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Abstract—Machine learning has become ubiquitous in
applications including object detection, image/video classification,
and natural language processing. While machine learning
algorithms have been successfully used in many practical
applications, accurate, fast, and low-power hardware
implementations of such algorithms is still a challenging task,
especially for mobile systems such as Internet of Things (IoT),
autonomous vehicles, and smart drones. This paper presents an
energy-efficient programmable ASIC accelerator for object
detection. Our ASIC accelerator supports multi-class (e.g., face,
traffic sign, car license plate, and pedestrian) that are
programmable, many-object (up to 50) in one image with different
sizes (17-scale support with 6 down-/11 up-scaling), and high
accuracy (AP of 0.87/0.81/0.72/0.76 for FDDB/AFW/BTSD/
Caltech datasets). We designed an integral channel detector with
2,000 classifiers for rigid boosted templates, where the number of
stages used for classification can be adaptively controlled
depending on the content of the search window. This can be
implemented with a more modular hardware, compared to
support vector machine (SVM) and deformable parts model
(DPM) designs. By jointly optimizing the algorithm and the
efficient hardware architecture, the prototype chip implemented
in 65Snm CMOS demonstrates real-time object detection of 20-50
frames/s with low power consumption of 22.5-181.7mW (0.54-1.75
nJ/pixel) at 0.58-1.1V supply.

Index Terms—object detection, machine learning, classification,
real-time, low-power, special-purpose accelerator

I. INTRODUCTION

BJECT detection is essential for intelligent computer

vision applications such as augmented reality (AR),
advanced driver assistant systems (ADAS), autonomous
control in unmanned aerial vehicles (UAV), smart drones,
surveillance systems, and Internet of Things (IoT). Real-time,
high accurate and energy-efficient object detection is an
essential task for these applications. While significant
improvement has recently been made in algorithms [1-6],
hardware designs using general-purpose processors such as
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CPUs, GPUs [7], and FPGAs [8] do not provide satisfactory

energy efficiency and speed in order to make real-time

decisions within the power envelope of embedded systems.

This is due to high computational complexity that varies with

algorithms and the large memory/communication requirement

independent of input, which generates significant data
movement that can be as energy consuming as computation.

Special-purpose ASICs for object detection have been
previously proposed [9-12]. A real-time object detection engine
using a Histogram of Oriented Gradients (HOG) feature
extraction in Support Vector Machine (SVM) was presented in
[9]. However, the implementation only supported one scale
factor, limiting the detection accuracy and robustness. The
authors of [10] designed a specialized engine for face detection
and recognition with low power consumption of 23mW, but
was not able to support multi-scale factors or multiple faces.
Multi-scale pedestrian detection was achieved in [11] with 12
scale factors, but only down-scaling was used, limiting the
detection of objects with small number of pixels. A multi-object
detection accelerator with Deformable Parts Model (DPM) was
implemented in [12] with two programmable object
classification engines for 58.6mW power consumption, but still
only supported down-scaling.

In this paper, we propose an energy-efficient programmable
ASIC accelerator [13] for object detection that overcomes the
above limitations:

e Multiple classes (e.g., face, traffic sign, car license plate,
pedestrian) that are programmable in the accelerator

e Many objects (up to 50) in one image with multiple scales
(17-scale support with 6 down-scaling and 11 up-scaling)

e High accuracy (average precision of 0.87/0.81/0.72/0.76/
0.53 in FDDB/AFW/BTSD/Caltech plate/INRIA Person
datasets) comparable to state-of-the-art algorithms

e Energy-efficient hardware architecture based on rigid
boosted templates for low power of 22.5mW and low energy
per pixel of 0.54 nJ/pixel
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Fig. 1. Illustration of multi-class object detection (e.g., face, traffic sign, car
license plate, pedestrian) with 10 channels, 17 scales, 2000 weak classifiers,
and non-maximum suppression.

Many object detection algorithms have been using the
classification models that are trained on features instead of
pixels [1-6]. Hand-crafted features such as the well-known
HOG have been traditionally used in object detection including
the Viola-Jones algorithm [1], DPM [2], and HeadHunter
model [3]. Recently, learned features such as convolutional
neural networks (CNNs) have been widely used [4-6]. In
general, the CNN learned features outperform the hand-crafted
features for object detection accuracy and the hand-crafted
features are more energy-efficient than the learned features for
hardware implementations. Reference [14] shows the
comparison results between two chips: [15] implements the
hand-crafted feature using HOG, and [16] implements the
learned feature using CNN. Although learned features can
reportedly achieve more than 2x average precision (~30 vs.
~65), the accompanying energy consumption per pixel becomes
four orders of magnitude higher than that using HOG features.
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In this work, we employ the HeadHunter model based on rigid
templates [3], which achieves state-of-the-art face detection
accuracies on AFW [17], FDDB [18], and Pascal VOC [19]
datasets compared to other works [2, 4].

Our ASIC accelerator is based on a strong multi-channel
including 6 HOGs and 3 LUV and multi-scale model with rigid
boosted templates [3], which can detect objects by performing
integral of random rectangular regions based on the trained
models. We designed a 2,000-stage classifier, where the
number of stages used for classification can be adaptively
controlled depending on the content of the search window, and
can be implemented with a more modular hardware, compared
to classification with SVM and DPM [9-12]. Embodying these
unique features for comprehensive object detection, an
integrated accelerator chip was fabricated in 65nm CMOS to
demonstrate real-time programmable object detection. Multi-
class object detection is illustrated in Fig. 1, including the
measurement results (localized objects) from the prototype
chip. Power consumption is further optimized through
configurable search stride and re-use of integral computation
results for overlapping search windows.

This paper is organized as follows. Section II explains the
HeadHunter algorithm in detail. We introduce the system
architecture of the proposed hardware accelerator including
detailed features of main modules and hardware optimization
techniques in Section III. Section IV presents the proposed
algorithm adaptations that were employed to improve the
hardware efficiency. The chip implementation and evaluation
results are described in Section V. We conclude this paper in
Section VI.

II. OVERVIEW OF THE OBJECT DETECTION ALGORITHM
(HEADHUNTER MODEL)

A HeadHunter model is proposed in [3] using a small set of
rigid templates (i.e., without deformable parts), which reported
state-of-the-art face detection accuracies on AFW [17], FDDB
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Fig. 2. (a) Multiple channel features with six HOGs, a gradient magnitude, and LUV color space. (b) The concept of fast computation for an area sum using

integral image. The figure is inspired by [1]

. (¢) Conceptual operation of 2,000 weak classifiers.



[18], and Pascal VOC [19] datasets. This model has four main
features: (1) using multiple channels including 7 HOG channels
and LUV color channels, (2) employing integral channel
detector for fast feature computation, (3) 2,000 Adaboost weak
classifiers containing shallow boosted trees of depth two (three
stumps per tree), and (4) combining a set of rigid templates
instead of using a single template per object category.

1) Multi-Channel features: Fig. 2(a) shows the multiple
channel features employed in the HeadHunter algorithm,
including LUV color channels and 7 HOG features (1
gradient magnitude and 6 quantized orientations). Features
are extracted from the input image using integral pixel
computation, as shown in Fig. 2(b). Reference [3] reported
that the color channel information improves detection
accuracy compared to the case of only using HOG channels,
since certain objects (especially faces) have a discriminative
color distribution. In addition, [20] showed that LUV color
channels improved better accuracy comparing to other color
channels such as grayscale, RGB, and YUV.

2) Integral channel detector: The use of an integral image as
summed area table was first proposed in Viola-Jones
algorithm [1]. This idea is examined by the integral channel
feature framework in [20]. Integral data at (x,y) represents
the sum of all the pixels above and to the left and then any
rectangle features can be computed very rapidly using an
intermediate representation for the image, as shown in Fig.
2(b).

3) Adaboost weak classifiers: A number of weak classifiers can
be boosted to build a strong classifier. In this work, we
employ 2,000 Adaboost weak classifiers for a robust system
inspired by [3]. Fig. 2(c) shows the concept of the classifier
operation. The 2,000 weak classifiers use pooling over
rectangular regions as features. Each weak classifier
computes this pooling operation and the 1% node compares
with a given threshold to decide which of the two 2™ nodes
should be computed. Depending on the 2™ node result, the
weight corresponding to the classifier is either added or
subtracted from the final score. After computing 2,000 weak
classifiers, the final score is compared with a configurable
threshold to determine if the search window has an object.

4) Rigid boosted templates: A rigid template approach can
achieve high-speed object detection, but less detection
accuracy, compared to DPM which has high computational
cost [15]. HeadHunter model combined a small set of rigid
templates that are separately used to capture intra-class
diversity of objects, which can be boosted to build a strong
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Fig. 3. High-level pseudo-code of the overall object detection operation (left)
and corresponding modular nested structure on hardware (right).

detector. In our proposed hardware accelerator, we can use
up to five different templates due to a limit on the on-chip
memory size.

The training dataset employed for face detector is the AFLW
dataset [21], from which cropped faces are used as positive
samples. For negative samples, random images from the Pascal
VOC dataset [19] that do not have any person were used. The
other training datasets such as traffic sign data, car license plate,
and pedestrian are collected and labeled by the authors in a
custom manner. During the training procedure, the object
detection model first randomly generates a large feature pool
and selects the best weak classifier on samples, and then
increases the weight for difficult samples in each round. After
all the stages of the detector are generated, it further collects the
difficult negative samples to perform bootstrap training.

Each weak classifier contains a two-level decision tree for
each of the five trained models: one frontal object model, two
side views and two mirrored models. The input image is first
scaled with scaling factors ranging from 0.2% to 3% to enable
detection of various sizes of objects. All five trained models are
evaluated separately for a sliding window that sweeps the entire
image. The outputs of all weak classifiers are combined and
compared with a threshold to allocate the bounding box for an
object along with a score. The bounding boxes from all the
scales are passed through a non-maximum suppression (NMS)
stage, which selects one box with the highest score, and
removes other redundant overlapping ones. High-level pseudo-
codes of the object detection algorithm that we implement and
the modular hardware structure are shown in Fig. 3.
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Fig. 4. Top-level block diagram and the end-to-end data flow of proposed object detection accelerator.
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III. ENERGY EFFICIENT HARDWARE ARCHITECTURE BASED
ON RIGID BOOSTED TEMPLATES

A. Hardware Architecture and Operation

Fig. 4 shows the top-level block diagram and data flow for
the model architecture in Fig. 3. To achieve high accuracy, the
classifier has five trained models, each with 2,000 weak
classifiers, which can consume significant time and energy in
the model evaluation.

1) Scale function

We use the search window size of 80x80 pixels, and detect
objects of various sizes by scaling the input image from 0.4x to
2.0x, with a step size of 0.1x. Bilinear interpolation method is
used to cover such wide range of scales. Each pixel in the scaled
image is computed from four pixel values in the input image,
which are stored into on-chip frame buffer. A 3x3 Gaussian
smoothing filter is applied on the scaled image using three line
buffers. Note that we support up-scaling up to 2.0x for robust
detection, which makes the SRAM size to be 186.5KB, a 3.7x
increase compared to the case of only supporting down-scaling.
2) Channel generation

This method uses 10 feature maps consisting of seven HOG
channels (1 gradient magnitude and 6 quantized orientations)
and LUV color space channels. The quantized orientation of
HOG is a weighted histogram where the gradient angle and
magnitude determine the bin index and the weight, respectively,
as shown in the following equation:

Qe(x,J’)=G(x,J’)'1[@(x,Y)=9]a (1)

where G(x,y) and O(x,y) are the gradient magnitude and
quantized gradient angle, respectively, at /(x,y) [20].

Piecewise linear approximation is used for complex non-linear
computations such as square and cube root. 7-bit precision is
used for channel data. Channels are then down-sampled by 4
and stored in SRAM blocks. To reduce the on-chip memory
size, we propose a compression method for six HOG features,
such that we reduce the number of SRAMs from 10 to 5 SRAMs
(details in Section III-B). Note that all processes such as
generating, down-sampling, storing, and loading for 10-channel
feature data are executed in parallel.
3) Integral function

Integral images defined over the 10 channels are used for fast
summation over random rectangular pooling regions. A key
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Fig. 6. Illustration of the down-sampling and storage of generated channel
data in (a) the baseline scheme and (b) the proposed scheme.

concern of the integral function scheme in terms of hardware
implementation is that a huge memory is needed to store
integral data. For example, we need a SRAM size of 234.4KB
for 8-bit precision data of QVGA (320%240) image to store an
entire of integral data. To reduce the memory size, we propose
that integration is performed over 12x10 windows and integral
data are stored within 160 (whole horizontal pixel)x32 size,
instead of an entire size of 160x120 (details in Section III-B).
4) Classifier operation

Fig. 5 shows the block diagram and data flow of the classifier
operation. The trained data of five different templates, each
with 2,000 weak classifiers are stored in SRAM. One of 10
SRAMs that store 10-channel integral data is selected by the
channel information given by the trained data, which means that
the 10-channel integral data should be ready altogether and be
accessible from the 10 SRAMs. The two row data in the
selected SRAM are loaded according to the coordinate
information from the trained data to use pooling over
rectangular regions as the feature. A Classifier Engine (CE)
computes the area of the rectangular region, and adds or
subtracts weights according to the results by comparing the area
with a threshold value given by the trained model. One hundred
forty one CE modules compute the weak classifier for all
horizontal search windows in parallel. After computing five
rigid templates, the classifier operation is iterated over different
vertical locations. During the detection process, all five
templates are evaluated over each search window and their
results are combined using NMS.
5) NMS function

Multiple scales, sliding windows and five different templates
result in a cluster of detections around a single object. NMS
method is used to select the best detection and remove the
redundant ones. In this work, we decided the maximum of
detectable objects per image to be 50, balancing the NMS
computation time. All detection results are sorted based on their
scores. If the overlap is greater than a 0.3 (adopted from [3]),
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Fig. 8. Pre-processing step for the NMS function is illustrated. The largest
detection result is stored at local registers while sliding the search window
within 30x30 pixels, such that 120 detection results that have overlap greater
than a 0.25 are suppressed.

then the detection was suppressed. After sorting the values from
all scales and templates, post-NMS result is used as the final
bounding box of the detected object in the image.

B. Hardware Optimization Techniques

We propose an adaptive pooling scheme when we perform
down-sampling by 4 after channel generation in order to reduce
SRAM size. The baseline algorithm [3] adopted 4x4 average
pooling for the down-sampling and 10 channels are stored into
SRAM as shown in Fig. 6(a). As illustrated in Fig. 6(b), we
proposed a compression technique for six HOG values for the
accelerator. Based on (1), the six HOG channel values are the
gradient magnitude value or zero according to the quantized
gradient angle. In other words, one of six HOGs is non-zero
while the rest of the five HOGs are zero at the same pixel
location. Based on this HOG feature, the six HOG values can
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be replaced to the index value indicating the non-zero HOG
channel after down-sampling, following the computation in (2).

4
Index(x,y) = arg max Z HOGi(x,y),j=1..6
J
x,y=1

2)

The other four channels are down-sampled by 4 with average
pooling. The index value and the data of four channels are then
stored at SRAM. This reduces the SRAM size for storing
channel data by ~2x without any degradation of accuracy. The
data of 6 HOG channels can be reproduced through the decoder
with index value from SRAM, as described in (3):

HOG;(x,y) = G(x,y) * 1[Index(x,y) = j] 3)
where G(x,y) and Index(x,y) are the gradient magnitude and the
index value, respectively, at /(x,y).

In addition, to reduce the number of bits in the integral data,
integration is performed over 12x10 windows. When pooling
over a 20x20 window, the offset from the previous integral
window is added to get the correct result. An example is
illustrated in Fig. 7. We can obtain the correct integral data at
location 4 with three appropriate offset values at location 1, 2,
and 3. The values of the integral image at location 1, 2, 3, and
4 are the sum of the pixels in rectangle A, B, C, and D,
respectively. The correct integral data at location 4 for 20 %20
window can be computed as A+B+C+D. By using a window
size of 12x10 for generating integral channel data, the number
of bits used for integral data is reduced to 14 bits (22 bits are
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Fig. 11. (a) 65nm prototype chip micrograph. (b) Chip measurement results
of multi-scale multi-object detection on face and traffic sign images.

required when integrating over the entire image), reducing the
SRAM size by 36%.

Furthermore, a pre-processing step for the NMS function was
introduced. There are 17 scales to process and each scale has a
very large number of search windows that produce object
detection results. To alleviate the large memory requirement to
store such many results, while sliding the search window in
each scaled image, we directly remove redundant boxes of the
detected object within specific ranges as shown in Fig. 8. This
reduces the computation time and SRAM size for NMS
function by 14-89% depending on the pixel stride (1-3). To
simplify the computation, we determined the fixed overlap ratio
threshold for each scaled image called intra-scale overlap
threshold to be a value (0.25) that minimally degrades AP based
on our experimental results. On the other hand, after completing

the pre-processing of NMS for the entire 17 scales, we perform
TABLEI
CHIP SPECIFICATIONS

Technology 65nm CMOS
Chip size 3.6x3.3 mm?
Core size 3.1x2.8 mm?

SRAM 339.9KB
Frame buffer 225KB (SRAM)
Input resolution 1920%1080
Supply voltage 0.58-1.1V
Clock frequency 100 — 250 MHz
Frame rate 20— 50 fps
Power 22.5-181.7mW
Energy 0.54 — 1.75 nJ/pixel

Fig. 12. System test environment.

NMS function to remove overlapping detection boxes with a
configurable inter-scale overlap threshold parameter.

Finally, instead of computing different weak classifiers in
parallel, we compute a single weak classifier across multiple
windows in parallel. As shown in Fig. 9, this re-uses data that
are overlapped among adjacent search windows, reducing the
number of memory access by 77x in average for 17 scales.

IV. ALGORITHM ADAPTATIONS FOR HARDWARE EFFICIENCY

As described in Section II, HeadHunter model based on a set
of rigid templates with Adaboost weak classifiers can be
implemented with a more modular hardware. We employ five
rigid templates in our hardware accelerator and have five
trained models for face detection. On the other hand, we only
have one trained model for other object classes, such as traffic
sign, car license plate, and pedestrian. We propose a multi-class
object detection method using five rigid templates. When using
five different types of trained models for different object classes
through five rigid templates, we can detect up to five different
object classes simultaneously. Since we can use five different
rigid templates for different types of object classes instead of
using a set of rigid templates for single object class, the
proposed method can detect multiple object classes at the same
time without any hardware redundancy, in contrast to [9, 12].
The architectures in [9, 12] have two classifier engines to detect
two object classes. In this work, since we have only four types
of trained models for face, traffic sign, car license plate, and
pedestrian, we are capable of detecting four object classes at the
same time.

In addition, we employ 2,000 Adaboost weak classifiers to
build a strong classifier similar to [3]. The experimental results
in [3] described that 83.35% and 85.57% average precision
were obtained with 200 weak classifiers and 2,000 weak
classifiers, respectively. To reduce the computation load from
the large number of weak classifiers with less degradation in the
detection accuracy, we propose two efficient techniques:
adaptive cascading and weight re-ordering, as shown in Fig. 10.
Adaptive classifier cascading is proposed to dynamically scale
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the amount of classifier computation based on input images. We
intermittently check the sum of classifiers with a configurable
subset of 2,000 classifiers (e.g., 400 as shown in Fig. 10)
whether it is higher than a conservative upper threshold or
smaller than a lower threshold value, in which case the true or
false object detection result is determined without going
through 2,000 classifiers. After going through a subset of
classifiers, if the intermediate result in a search window is
strongly positive or negative compared to the object threshold,
the remaining classifier operations are skipped. In weight re-
ordering, based on our proposed adaptive classifier cascading
scheme, the weak classifiers with higher weight values are
computed first. This helps the intermediate result to reach a
strongly positive or negative value earlier, and therefore we can
expedite the detection of an object. The proposed techniques
achieved 5.5% speed-up while having less than 1% degradation
in the average precision.

Furthermore, we employed a number of configurable
parameters in the algorithm and the implemented hardware, in
order to show the trade-offs of performance/accuracy and
power. These include (1) the number of different scales (up to
17) and various scale factors (0.4% to 2.0x with as low as 0.1x
step), (2) programmable horizontal and vertical stride (1-3

TABLE II
POWER BREAKDOWN WITH VARIOUS CONFIGURATIONS

Configl Config2 Config3 Config4

Number of scal 17 8 8 8
UMDErOLSeales | 0.42.0%) | (0.4-1.8%) | (0.4-1.5%) | (0.4-1.5%)

Pixel stride ! 1,23 1,23 1,23 Max
Adaptive stage * 500 500 400 400
Logic power ?
@/(b) (mW) @ 1.0V 20/120 20/110 20/93 20/85.5
SRAM power *
(@)/(b) (mW) @ 1.0V 20/48 20/43 20/37 20/34
Total power
(mW) @ 1.0V 215 193 170 159.5
Frame rate (fps) 10.7 22.7 30.3 39.5

''(1,2,3): pixel stride pre-configured 1 - 3 based on scale (small->large)
(Max): pixel stride is 2 for horizontal, 3 for vertical
2 Classification stage when sum is compared with upper/lower threshold
34 (a): pre-processing of image, (b): integral and classification processing
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Fig. 15. Precision-recall curves on the FDDB datasets for the different number
of weak classifiers in our proposed adaptive classifier cascading
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Fig. 16. Precision-recall curves on the FDDB datasets for the various number
of scale factors.

pixels) for the sliding search window, (3) threshold for object
classification, and (4) variable inter-scale overlap ratio for
NMS (0.25-0.55).

V. 65NM IMPLEMENTATION RESULTS

The proposed ASIC accelerator was implemented in 65nm
CMOS. The chip micrograph is shown in Fig. 11(a), where the
total area is 3.1x2.8 mm?, including the input image buffer. Fig.
11(b) shows the output of the prototype chip that demonstrates



TABLE III
DELAY TIME, POWER, ENERGY VERSUS DIFFERENT NUMBER OF STAGES IN ADAPTIVE CASCADING
200 stages 300 stages 500 stages 1000 stages | 1500 stages | 2000 stages
Delay time (ms) 229 28.5 39.8 63.6 98.3 127.1
Power (mW) @ 1.0V 156.6 170.5 172.6 184.3 185.2 187.1
Energy (nJ/pixel) 1.73 2.34 331 5.65 8.78 11.47

multi-scale multi-object detection for face, traffic sign, car
license plate and pedestrian detection, where bounding boxes
(measured chip outputs) are drawn on top of the input image to
localize the detected objects. The chip specifications are
summarized in Table I.

Fig. 12 shows the prototype chip measurement environment
and system that was used to evaluate real-time object detection.
It is composed of the custom PCB that mounts the 65nm
prototype chip, a FPGA board, a HDMI interface board, and a
LCD display. Our prototype chip performs end-to-end object
detection, where it takes an input video data and outputs the
video data enclosing a detected object with a final bounding
box. All the image processing and computations for object
detection are done in the prototype chip. We only use the FPGA
board to configure the chip and read information of detected
object such as coordinate and score to evaluate the accuracy.

Note that we down-sampled higher-resolution images (up to
full HD 1920x1080) to QVGA (320%240) to store an entire of
input frame image in the on-chip frame buffer instead of using
external storage such as DRAM. Then, on-chip QVGA input
frame buffer was used to scale images on-the-fly for 17 scales
and iteratively compute the same sliding window. In other
words, our chip demonstrated object detection for full HD
resolution images with down-sampling as a pre-processing step.
Since a down-sampled pixel is only read in the pre-processing

[ down+up-scaling [l only down-scaling

4.6Mb

215mW 48.9 0.81

SRAM Power Frame/s AP

(down+up-scaling) (only down-scaling)
(b)

Fig. 17. (a) Design comparison using up-/down-scaling. (b) Measurement
results show that smaller faces can be detected through up-scaling.

step while the full HD videos is transmitted in a row raster scan
order, no extra process such as interpolation is required. An
alternative would be to use a single-size image and scale the
sliding window for a number of scales. This method will have
a smaller on-chip frame buffer, but will require a larger memory
for trained models that increases with the number of scale
factors. Performing a fine-grain search on a lower-resolution
image is more favorable than a coarse-grain search on a high-
resolution image, due to the reduction in image sensor power
and data communication.

To characterize the object detection accuracy, performance,
and power consumption, we used the AFW and FDDB database
[17, 18] for face detection, the BTSD database [22] for traffic
sign detection, Caltech database [23] for car license plate
detection, and INRIA database [24] for pedestrian detection.
The measured chip performance (frames per second) and
total/leakage power consumption with dynamic voltage scaling
are shown in Fig. 13. Full object detection functionality was
verified down to 0.58V, where the chip performs real-time
detection at 20.1 fps with 22.5mW power. In Table II, the power
breakdown in logic and memory at the nominal voltage as 1.0V
is detailed for four different chip configurations, where the
number of scales, pixel stride, and the classification stage are
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Fig. 18. (a) Area and (b) power breakdown of the overall system.



TABLE1V.
COMPARISON TO PRIOR ASIC WORKS ON OBJECT DETECTION
Based on hand-crafted features Based on CNN-learned features
This work
[9] [10] [11] [12] [27] [28] [29]
CMOS Tech. 65nm 40nm 45nm SOI 65nm 65nm 65nm 55nm 65nm
Chip size 3.3x1.2 mm? | 2.58x2.27 mm? | 2.8%0.96 mm? | 3.58x3.58 mm’ 4x4 mm? 3.8x3.8 mm? | 3.3x3.1 mm?® 3.1x2.8 mm?
Image Full HD HD Full HD Full HD 224x224 448x448 416x416 Full HD
resolution
Channel 9 HOG 1 9 HOG 9 HOG RNN-FIS Yolov2 | YoloV2il5h0G+3 LU
Feature Yolo tiny
# of scales single single 12 (all down) | 12 (all down) single single single 17 (6 down, 11 up)
Classifier SVM zci:ct:gg SVM SVM, DPM RNN CNN CNN 2000-stage cascade
Object classes 2 1 1 2 - - - 4
AP=0.88 (FDDB),
Fi=93% AP=0.596 0.81 (AFW),
—0X0, —| =
Accuracy ( glng[szgo]) (custom ?I;ROI/S%; (VA(;)C 2'337) - - (VOC 2007, 0.72 (BTSD),
dataset) 2012) 0.76 (Caltech),
0.54 (INRIA)
Frame rate 30 fps 5.5 fps 60 fps 30-60 fps 30 fps 12.05 fps 5.5/27.7 fps 20-50 fps
Power 84mW 23mW 45.3mW 58.6-216.5mW 330mW 280mW 68mW 22.5-181.7mW
(@0.7V) (@0.6V) (@0.72V) (@0.77-1.11V) (@1.2V) (@1.1V) (@0.58-1.1V)
. . . 0.94-1.74 . 116.6 77.37/14.2 .
Energy 1.35 nJ/pixel 4.5 n)/pixel 0.36 nJ/pixel nlpixel 15.3 nJ/pixel nlpixel nlpixel 0.54-1.75 nJ/pixel

varied to check intermediate sum for adaptive cascading. With
regards to voltage scaling, the power/energy values in Table II
and Table III also scales down in a similar manner that is
reported in Fig. 13.

Fig. 14 shows the precision versus recall (PR) curves [25] of
the prototype chip measured for AFW, FDDB, BTSD, Caltech
car license plate, and INRIA person datasets. The average
precision (AP) can be computed as the area under the PR curve.
We achieved AP of 0.876 and 0.806 for the FDDB and AFW
datasets for face detection, respectively. For traffic sign
detection, we achieved AP of 0.72 for the BTSD dataset. We
achieved AP of 0.763 for the Caltech dataset for car license
plate detection. For pedestrian detection, we achieved AP of
0.541 for the INRIA dataset. Since our proposed system
supports input image resolution up to full HD (1920x1080) with
down-sampling into QVGA (320%x240) as a pre-processing
step, images that are over full HD size in the AFW and BTSD
datasets are cropped to full HD size. However, note that we
used the original annotation data of AFW and BTSD datasets in
our AP measurements. In other words, we counted the number
of objects that were not detected as false negatives due to
truncated or lost objects after cropping the images.

Fig. 15 shows the AP values for the FDDB datasets with
various stage number when using our proposed adaptive
classifier cascading methods. We achieved AP of 0.862 with
200 stages in the adaptive cascading scheme, which is only
0.85% degradation in the average precision comparing to the
AP of 0.869 with 2,000 stages (i.e., without the adaptive
cascading scheme). Note that this AP degradation represents a
~3x reduction (0.85% vs. 2.22%) compared to the experimental
results of [3]. In addition, the AP measured results with the

detection quality versus number of scale factors is shown in the
Fig. 16. We achieved the similar accuracy as AP of 0.862 in the
nine scale factors from 0.4x to 2.0x, with a step size of 0.2%,
comparing to the all (17) scale factors. For the six scale factors,
we achieved AP of 0.843 in the FDDB dataset with a small
amount of degradation. However, the AP value decreased
somehow when using the five scale factors, and especially,
there is significant deterioration in the four scale factors using
only down-scaling. Table III summarized the measurement
results of delay time, power, and energy with the different
number of weak classifier stages in our proposed adaptive
cascading technique. Comparing to our system without
adaptive cascading skill, the proposed adaptive cascading
method with 200 weak classifier stages reduced the total delay
time of system by 5.5% and achieved 16.3% power reduction.
Our proposed accelerator using adaptive cascading method
reduces the overall system energy consumption by 6.6x.

Furthermore, through 2x up-scaling, our design can detect
objects as small as 40x40 pixels, which is much smaller than
the detectable objects in previous works [9-12]. Fig. 17 shows
the comparison between the designs when only down-scaling
(0.4-1.0x) was used and when both up-scaling and down-
scaling (0.4-2.0x) are used. Up-scaling improves the AP
significantly at the expense of moderate memory/power
increase.

Fig. 18 shows the area and measured power breakdown of
the prototype chip. 63% of the total chip area is occupied by on-
chip SRAM arrays, due to the requirement to store the trained
models, integral data, input image frame buffer, etc. On the
other hand, 66% of the total chip power was consumed by logic
components due to high activity factors, where the power of the



classifiers (56% of chip power) dominated.

Table IV shows the comparison with hand-crafted features
based object detection accelerators [9-12]. The architecture in
[10] achieved low power consumption similar to this paper, but
the energy per pixel value is much higher than this work due to
the lower image resolution and frame rate. The implementation
in [11] achieved low energy per pixel number with high frame
rate, but it was post-layout results. In addition, the accuracy in
[11] is lower than this paper. Two object detection accelerators
are presented in [9] and [12]. Both accelerators process full HD
videos in real-time and support multiple object detection similar
to this work. However, our proposed accelerator employs color
based LUV channels and fine-grained up-scaling, which
increase the detection accuracy and robustness, while achieving
60% and 42.5% energy/pixel reduction compared to [9] and
[12], respectively. Note that our work evaluated AP across
multiple datasets for multiple object classes, the most among
any prior works [9-12]. In addition, our proposed accelerator is
compared with CNN-learned feature based object detection
accelerators [27-29]. Note that we calculated the energy per
pixel numbers based on the energy efficiency numbers in [27-
29]. The reference [27] proposed an advanced driver-assistance
system (ADAS) processor that achieved 0.862 TOPS/W with a
4-layer recurrent neural network (RNN) connected to a fuzzy
inference system (FIS), but the energy per pixel value is 28x
higher than our accelerator. Two CNN processors for object
detection are presented in [28-29]. Both processors
implemented YOLO CNN [30], which is a representative end-
to-end object detection CNN model. As a reconfigurable
hybrid-NN processor, Thinker [28] achieved 1.26 TOPS/W for
YOLO V2, but the energy consumption per pixel of our work
is 216% less than that of Thinker. The CNN design in [29]
achieved high energy efficiency of 2.2 TOPS/W and good
accuracy of 0.6 mAP for VOC 2007 and VOC 2012 [19]
datasets. However, due to the lower image resolution
(416%416) the energy per pixel is 143% and 26x higher than our
proposed work.

VI. CONCLUSION

In this paper, we presented a 65nm accelerator for real-time
programmable object detection. The accelerator employed
HeadHunter model based on a set of five rigid templates with
2,000 Adaboost weak classifiers. A large number of classifiers
are used to make a strong object classification, and adaptive
cascade is realized for dynamic computation scaling. High
average precision of 0.88, 0.81, 0.76, 0.72 and 0.54 was
achieved in FDDB, AFW, Caltech car plate, BTSD, and INRIA
person datasets, respectively, by using integral channel features
on 7 HOG and 3 LUV channels, 17 scale factors with 6 down-
scaling and 11 up-scaling, configurable thresholding, adaptive
cascading classification, and optimal non-maximum
suppression. The accelerator achieved 0.54/1.75 nJ/pixel while
consuming 22.5/181.7 mW at 0.58/1.1V with 20/50 fps in full
HD videos, respectively. The hardware optimization techniques
reduced on-chip SRAM size by overall 2.9%. Our proposed
adaptive classifier cascading method achieved an overall 6.6%
energy per pixel reduction. The capability of programmable and
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voltage-/performance-scalable many-object detection will
enhance smart vision processors in ubiquitous mobile systems.
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