons (MLPs) [4], and with
block-circulant weight matrix for RNNs [5] in speech processing
applications. However, these works exhibit limited weight compres-
sion of ∼4× [3], [4] or high error rate [5], and have not been
implemented in ASIC [2]–[5]. While recent ASIC designs targeting
RNNs focus on improved energy-efficiency [6], [7], they do not incor-
porate compression techniques and do not report RNN accuracy for
representative benchmarks, which are both necessary to accomplish
practical ASR on small-form-factor edge devices.

In this letter, we present a new hierarchical coarse-grain sparsity
(HCGS) scheme that structurely compresses LSTM weights by 16×
with minimal accuracy loss. HCGS-based LSTM accelerator which
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Fig. 1. Illustration of LSTM cell with computation equations.

executes 2-/3-layer LSTMs for real-time speech recognition was pro-
totyped in 65-nm LP CMOS. It consumes 1.85/3.42-mW power and
achieves 8.93/7.22-TOPS/W for TIMIT/TED-LIUM corpora.

II. LSTM AND HIERARCHICAL COARSE-GRAIN SPARSITY

A. LSTM-Based Speech Recognition

LSTM is a type of RNN that shows state-of-the-art accuracy for
speech recognition [1]. Each layer of an LSTM consists of neurons,
which computes the final output ht through four intermediate results
called gates (Fig. 1). From the LSTM equations in Fig. 1, we see that
the weight memory requirement of LSTMs is 8× when compared to
MLPs with the same number of neurons per layer.

LSTM-based speech recognition typically consists of a pipeline
of a feature extraction module, followed by an LSTM RNN and
then by a Viterbi decoder. A commonly used feature for speech
recognition is feature-space maximum likelihood linear regression
(fMLLR). fMLLR features are extracted from mel frequency cepstral
coefficients (MFCCs) features, derived typically from 25-ms windows
of audio samples with a 10-ms overlap between subsequent windows.
The features for the current window are combined with those of past
and future windows to provide context and the merged set of features
are inputs to the neural network. In our implementation, we merge
five past and five future windows to the current window to create an
input frame with 11 windows, leading to 440 fMLLR features per
frame. The output layer of the LSTM consists of probability esti-
mates that are sent to the Viterbi decoder unit to determine the best
sequence of phonemes/words.

B. Hierarchical Coarse-Grain Sparsity

The proposed HCGS scheme maintains coarse-grain sparsity while
further allowing fine-grain weight connectivity, leading to significant
area, and energy savings. Two-level HCGS is illustrated in Fig. 2,
where the first level compresses weights (e.g., 4× compression) using
a larger block size (e.g., 32×32) and the remaining weights in the
large blocks go through the second level of compression (e.g., 4×)
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Fig. 2. Illustration of LSTM RNN weight compression featuring the proposed
HCGS.

Fig. 3. Overall architecture of the proposed LSTM RNN accelerator.

with a smaller block size (e.g., 8×8). The hierarchical structure of
block-wise weights is randomly selected before the RNN training pro-
cess starts, and is maintained throughout training and classification
phases. HCGS selects the same number of blocks for every block-row,
hence, the selected blocks fit efficiently in SRAMs, enhancing reg-
ular memory access and hardware acceleration. The dropped blocks
remain at zero and do not contribute to the physical memory footprint
during both training and classification.

TIMIT and TED-LIUM corpora are used to train RNNs for
phoneme and speech recognition, respectively. The baseline 3-layer,
512-cell LSTM RNN that performs speech recognition for TED-
LIUM corpus requires 24-MB of weight memory in floating-point
precision. Aided by: 1) the proposed HCGS that reduces the num-
ber of weights by 16× and 2) low-precision (6-bit) representation
of weights, the compressed parameters of a 3-layer, 512-cell LSTM
RNN are reduced to only 288 kB (83× reduction in model size com-
pared to 24 MB). The resultant LSTM network can be fully stored
on-chip, which results in energy-efficient acceleration.

III. ARCHITECTURE AND DESIGN OPTIMIZATIONS

A. Hardware Architecture

Fig. 3 shows the overall architecture of the proposed LSTM accel-
erator. It consists of the HCGS selector, input and output buffers,
MAC unit, H-buffer, C-buffer, two memory banks (144 kB each) for

weight storage, bias/index memory bank (8.5 kB), and the global con-
troller. The proposed architecture facilitates the computation of one
LSTM cell output per cycle after an initial latency period and reuses
the MAC unit as outputs are computed in a layer-by-layer manner.

1) HCGS Selector: The HCGS selector (Fig. 3, top-left) has two
levels, where the first level of selector only enables the propagation
of activations associated with larger nonzero weights blocks and the
second level further filters through the activations associated with
smaller nonzero blocks. For 16× HCGS compression, only 32 acti-
vation outputs are required from a total of 512 activations, ensuring
only activations corresponding to nonzero weights propagate to the
MAC unit, greatly boosting energy-efficiency.

2) Input and Output Buffers: An input frame consists of fMLLR
features as described in Section II-A. The input buffer is used to
store the fMLLR features of an input frame, which is streamed in
13-bits at a time over 512 cycles. The output buffer consists of two
identical buffers for double buffering, which enables continuous com-
putation for the entire 2-/3-layer RNNs including streamout of the
final layer outputs. Each output buffer employs an HCGS selector
and a 6656:416 multiplexer to feedback the output of the current
layer output to the next layer. The feedback from the output buffer
to the input of the MAC facilitates the reuse of the MAC unit.

3) H-Buffer and C-Buffer: The H-buffer and C-buffer store the
outputs of the previous frame (ht−1) and cell state (ct−1) for each
layer, respectively.

4) MAC Unit: The MAC unit consists of 64 parallel MACs (com-
puting vector-matrix multiplications) and the LSTM gate computation
module (computing intermediate LSTM gate and final output values),
which can effectively perform 2064 operations in each cycle aided by
the proposed HCGS compression. The nonlinear activation functions
(sigmoid and hyperbolic tangent) are implemented through piece-wise
linear modules using 20 linear segments.

5) Weight/Bias Storage and Global Controller: Weights are stored
in the interleaved fashion as described in Section III-B, where each
memory sub-bank (W1–W3) stores weights corresponding to a single
layer. This allows sub-banks storing weights of layers not currently
being computed to be in drowsy mode, leading to >2× leakage
reduction and improved energy-efficiency.

B. Interleaved Memory Storage

Fig. 4 shows the LSTM module computation operations and
detailed state diagram of the MAC unit in our LSTM accelerator.
The LSTM cell stores the intermediate products to compute the cell
state (ct) and output (ht). Conventionally, the cell states and outputs
of an entire layer are computed only after every intermediate gate
output for the corresponding layer is completed, this leads to addi-
tional memory requirements to store the intermediate gate outputs
for all the LSTM cells in the layer. Instead, by taking advantage
of the structure of the LSTM cell, the proposed architecture cycles
between the four states computing internal gates of the LSTM cell,
namely input gate (it), forget gate (ft), output gate (ot), and candi-
date memory (c̃t). Additionally, the vector-matrix multiplications of
xtWx∗ and ht−1Wh∗ can be computed in independent streams, which
increases throughput via parallelism.

To support this, we store each row of four matrices Wxi, Wxf ,
Wxo, and Wxc in a staggered manner (same for Wh∗) in on-chip
SRAM (Fig. 4, right-bottom), so that the computation of new ct and
ht values can be completed after every four cycles, hence eliminating
the requirement to store all intermediate gate outputs of the layer. In
addition, the same random hierarchical block selection for HCGS is
applied to all four matrices of Wxi, Wxf , Wxo, and Wxc (same for Wh∗)
to further reduce the index memory and the corresponding circuitry
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Fig. 4. LSTM data flow and core computations.

(a) (b)

Fig. 5. HCGS design space exploration. (a) RNN width and the number of
CGS levels. (b) HCGS block size and random block selection.

of the HCGS selector by 4×, resulting in only 1.17% index memory
overhead.

C. Design Space Exploration

There are several important design parameters for HCGS-based
LSTM hardware design, including HCGS block size, compression
ratio, and random block assignments. For this design space explo-
ration, we constructed a number of LSTM RNNs; the simulation
results are summarized in Fig. 5. Starting from LSTM trained with
32-bit floating-point precision (PER = 16.6% for uncompressed
512-cell LSTM), we first reduced the weight precision down to 6-bit
to keep all weights on-chip with minor PER loss. With 6-bit weights,
we subsequently reduced the activation precision to 13-bit, which
overall resulted in small PER degradation of 2.2% (PER = 18.8% for
uncompressed low-precision 512-cell LSTM). Compared to single-
level CGS [4], the 2-level HCGS scheme shows a favorable tradeoff
between phoneme error rate (PER) for TIMIT corpus and weight
compression [Fig. 5(a)], aided by capability to balance coarse and fine
connection granularity for high levels of compression. Furthermore,
different random block assignments and sharing the HCGS masks for
four LSTM gates do not affect the RNN accuracy [Fig. 5(b)]. Overall,
the 512-cell LSTMs shows better PER than the 256-cell LSTMs for
various HCGS experiments. Based on these results, we selected the
512-cell LSTM and two-level HCGS to achieve up to 16× com-
pression, for phoneme/speech recognition using TIMIT/TED-LIUM
corpora.

IV. MEASUREMENT AND COMPARISON

The proposed LSTM RNN accelerator is fabricated in 65-nm LP
CMOS. The chip micrograph and performance summary are shown

Fig. 6. Prototype chip micrograph and performance summary.

(a) (b)

(c) (d)

Fig. 7. Power and frequency measurement results with voltage scaling
for (a) 2-layer LSTM for TIMIT and (b) 3-layer LSTM for TED-LIUM.
(c) Measurement results for energy-efficiency (TOPS/W) and leakage power.
(d) Power breakdown of 3-layer LSTM at 0.75-V supply.

in Fig. 6. For chip testing, we initially load the weights, biases and
configuration bits to on-chip memory. To verify real-time operation,
13-bit input fMLLR features are streamed into the input buffer, while
RNN outputs from the chip are streamed out and stored.

Fig. 7 shows the chip measurement results, where the accelerator
operates up to 80 MHz at 1.1 V while consuming 67.3/72.5 mW
for 2-/3-layer LSTMs, respectively. With voltage scaling, the power
consumption at 0.68 V for the 2-layer RNN for TIMIT is 1.85 mW
at 8 MHz [Fig. 7(a)], and at 0.75 V for the 3-layer RNN for TED-
LIUM is 3.42 mW at 12 MHz [Fig. 7(b)]. The real-time performance
constraint lines shown in Fig. 7(a) and (b) represents the frequency
needed to satisfy the real-time phoneme/speech recognition require-
ment of 100 f/s for 2-/3-layer RNNs, respectively. The memory and
logic power breakdown for the 3-layer RNN at 0.75 V is shown in
Fig. 7(d). It can be seen that logic power is dominant due to the
highly compressed weight memory despite the large number of RNN
weight matrices. Pipelined with the LSTM gate computation unit, the
MAC engines exhibit a high utilization ratio of 99.66%.

By leveraging HCGS, the LSTM accelerator achieves average
energy-efficiency of 8.93/7.22 TOPS/W for running end-to-end
2-/3-layer LSTM RNNs for TIMIT/TED-LIUM corpora [Fig. 7(c)].
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Fig. 8. Comparison of TIMIT PER and energy-efficiency (frames/s/power,
FPS/W) with prior LSTM implementations.

TABLE I
COMPARISON OF RNN PERFORMANCE WITH PRIOR WORKS

We report the measured accuracy results of 20.6% PER for TIMIT
and 21.3% word error rate (WER) for TED-LIUM in Fig. 8.
Compared to the RNN ASIC works of [6] and [7], this letter shows
2.90× and 1.75× higher energy-efficiency (TOPS/W), respectively.
Table I shows the detailed comparison with prior ASIC/FPGA works
for RNNs.

Fig. 8 shows a comparison of frames/second/power (FPS/W) and
PER for TIMIT corpus with prior works [2], [5], [8] that per-
form speech/phoneme recognition. The RNN accelerator [9] reports

low power consumption but can only support limited keyword spot-
ting tasks and is not considered. Compared to 28-nm ASIC design
supporting speech recognition [8], this letter shows 2.95× higher
energy-efficiency (FPS/W) with slightly better PER. Although FPS/W
in [5] is comparable to this letter, we achieve considerably lower PER.
Conversely, [2] has comparable PER to this letter but poor FPS/W.
Overall, this demonstrates the effectiveness of our proposed design
due to the algorithm-hardware co-optimization.

V. CONCLUSION

This letter presented a hierarchically compressed, energy-efficient
LSTM accelerator for ASR. Exploiting the hierarchical block-wise
sparsity and low-precision quantization, our accelerator stores the
entire compressed weights of 3-layer, 512-cell LSTMs in 288 kB
of on-chip SRAM and reduces the required computation by up to
16×. The prototype chip fabricated in 65-nm LP CMOS achieves
average energy-efficiency of 8.93 TOPS/W for 2-layer LSTM for
TIMIT and 7.22 TOPS/W for 3-layer LSTM for TED-LIUM
corpora.
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