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Abstract—Machine learning has become ubiquitous in 

applications including object detection, image/video classification, 

and natural language processing. While machine learning 

algorithms have been successfully used in many practical 

applications, accurate, fast, and low-power hardware 

implementations of such algorithms is still a challenging task, 

especially for mobile systems such as Internet of Things (IoT), 

autonomous vehicles, and smart drones. This paper presents an 

energy-efficient programmable ASIC accelerator for object 

detection. Our ASIC accelerator supports multi-class (e.g., face, 

traffic sign, car license plate, and pedestrian) that are 

programmable, many-object (up to 50) in one image with different 

sizes (17-scale support with 6 down-/11 up-scaling), and high 

accuracy (AP of 0.87/0.81/0.72/0.76 for FDDB/AFW/BTSD/ 

Caltech datasets). We designed an integral channel detector with 

2,000 classifiers for rigid boosted templates, where the number of 

stages used for classification can be adaptively controlled 

depending on the content of the search window. This can be 

implemented with a more modular hardware, compared to 

support vector machine (SVM) and deformable parts model 

(DPM) designs. By jointly optimizing the algorithm and the 

efficient hardware architecture, the prototype chip implemented 

in 65nm CMOS demonstrates real-time object detection of 20-50 

frames/s with low power consumption of 22.5-181.7mW (0.54-1.75 

nJ/pixel) at 0.58-1.1V supply. 

 
Index Terms—object detection, machine learning, classification, 

real-time, low-power, special-purpose accelerator 

 

I. INTRODUCTION 

BJECT detection is essential for intelligent computer 

vision applications such as augmented reality (AR), 

advanced driver assistant systems (ADAS), autonomous 

control in unmanned aerial vehicles (UAV), smart drones, 

surveillance systems, and Internet of Things (IoT). Real-time, 

high accurate and energy-efficient object detection is an 

essential task for these applications. While significant 

improvement has recently been made in algorithms [1-6], 

hardware designs using general-purpose processors such as 
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CPUs, GPUs [7], and FPGAs [8] do not provide satisfactory 

energy efficiency and speed in order to make real-time 

decisions within the power envelope of embedded systems. 

This is due to high computational complexity that varies with 

algorithms and the large memory/communication requirement 

independent of input, which generates significant data 

movement that can be as energy consuming as computation. 

Special-purpose ASICs for object detection have been 

previously proposed [9-12]. A real-time object detection engine 

using a Histogram of Oriented Gradients (HOG) feature 

extraction in Support Vector Machine (SVM) was presented in 

[9]. However, the implementation only supported one scale 

factor, limiting the detection accuracy and robustness. The 

authors of [10] designed a specialized engine for face detection 

and recognition with low power consumption of 23mW, but 

was not able to support multi-scale factors or multiple faces. 

Multi-scale pedestrian detection was achieved in [11] with 12 

scale factors, but only down-scaling was used, limiting the 

detection of objects with small number of pixels. A multi-object 

detection accelerator with Deformable Parts Model (DPM) was 

implemented in [12] with two programmable object 

classification engines for 58.6mW power consumption, but still 

only supported down-scaling. 

In this paper, we propose an energy-efficient programmable 

ASIC accelerator [13] for object detection that overcomes the 

above limitations:  

• Multiple classes (e.g., face, traffic sign, car license plate, 

pedestrian) that are programmable in the accelerator 

• Many objects (up to 50) in one image with multiple scales 

(17-scale support with 6 down-scaling and 11 up-scaling) 

• High accuracy (average precision of 0.87/0.81/0.72/0.76/ 

0.53 in FDDB/AFW/BTSD/Caltech plate/INRIA Person 

datasets) comparable to state-of-the-art algorithms 

• Energy-efficient hardware architecture based on rigid 

boosted templates for low power of 22.5mW and low energy 

per pixel of 0.54 nJ/pixel 
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Many object detection algorithms have been using the 

classification models that are trained on features instead of 

pixels [1-6]. Hand-crafted features such as the well-known 

HOG have been traditionally used in object detection including 

the Viola-Jones algorithm [1], DPM [2], and HeadHunter 

model [3]. Recently, learned features such as convolutional 

neural networks (CNNs) have been widely used [4-6]. In 

general, the CNN learned features outperform the hand-crafted 

features for object detection accuracy and the hand-crafted 

features are more energy-efficient than the learned features for 

hardware implementations. Reference [14] shows the 

comparison results between two chips: [15] implements the 

hand-crafted feature using HOG, and [16] implements the 

learned feature using CNN. Although learned features can 

reportedly achieve more than 2× average precision (~30 vs. 

~65), the accompanying energy consumption per pixel becomes 

four orders of magnitude higher than that using HOG features. 

In this work, we employ the HeadHunter model based on rigid 

templates [3], which achieves state-of-the-art face detection 

accuracies on AFW [17], FDDB [18], and Pascal VOC [19] 

datasets compared to other works [2, 4].  

Our ASIC accelerator is based on a strong multi-channel 

including 6 HOGs and 3 LUV and multi-scale model with rigid 

boosted templates [3], which can detect objects by performing 

integral of random rectangular regions based on the trained 

models. We designed a 2,000-stage classifier, where the 

number of stages used for classification can be adaptively 

controlled depending on the content of the search window, and 

can be implemented with a more modular hardware, compared 

to classification with SVM and DPM [9-12]. Embodying these 

unique features for comprehensive object detection, an 

integrated accelerator chip was fabricated in 65nm CMOS to 

demonstrate real-time programmable object detection. Multi-

class object detection is illustrated in Fig. 1, including the 

measurement results (localized objects) from the prototype 

chip. Power consumption is further optimized through 

configurable search stride and re-use of integral computation 

results for overlapping search windows. 

This paper is organized as follows. Section II explains the 

HeadHunter algorithm in detail. We introduce the system 

architecture of the proposed hardware accelerator including 

detailed features of main modules and hardware optimization 

techniques in Section III. Section IV presents the proposed 

algorithm adaptations that were employed to improve the 

hardware efficiency. The chip implementation and evaluation 

results are described in Section V. We conclude this paper in 

Section VI. 

II. OVERVIEW OF THE OBJECT DETECTION ALGORITHM 

(HEADHUNTER MODEL) 

A HeadHunter model is proposed in [3] using a small set of 

rigid templates (i.e., without deformable parts), which reported 

state-of-the-art face detection accuracies on AFW [17], FDDB 

 

 

 

(a) 

 

(b) (c) 

Fig. 2.  (a) Multiple channel features with six HOGs, a gradient magnitude, and LUV color space. (b) The concept of fast computation for an area sum using 

integral image. The figure is inspired by [1]. (c) Conceptual operation of 2,000 weak classifiers. 

 
Fig. 1.  Illustration of multi-class object detection (e.g., face, traffic sign, car 

license plate, pedestrian) with 10 channels, 17 scales, 2000 weak classifiers, 
and non-maximum suppression. 
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[18], and Pascal VOC [19] datasets. This model has four main 

features: (1) using multiple channels including 7 HOG channels 

and LUV color channels, (2) employing integral channel 

detector for fast feature computation, (3) 2,000 Adaboost weak 

classifiers containing shallow boosted trees of depth two (three 

stumps per tree), and (4) combining a set of rigid templates 

instead of using a single template per object category. 

1) Multi-Channel features: Fig. 2(a) shows the multiple 

channel features employed in the HeadHunter algorithm, 

including LUV color channels and 7 HOG features (1 

gradient magnitude and 6 quantized orientations). Features 

are extracted from the input image using integral pixel 

computation, as shown in Fig. 2(b). Reference [3] reported 

that the color channel information improves detection 

accuracy compared to the case of only using HOG channels, 

since certain objects (especially faces) have a discriminative 

color distribution. In addition, [20] showed that LUV color 

channels improved better accuracy comparing to other color 

channels such as grayscale, RGB, and YUV. 

2) Integral channel detector: The use of an integral image as 

summed area table was first proposed in Viola-Jones 

algorithm [1]. This idea is examined by the integral channel 

feature framework in [20]. Integral data at (x,y) represents 

the sum of all the pixels above and to the left and then any 

rectangle features can be computed very rapidly using an 

intermediate representation for the image, as shown in Fig. 

2(b). 

3) Adaboost weak classifiers: A number of weak classifiers can 

be boosted to build a strong classifier. In this work, we 

employ 2,000 Adaboost weak classifiers for a robust system 

inspired by [3]. Fig. 2(c) shows the concept of the classifier 

operation. The 2,000 weak classifiers use pooling over 

rectangular regions as features. Each weak classifier 

computes this pooling operation and the 1st node compares 

with a given threshold to decide which of the two 2nd nodes 

should be computed. Depending on the 2nd node result, the 

weight corresponding to the classifier is either added or 

subtracted from the final score. After computing 2,000 weak 

classifiers, the final score is compared with a configurable 

threshold to determine if the search window has an object. 

4) Rigid boosted templates: A rigid template approach can 

achieve high-speed object detection, but less detection 

accuracy, compared to DPM which has high computational 

cost [15]. HeadHunter model combined a small set of rigid 

templates that are separately used to capture intra-class 

diversity of objects, which can be boosted to build a strong 

detector. In our proposed hardware accelerator, we can use 

up to five different templates due to a limit on the on-chip 

memory size. 

The training dataset employed for face detector is the AFLW 

dataset [21], from which cropped faces are used as positive 

samples. For negative samples, random images from the Pascal 

VOC dataset [19] that do not have any person were used. The 

other training datasets such as traffic sign data, car license plate, 

and pedestrian are collected and labeled by the authors in a 

custom manner. During the training procedure, the object 

detection model first randomly generates a large feature pool 

and selects the best weak classifier on samples, and then 

increases the weight for difficult samples in each round. After 

all the stages of the detector are generated, it further collects the 

difficult negative samples to perform bootstrap training. 

Each weak classifier contains a two-level decision tree for 

each of the five trained models: one frontal object model, two 

side views and two mirrored models. The input image is first 

scaled with scaling factors ranging from 0.2× to 3× to enable 

detection of various sizes of objects. All five trained models are 

evaluated separately for a sliding window that sweeps the entire 

image. The outputs of all weak classifiers are combined and 

compared with a threshold to allocate the bounding box for an 

object along with a score. The bounding boxes from all the 

scales are passed through a non-maximum suppression (NMS) 

stage, which selects one box with the highest score, and 

removes other redundant overlapping ones. High-level pseudo-

codes of the object detection algorithm that we implement and 

the modular hardware structure are shown in Fig. 3. 

 

 

 
 

 

Fig. 4.  Top-level block diagram and the end-to-end data flow of proposed object detection accelerator. 

 
Fig. 3.  High-level pseudo-code of the overall object detection operation (left) 

and corresponding modular nested structure on hardware (right). 
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III. ENERGY EFFICIENT HARDWARE ARCHITECTURE BASED 

ON RIGID BOOSTED TEMPLATES 

A. Hardware Architecture and Operation 

Fig. 4 shows the top-level block diagram and data flow for 

the model architecture in Fig. 3. To achieve high accuracy, the 

classifier has five trained models, each with 2,000 weak 

classifiers, which can consume significant time and energy in 

the model evaluation. 

1) Scale function  

We use the search window size of 80×80 pixels, and detect 

objects of various sizes by scaling the input image from 0.4× to 

2.0×, with a step size of 0.1×. Bilinear interpolation method is 

used to cover such wide range of scales. Each pixel in the scaled 

image is computed from four pixel values in the input image, 

which are stored into on-chip frame buffer. A 3×3 Gaussian 

smoothing filter is applied on the scaled image using three line 

buffers. Note that we support up-scaling up to 2.0× for robust 

detection, which makes the SRAM size to be 186.5KB, a 3.7× 

increase compared to the case of only supporting down-scaling. 

2) Channel generation 

This method uses 10 feature maps consisting of seven HOG 

channels (1 gradient magnitude and 6 quantized orientations) 

and LUV color space channels. The quantized orientation of 

HOG is a weighted histogram where the gradient angle and 

magnitude determine the bin index and the weight, respectively, 

as shown in the following equation: 

 

               𝑄𝜃(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) ∙ 1[𝛩(𝑥, 𝑦) = 𝜃], (1) 

 

where G(x,y) and Θ(x,y) are the gradient magnitude and 

quantized gradient angle, respectively, at I(x,y) [20]. 

 

Piecewise linear approximation is used for complex non-linear 

computations such as square and cube root. 7-bit precision is 

used for channel data. Channels are then down-sampled by 4 

and stored in SRAM blocks. To reduce the on-chip memory 

size, we propose a compression method for six HOG features, 

such that we reduce the number of SRAMs from 10 to 5 SRAMs 

(details in Section III-B). Note that all processes such as 

generating, down-sampling, storing, and loading for 10-channel 

feature data are executed in parallel. 

3) Integral function  

Integral images defined over the 10 channels are used for fast 

summation over random rectangular pooling regions. A key 

concern of the integral function scheme in terms of hardware 

implementation is that a huge memory is needed to store 

integral data. For example, we need a SRAM size of 234.4KB 

for 8-bit precision data of QVGA (320×240) image to store an 

entire of integral data. To reduce the memory size, we propose 

that integration is performed over 12×10 windows and integral 

data are stored within 160 (whole horizontal pixel)×32 size, 

instead of an entire size of 160×120 (details in Section III-B). 

4) Classifier operation 

Fig. 5 shows the block diagram and data flow of the classifier 

operation. The trained data of five different templates, each 

with 2,000 weak classifiers are stored in SRAM. One of 10 

SRAMs that store 10-channel integral data is selected by the 

channel information given by the trained data, which means that 

the 10-channel integral data should be ready altogether and be 

accessible from the 10 SRAMs. The two row data in the 

selected SRAM are loaded according to the coordinate 

information from the trained data to use pooling over 

rectangular regions as the feature. A Classifier Engine (CE) 

computes the area of the rectangular region, and adds or 

subtracts weights according to the results by comparing the area 

with a threshold value given by the trained model. One hundred 

forty one CE modules compute the weak classifier for all 

horizontal search windows in parallel. After computing five 

rigid templates, the classifier operation is iterated over different 

vertical locations. During the detection process, all five 

templates are evaluated over each search window and their 

results are combined using NMS. 

5) NMS function 

Multiple scales, sliding windows and five different templates 

result in a cluster of detections around a single object. NMS 

method is used to select the best detection and remove the 

redundant ones. In this work, we decided the maximum of 

detectable objects per image to be 50, balancing the NMS 

computation time. All detection results are sorted based on their 

scores. If the overlap is greater than a 0.3 (adopted from [3]), 

 
Fig. 5.  Block diagram and data flow of classifier operation. 

  

 
(a) 

 
(b) 

 
Fig. 6.  Illustration of the down-sampling and storage of generated channel 

data in (a) the baseline scheme and (b) the proposed scheme. 
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then the detection was suppressed. After sorting the values from 

all scales and templates, post-NMS result is used as the final 

bounding box of the detected object in the image. 

B. Hardware Optimization Techniques 

We propose an adaptive pooling scheme when we perform 

down-sampling by 4 after channel generation in order to reduce 

SRAM size. The baseline algorithm [3] adopted 4×4 average 

pooling for the down-sampling and 10 channels are stored into 

SRAM as shown in Fig. 6(a). As illustrated in Fig. 6(b), we 

proposed a compression technique for six HOG values for the 

accelerator. Based on (1), the six HOG channel values are the 

gradient magnitude value or zero according to the quantized 

gradient angle. In other words, one of six HOGs is non-zero 

while the rest of the five HOGs are zero at the same pixel 

location. Based on this HOG feature, the six HOG values can 

be replaced to the index value indicating the non-zero HOG 

channel after down-sampling, following the computation in (2).  

            

𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑦) = 𝑎𝑟𝑔max
𝑗

[ ∑ 𝐻𝑂𝐺𝑗(𝑥, 𝑦), 𝑗 = 1…6

4

𝑥,𝑦=1

] 

 (2) 

 

The other four channels are down-sampled by 4 with average 

pooling. The index value and the data of four channels are then 

stored at SRAM. This reduces the SRAM size for storing 

channel data by ~2× without any degradation of accuracy. The 

data of 6 HOG channels can be reproduced through the decoder 

with index value from SRAM, as described in (3): 

 

               𝐻𝑂𝐺𝑗(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) ∙ 1[𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑦) = 𝑗] (3) 

 

where G(x,y) and Index(x,y) are the gradient magnitude and the 

index value, respectively, at I(x,y). 

In addition, to reduce the number of bits in the integral data, 

integration is performed over 12×10 windows. When pooling 

over a 20×20 window, the offset from the previous integral 

window is added to get the correct result. An example is 

illustrated in Fig. 7. We can obtain the correct integral data at 

location 4 with three appropriate offset values at location 1, 2, 

and 3. The values of the integral image at location 1, 2, 3, and 

4 are the sum of the pixels in rectangle A, B, C, and D, 

respectively. The correct integral data at location 4 for 20× 20 

window can be computed as A+B+C+D. By using a window 

size of 12×10 for generating integral channel data, the number 

of bits used for integral data is reduced to 14 bits (22 bits are 

 
Fig. 8.  Pre-processing step for the NMS function is illustrated. The largest 
detection result is stored at local registers while sliding the search window 

within 30×30 pixels, such that 120 detection results that have overlap greater 

than a 0.25 are suppressed. 
  

 

 
Fig. 10.  Weight reordering and adaptive classification. If the intermittent sum is larger than upper threshold (left) or smaller than lower threshold (right), the 

remaining classifier operations are skipped. Otherwise, 2000 classifiers are computed (middle). 

  

 

 
Fig. 7.  Illustration of obtaining correct integral data over 20×20 window with 

12x10 window of integration. 

 
Fig. 9.  Data re-use and parallel computing scheme for multiple adjacent search 
windows. 
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required when integrating over the entire image), reducing the 

SRAM size by 36%. 

Furthermore, a pre-processing step for the NMS function was 

introduced. There are 17 scales to process and each scale has a 

very large number of search windows that produce object 

detection results. To alleviate the large memory requirement to 

store such many results, while sliding the search window in 

each scaled image, we directly remove redundant boxes of the 

detected object within specific ranges as shown in Fig. 8. This 

reduces the computation time and SRAM size for NMS 

function by 14-89× depending on the pixel stride (1-3). To 

simplify the computation, we determined the fixed overlap ratio 

threshold for each scaled image called intra-scale overlap 

threshold to be a value (0.25) that minimally degrades AP based 

on our experimental results. On the other hand, after completing 

the pre-processing of NMS for the entire 17 scales, we perform 

NMS function to remove overlapping detection boxes with a 

configurable inter-scale overlap threshold parameter. 

Finally, instead of computing different weak classifiers in 

parallel, we compute a single weak classifier across multiple 

windows in parallel. As shown in Fig. 9, this re-uses data that 

are overlapped among adjacent search windows, reducing the 

number of memory access by 77× in average for 17 scales. 

IV. ALGORITHM ADAPTATIONS FOR HARDWARE EFFICIENCY 

As described in Section II, HeadHunter model based on a set 

of rigid templates with Adaboost weak classifiers can be 

implemented with a more modular hardware. We employ five 

rigid templates in our hardware accelerator and have five 

trained models for face detection. On the other hand, we only 

have one trained model for other object classes, such as traffic 

sign, car license plate, and pedestrian. We propose a multi-class 

object detection method using five rigid templates. When using 

five different types of trained models for different object classes 

through five rigid templates, we can detect up to five different 

object classes simultaneously. Since we can use five different 

rigid templates for different types of object classes instead of 

using a set of rigid templates for single object class, the 

proposed method can detect multiple object classes at the same 

time without any hardware redundancy, in contrast to [9, 12]. 

The architectures in [9, 12] have two classifier engines to detect 

two object classes. In this work, since we have only four types 

of trained models for face, traffic sign, car license plate, and 

pedestrian, we are capable of detecting four object classes at the 

same time.  

In addition, we employ 2,000 Adaboost weak classifiers to 

build a strong classifier similar to [3]. The experimental results 

in [3] described that 83.35% and 85.57% average precision 

were obtained with 200 weak classifiers and 2,000 weak 

classifiers, respectively. To reduce the computation load from 

the large number of weak classifiers with less degradation in the 

detection accuracy, we propose two efficient techniques: 

adaptive cascading and weight re-ordering, as shown in Fig. 10. 

Adaptive classifier cascading is proposed to dynamically scale 

 
(a) 

 
(b) 

 

Fig. 11.  (a) 65nm prototype chip micrograph. (b) Chip measurement results 

of multi-scale multi-object detection on face and traffic sign images. 
  

TABLE I 

CHIP SPECIFICATIONS 

Technology 65nm CMOS 

Chip size 3.6×3.3 mm2 

Core size 3.1×2.8 mm2 

SRAM 339.9KB 

Frame buffer 225KB (SRAM) 

Input resolution 1920×1080 

Supply voltage 0.58 – 1.1 V 

Clock frequency 100 – 250 MHz 

Frame rate 20 – 50 fps 

Power 22.5 – 181.7 mW 

Energy 0.54 – 1.75 nJ/pixel 

 

 

 
Fig. 12.  System test environment. 
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the amount of classifier computation based on input images. We 

intermittently check the sum of classifiers with a configurable 

subset of 2,000 classifiers (e.g., 400 as shown in Fig. 10) 

whether it is higher than a conservative upper threshold or 

smaller than a lower threshold value, in which case the true or 

false object detection result is determined without going 

through 2,000 classifiers. After going through a subset of 

classifiers, if the intermediate result in a search window is 

strongly positive or negative compared to the object threshold, 

the remaining classifier operations are skipped. In weight re-

ordering, based on our proposed adaptive classifier cascading 

scheme, the weak classifiers with higher weight values are 

computed first. This helps the intermediate result to reach a 

strongly positive or negative value earlier, and therefore we can 

expedite the detection of an object. The proposed techniques 

achieved 5.5× speed-up while having less than 1% degradation 

in the average precision.  

Furthermore, we employed a number of configurable 

parameters in the algorithm and the implemented hardware, in 

order to show the trade-offs of performance/accuracy and 

power. These include (1) the number of different scales (up to 

17) and various scale factors (0.4× to 2.0× with as low as 0.1× 

step), (2) programmable horizontal and vertical stride (1-3 

pixels) for the sliding search window, (3) threshold for object 

classification, and (4) variable inter-scale overlap ratio for 

NMS (0.25-0.55). 

V. 65NM IMPLEMENTATION RESULTS 

The proposed ASIC accelerator was implemented in 65nm 

CMOS. The chip micrograph is shown in Fig. 11(a), where the 

total area is 3.1×2.8 mm2, including the input image buffer. Fig. 

11(b) shows the output of the prototype chip that demonstrates 

 
Fig. 15.  Precision-recall curves on the FDDB datasets for the different number 
of weak classifiers in our proposed adaptive classifier cascading  

 
Fig. 13.  Measured frame rate and total/leakage power with voltage scaling. 

TABLE II 

POWER BREAKDOWN WITH VARIOUS CONFIGURATIONS 

 Config1 Config2 Config3 Config4 

Number of scales 
17 

(0.4-2.0×) 

8 

(0.4-1.8×) 

8 

(0.4-1.5×) 

8 

(0.4-1.5×) 

Pixel stride 1 1,2,3 1,2,3 1,2,3 Max 

Adaptive stage 2 500 500 400 400 

Logic power 3  
(a)/(b) (mW) @ 1.0V 

20/120 20/110 20/93 20/85.5 

SRAM power 4 

(a)/(b) (mW) @ 1.0V 
20/48 20/43 20/37 20/34 

Total power  
(mW) @ 1.0V 

215 193 170 159.5 

Frame rate (fps) 10.7 22.7 30.3 39.5 

1 (1,2,3): pixel stride pre-configured 1 - 3 based on scale (small→large) 

        (Max): pixel stride is 2 for horizontal, 3 for vertical 
       2 Classification stage when sum is compared with upper/lower threshold 
    3,4 (a): pre-processing of image, (b): integral and classification processing 

 

 

 
Fig. 14.  Measured precision1 versus recall2 curve with multiple object classes. 

  1Precision: (true positive) / (true positive + false positive) 
    2 Recall: (true positive) / (true positive + false negative) 

 
Fig. 16.  Precision-recall curves on the FDDB datasets for the various number 

of scale factors.  
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multi-scale multi-object detection for face, traffic sign, car 

license plate and pedestrian detection, where bounding boxes  

(measured chip outputs) are drawn on top of the input image to 

localize the detected objects. The chip specifications are 

summarized in Table I. 

Fig. 12 shows the prototype chip measurement environment 

and system that was used to evaluate real-time object detection. 

It is composed of the custom PCB that mounts the 65nm 

prototype chip, a FPGA board, a HDMI interface board, and a 

LCD display. Our prototype chip performs end-to-end object 

detection, where it takes an input video data and outputs the 

video data enclosing a detected object with a final bounding 

box. All the image processing and computations for object 

detection are done in the prototype chip. We only use the FPGA 

board to configure the chip and read information of detected 

object such as coordinate and score to evaluate the accuracy. 

Note that we down-sampled higher-resolution images (up to 

full HD 1920×1080) to QVGA (320×240) to store an entire of 

input frame image in the on-chip frame buffer instead of using 

external storage such as DRAM. Then, on-chip QVGA input 

frame buffer was used to scale images on-the-fly for 17 scales 

and iteratively compute the same sliding window. In other 

words, our chip demonstrated object detection for full HD 

resolution images with down-sampling as a pre-processing step. 

Since a down-sampled pixel is only read in the pre-processing 

step while the full HD videos is transmitted in a row raster scan 

order, no extra process such as interpolation is required. An 

alternative would be to use a single-size image and scale the 

sliding window for a number of scales. This method will have 

a smaller on-chip frame buffer, but will require a larger memory 

for trained models that increases with the number of scale 

factors. Performing a fine-grain search on a lower-resolution 

image is more favorable than a coarse-grain search on a high-

resolution image, due to the reduction in image sensor power 

and data communication. 

To characterize the object detection accuracy, performance, 

and power consumption, we used the AFW and FDDB database 

[17, 18] for face detection, the BTSD database [22] for traffic 

sign detection, Caltech database [23] for car license plate 

detection, and INRIA database [24] for pedestrian detection. 

The measured chip performance (frames per second) and 

total/leakage power consumption with dynamic voltage scaling 

are shown in Fig. 13. Full object detection functionality was 

verified down to 0.58V, where the chip performs real-time 

detection at 20.1 fps with 22.5mW power. In Table II, the power 

breakdown in logic and memory at the nominal voltage as 1.0V 

is detailed for four different chip configurations, where the 

number of scales, pixel stride, and the classification stage are 

TABLE III 

DELAY TIME, POWER, ENERGY VERSUS DIFFERENT NUMBER OF STAGES IN ADAPTIVE CASCADING 

 200 stages 300 stages 500 stages 1000 stages 1500 stages 2000 stages 

Delay time (ms) 22.9 28.5 39.8 63.6 98.3 127.1 

Power (mW) @ 1.0V 156.6 170.5 172.6 184.3 185.2 187.1 

Energy (nJ/pixel) 1.73 2.34 3.31 5.65 8.78 11.47 

 

 

 

 
(a) 

 
(b) 

 

Fig. 17.  (a) Design comparison using up-/down-scaling. (b) Measurement 
results show that smaller faces can be detected through up-scaling. 

  

 
(a) 

 
(b) 

 
Fig. 18.  (a) Area and (b) power breakdown of the overall system. 
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varied to check intermediate sum for adaptive cascading. With 

regards to voltage scaling, the power/energy values in Table II 

and Table III also scales down in a similar manner that is 

reported in Fig. 13. 

Fig. 14 shows the precision versus recall (PR) curves [25] of 

the prototype chip measured for AFW, FDDB, BTSD, Caltech 

car license plate, and INRIA person datasets. The average 

precision (AP) can be computed as the area under the PR curve. 

We achieved AP of 0.876 and 0.806 for the FDDB and AFW 

datasets for face detection, respectively. For traffic sign 

detection, we achieved AP of 0.72 for the BTSD dataset. We 

achieved AP of 0.763 for the Caltech dataset for car license 

plate detection. For pedestrian detection, we achieved AP of 

0.541 for the INRIA dataset. Since our proposed system 

supports input image resolution up to full HD (1920×1080) with 

down-sampling into QVGA (320×240) as a pre-processing 

step, images that are over full HD size in the AFW and BTSD 

datasets are cropped to full HD size. However, note that we 

used the original annotation data of AFW and BTSD datasets in 

our AP measurements. In other words, we counted the number 

of objects that were not detected as false negatives due to 

truncated or lost objects after cropping the images. 

Fig. 15 shows the AP values for the FDDB datasets with 

various stage number when using our proposed adaptive 

classifier cascading methods. We achieved AP of 0.862 with 

200 stages in the adaptive cascading scheme, which is only 

0.85% degradation in the average precision comparing to the 

AP of 0.869 with 2,000 stages (i.e., without the adaptive 

cascading scheme). Note that this AP degradation represents a 

~3× reduction (0.85% vs. 2.22%) compared to the experimental 

results of [3]. In addition, the AP measured results with the 

detection quality versus number of scale factors is shown in the 

Fig. 16. We achieved the similar accuracy as AP of 0.862 in the 

nine scale factors from 0.4× to 2.0×, with a step size of 0.2×, 

comparing to the all (17) scale factors. For the six scale factors, 

we achieved AP of 0.843 in the FDDB dataset with a small 

amount of degradation. However, the AP value decreased 

somehow when using the five scale factors, and especially, 

there is significant deterioration in the four scale factors using 

only down-scaling. Table III summarized the measurement 

results of delay time, power, and energy with the different 

number of weak classifier stages in our proposed adaptive 

cascading technique. Comparing to our system without 

adaptive cascading skill, the proposed adaptive cascading 

method with 200 weak classifier stages reduced the total delay 

time of system by 5.5× and achieved 16.3% power reduction. 

Our proposed accelerator using adaptive cascading method 

reduces the overall system energy consumption by 6.6×.  

Furthermore, through 2× up-scaling, our design can detect 

objects as small as 40×40 pixels, which is much smaller than 

the detectable objects in previous works [9-12]. Fig. 17 shows 

the comparison between the designs when only down-scaling 

(0.4-1.0×) was used and when both up-scaling and down-

scaling (0.4-2.0×) are used. Up-scaling improves the AP 

significantly at the expense of moderate memory/power 

increase. 

Fig. 18 shows the area and measured power breakdown of 

the prototype chip. 63% of the total chip area is occupied by on-

chip SRAM arrays, due to the requirement to store the trained 

models, integral data, input image frame buffer, etc. On the 

other hand, 66% of the total chip power was consumed by logic 

components due to high activity factors, where the power of the 

TABLE IV.  

COMPARISON TO PRIOR ASIC WORKS ON OBJECT DETECTION 

 
Based on hand-crafted features Based on CNN-learned features 

This work 
[9] [10] [11] [12] [27] [28] [29] 

CMOS Tech. 65nm 40nm 45nm SOI 65nm 65nm 65nm 55nm 65nm 

Chip size 3.3×1.2 mm2 2.58×2.27 mm2 2.8×0.96 mm2 3.58×3.58 mm2 4×4 mm2 3.8×3.8 mm2 3.3×3.1 mm2 3.1×2.8 mm2 

Image 

resolution 
Full HD HD Full HD Full HD 224×224 448×448 416×416 Full HD 

Channel 

Feature 
9 HOG 1 9 HOG 9 HOG RNN-FIS Yolo V2 

Yolo V2/ 

Yolo tiny 
7 HOG + 3 LUV 

# of scales single single 12 (all down) 12 (all down) single single single 17 (6 down, 11 up) 

Classifier SVM 
22-stage 
cascade 

SVM SVM, DPM RNN CNN CNN 2000-stage cascade 

Object classes 2 1 1 2 - - - 4 

Accuracy 
F1=95%  

(GTI [26]) 

F1=93% 

(custom 

dataset) 

AP=0.37  
(INRIA) 

AP=0.26  
(VOC 2007) 

- - 

AP=0.596 

(VOC 2007, 

2012) 

AP=0.88 (FDDB), 

0.81 (AFW),  

0.72 (BTSD),  

0.76 (Caltech),  
0.54 (INRIA) 

Frame rate 30 fps 5.5 fps 60 fps 30-60 fps 30 fps 12.05 fps 5.5/27.7 fps 20–50 fps 

Power 
84mW  

(@0.7V) 

23mW  

(@0.6V) 

45.3mW  

(@0.72V) 

58.6-216.5mW  

(@0.77-1.11V) 

330mW 

(@1.2V) 
280mW 

68mW 

(@1.1V) 

22.5–181.7mW  

(@0.58–1.1V) 

Energy 1.35 nJ/pixel 4.5 nJ/pixel 0.36 nJ/pixel 
0.94-1.74 

nJ/pixel 
15.3 nJ/pixel 

116.6 

nJ/pixel 

77.37/14.2 

nJ/pixel 
0.54-1.75 nJ/pixel 
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classifiers (56% of chip power) dominated. 

Table IV shows the comparison with hand-crafted features 

based object detection accelerators [9-12]. The architecture in 

[10] achieved low power consumption similar to this paper, but 

the energy per pixel value is much higher than this work due to 

the lower image resolution and frame rate. The implementation 

in [11] achieved low energy per pixel number with high frame 

rate, but it was post-layout results. In addition, the accuracy in 

[11] is lower than this paper. Two object detection accelerators 

are presented in [9] and [12]. Both accelerators process full HD 

videos in real-time and support multiple object detection similar 

to this work. However, our proposed accelerator employs color 

based LUV channels and fine-grained up-scaling, which 

increase the detection accuracy and robustness, while achieving 

60% and 42.5% energy/pixel reduction compared to [9] and 

[12], respectively. Note that our work evaluated AP across 

multiple datasets for multiple object classes, the most among 

any prior works [9-12]. In addition, our proposed accelerator is 

compared with CNN-learned feature based object detection 

accelerators [27-29]. Note that we calculated the energy per 

pixel numbers based on the energy efficiency numbers in [27-

29]. The reference [27] proposed an advanced driver-assistance 

system (ADAS) processor that achieved 0.862 TOPS/W with a 

4-layer recurrent neural network (RNN) connected to a fuzzy 

inference system (FIS), but the energy per pixel value is 28× 

higher than our accelerator. Two CNN processors for object 

detection are presented in [28-29]. Both processors 

implemented YOLO CNN [30], which is a representative end-

to-end object detection CNN model. As a reconfigurable 

hybrid-NN processor, Thinker [28] achieved 1.26 TOPS/W for 

YOLO V2, but the energy consumption per pixel of our work 

is 216× less than that of Thinker. The CNN design in [29] 

achieved high energy efficiency of 2.2 TOPS/W and good 

accuracy of 0.6 mAP for VOC 2007 and VOC 2012 [19] 

datasets. However, due to the lower image resolution 

(416×416) the energy per pixel is 143× and 26× higher than our 

proposed work. 

VI. CONCLUSION 

In this paper, we presented a 65nm accelerator for real-time 

programmable object detection. The accelerator employed 

HeadHunter model based on a set of five rigid templates with 

2,000 Adaboost weak classifiers. A large number of classifiers 

are used to make a strong object classification, and adaptive 

cascade is realized for dynamic computation scaling. High 

average precision of 0.88, 0.81, 0.76, 0.72 and 0.54 was 

achieved in FDDB, AFW, Caltech car plate, BTSD, and INRIA 

person datasets, respectively, by using integral channel features 

on 7 HOG and 3 LUV channels, 17 scale factors with 6 down-

scaling and 11 up-scaling, configurable thresholding, adaptive 

cascading classification, and optimal non-maximum 

suppression. The accelerator achieved 0.54/1.75 nJ/pixel while 

consuming 22.5/181.7 mW at 0.58/1.1V with 20/50 fps in full 

HD videos, respectively. The hardware optimization techniques 

reduced on-chip SRAM size by overall 2.9×. Our proposed 

adaptive classifier cascading method achieved an overall 6.6× 

energy per pixel reduction. The capability of programmable and 

voltage-/performance-scalable many-object detection will 

enhance smart vision processors in ubiquitous mobile systems. 
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