
 1

Abstract—Machine learning has become ubiquitous in

applications including object detection, image/video classification,

and natural language processing. While machine learning

algorithms have been successfully used in many practical

applications, accurate, fast, and low-power hardware

implementations of such algorithms is still a challenging task,

especially for mobile systems such as Internet of Things (IoT),

autonomous vehicles, and smart drones. This paper presents an

energy-efficient programmable ASIC accelerator for object

detection. Our ASIC accelerator supports multi-class (e.g., face,

traffic sign, car license plate, and pedestrian) that are

programmable, many-object (up to 50) in one image with different

sizes (17-scale support with 6 down-/11 up-scaling), and high

accuracy (AP of 0.87/0.81/0.72/0.76 for FDDB/AFW/BTSD/

Caltech datasets). We designed an integral channel detector with

2,000 classifiers for rigid boosted templates, where the number of

stages used for classification can be adaptively controlled

depending on the content of the search window. This can be

implemented with a more modular hardware, compared to

support vector machine (SVM) and deformable parts model

(DPM) designs. By jointly optimizing the algorithm and the

efficient hardware architecture, the prototype chip implemented

in 65nm CMOS demonstrates real-time object detection of 20-50

frames/s with low power consumption of 22.5-181.7mW (0.54-1.75

nJ/pixel) at 0.58-1.1V supply.

Index Terms—object detection, machine learning, classification,

real-time, low-power, special-purpose accelerator

I. INTRODUCTION

BJECT detection is essential for intelligent computer

vision applications such as augmented reality (AR),

advanced driver assistant systems (ADAS), autonomous

control in unmanned aerial vehicles (UAV), smart drones,

surveillance systems, and Internet of Things (IoT). Real-time,

high accurate and energy-efficient object detection is an

essential task for these applications. While significant

improvement has recently been made in algorithms [1-6],

hardware designs using general-purpose processors such as

M. Kim, D. Kadetotad, Y. Cao, and J. Seo are with the School of Electrical,

Computer and Energy Engineering, Arizona State University, Tempe, AZ

85281 USA (e-mail: mkim152@asu.edu).
A. Mohanty was with Arizona State University, Tempe, AZ 85281 USA. He

is now with FABU America, Inc., Tempe, AZ 85284 USA.

CPUs, GPUs [7], and FPGAs [8] do not provide satisfactory

energy efficiency and speed in order to make real-time

decisions within the power envelope of embedded systems.

This is due to high computational complexity that varies with

algorithms and the large memory/communication requirement

independent of input, which generates significant data

movement that can be as energy consuming as computation.

Special-purpose ASICs for object detection have been

previously proposed [9-12]. A real-time object detection engine

using a Histogram of Oriented Gradients (HOG) feature

extraction in Support Vector Machine (SVM) was presented in

[9]. However, the implementation only supported one scale

factor, limiting the detection accuracy and robustness. The

authors of [10] designed a specialized engine for face detection

and recognition with low power consumption of 23mW, but

was not able to support multi-scale factors or multiple faces.

Multi-scale pedestrian detection was achieved in [11] with 12

scale factors, but only down-scaling was used, limiting the

detection of objects with small number of pixels. A multi-object

detection accelerator with Deformable Parts Model (DPM) was

implemented in [12] with two programmable object

classification engines for 58.6mW power consumption, but still

only supported down-scaling.

In this paper, we propose an energy-efficient programmable

ASIC accelerator [13] for object detection that overcomes the

above limitations:

• Multiple classes (e.g., face, traffic sign, car license plate,

pedestrian) that are programmable in the accelerator

• Many objects (up to 50) in one image with multiple scales

(17-scale support with 6 down-scaling and 11 up-scaling)

• High accuracy (average precision of 0.87/0.81/0.72/0.76/

0.53 in FDDB/AFW/BTSD/Caltech plate/INRIA Person

datasets) comparable to state-of-the-art algorithms

• Energy-efficient hardware architecture based on rigid

boosted templates for low power of 22.5mW and low energy

per pixel of 0.54 nJ/pixel

L. Wei and X. He are with the College of Computer Science, Zhejiang

University, Hangzhou, China.

This work was supported in part by NSF grant NSF-CCF-1652866, and C-
BRIC, one of six centers in JUMP, a SRC program sponsored by DARPA.

A Real-time 17-Scale Object Detection

Accelerator with Adaptive 2000-Stage

Classification in 65nm CMOS

Minkyu Kim, Student Member, IEEE, Abinash Mohanty, Member, IEEE, Deepak Kadetotad, Student

Member, IEEE, Luning Wei, Student Member, IEEE, Xiaofei He, Senior Member, IEEE, Yu Cao,

Fellow, IEEE, Jae-sun Seo, Senior Member, IEEE

O

 2

Many object detection algorithms have been using the

classification models that are trained on features instead of

pixels [1-6]. Hand-crafted features such as the well-known

HOG have been traditionally used in object detection including

the Viola-Jones algorithm [1], DPM [2], and HeadHunter

model [3]. Recently, learned features such as convolutional

neural networks (CNNs) have been widely used [4-6]. In

general, the CNN learned features outperform the hand-crafted

features for object detection accuracy and the hand-crafted

features are more energy-efficient than the learned features for

hardware implementations. Reference [14] shows the

comparison results between two chips: [15] implements the

hand-crafted feature using HOG, and [16] implements the

learned feature using CNN. Although learned features can

reportedly achieve more than 2× average precision (~30 vs.

~65), the accompanying energy consumption per pixel becomes

four orders of magnitude higher than that using HOG features.

In this work, we employ the HeadHunter model based on rigid

templates [3], which achieves state-of-the-art face detection

accuracies on AFW [17], FDDB [18], and Pascal VOC [19]

datasets compared to other works [2, 4].

Our ASIC accelerator is based on a strong multi-channel

including 6 HOGs and 3 LUV and multi-scale model with rigid

boosted templates [3], which can detect objects by performing

integral of random rectangular regions based on the trained

models. We designed a 2,000-stage classifier, where the

number of stages used for classification can be adaptively

controlled depending on the content of the search window, and

can be implemented with a more modular hardware, compared

to classification with SVM and DPM [9-12]. Embodying these

unique features for comprehensive object detection, an

integrated accelerator chip was fabricated in 65nm CMOS to

demonstrate real-time programmable object detection. Multi-

class object detection is illustrated in Fig. 1, including the

measurement results (localized objects) from the prototype

chip. Power consumption is further optimized through

configurable search stride and re-use of integral computation

results for overlapping search windows.

This paper is organized as follows. Section II explains the

HeadHunter algorithm in detail. We introduce the system

architecture of the proposed hardware accelerator including

detailed features of main modules and hardware optimization

techniques in Section III. Section IV presents the proposed

algorithm adaptations that were employed to improve the

hardware efficiency. The chip implementation and evaluation

results are described in Section V. We conclude this paper in

Section VI.

II. OVERVIEW OF THE OBJECT DETECTION ALGORITHM

(HEADHUNTER MODEL)

A HeadHunter model is proposed in [3] using a small set of

rigid templates (i.e., without deformable parts), which reported

state-of-the-art face detection accuracies on AFW [17], FDDB

(a)

(b) (c)

Fig. 2. (a) Multiple channel features with six HOGs, a gradient magnitude, and LUV color space. (b) The concept of fast computation for an area sum using

integral image. The figure is inspired by [1]. (c) Conceptual operation of 2,000 weak classifiers.

Fig. 1. Illustration of multi-class object detection (e.g., face, traffic sign, car

license plate, pedestrian) with 10 channels, 17 scales, 2000 weak classifiers,
and non-maximum suppression.

 3

[18], and Pascal VOC [19] datasets. This model has four main

features: (1) using multiple channels including 7 HOG channels

and LUV color channels, (2) employing integral channel

detector for fast feature computation, (3) 2,000 Adaboost weak

classifiers containing shallow boosted trees of depth two (three

stumps per tree), and (4) combining a set of rigid templates

instead of using a single template per object category.

1) Multi-Channel features: Fig. 2(a) shows the multiple

channel features employed in the HeadHunter algorithm,

including LUV color channels and 7 HOG features (1

gradient magnitude and 6 quantized orientations). Features

are extracted from the input image using integral pixel

computation, as shown in Fig. 2(b). Reference [3] reported

that the color channel information improves detection

accuracy compared to the case of only using HOG channels,

since certain objects (especially faces) have a discriminative

color distribution. In addition, [20] showed that LUV color

channels improved better accuracy comparing to other color

channels such as grayscale, RGB, and YUV.

2) Integral channel detector: The use of an integral image as

summed area table was first proposed in Viola-Jones

algorithm [1]. This idea is examined by the integral channel

feature framework in [20]. Integral data at (x,y) represents

the sum of all the pixels above and to the left and then any

rectangle features can be computed very rapidly using an

intermediate representation for the image, as shown in Fig.

2(b).

3) Adaboost weak classifiers: A number of weak classifiers can

be boosted to build a strong classifier. In this work, we

employ 2,000 Adaboost weak classifiers for a robust system

inspired by [3]. Fig. 2(c) shows the concept of the classifier

operation. The 2,000 weak classifiers use pooling over

rectangular regions as features. Each weak classifier

computes this pooling operation and the 1st node compares

with a given threshold to decide which of the two 2nd nodes

should be computed. Depending on the 2nd node result, the

weight corresponding to the classifier is either added or

subtracted from the final score. After computing 2,000 weak

classifiers, the final score is compared with a configurable

threshold to determine if the search window has an object.

4) Rigid boosted templates: A rigid template approach can

achieve high-speed object detection, but less detection

accuracy, compared to DPM which has high computational

cost [15]. HeadHunter model combined a small set of rigid

templates that are separately used to capture intra-class

diversity of objects, which can be boosted to build a strong

detector. In our proposed hardware accelerator, we can use

up to five different templates due to a limit on the on-chip

memory size.

The training dataset employed for face detector is the AFLW

dataset [21], from which cropped faces are used as positive

samples. For negative samples, random images from the Pascal

VOC dataset [19] that do not have any person were used. The

other training datasets such as traffic sign data, car license plate,

and pedestrian are collected and labeled by the authors in a

custom manner. During the training procedure, the object

detection model first randomly generates a large feature pool

and selects the best weak classifier on samples, and then

increases the weight for difficult samples in each round. After

all the stages of the detector are generated, it further collects the

difficult negative samples to perform bootstrap training.

Each weak classifier contains a two-level decision tree for

each of the five trained models: one frontal object model, two

side views and two mirrored models. The input image is first

scaled with scaling factors ranging from 0.2× to 3× to enable

detection of various sizes of objects. All five trained models are

evaluated separately for a sliding window that sweeps the entire

image. The outputs of all weak classifiers are combined and

compared with a threshold to allocate the bounding box for an

object along with a score. The bounding boxes from all the

scales are passed through a non-maximum suppression (NMS)

stage, which selects one box with the highest score, and

removes other redundant overlapping ones. High-level pseudo-

codes of the object detection algorithm that we implement and

the modular hardware structure are shown in Fig. 3.

Fig. 4. Top-level block diagram and the end-to-end data flow of proposed object detection accelerator.

Fig. 3. High-level pseudo-code of the overall object detection operation (left)

and corresponding modular nested structure on hardware (right).

 4

III. ENERGY EFFICIENT HARDWARE ARCHITECTURE BASED

ON RIGID BOOSTED TEMPLATES

A. Hardware Architecture and Operation

Fig. 4 shows the top-level block diagram and data flow for

the model architecture in Fig. 3. To achieve high accuracy, the

classifier has five trained models, each with 2,000 weak

classifiers, which can consume significant time and energy in

the model evaluation.

1) Scale function

We use the search window size of 80×80 pixels, and detect

objects of various sizes by scaling the input image from 0.4× to

2.0×, with a step size of 0.1×. Bilinear interpolation method is

used to cover such wide range of scales. Each pixel in the scaled

image is computed from four pixel values in the input image,

which are stored into on-chip frame buffer. A 3×3 Gaussian

smoothing filter is applied on the scaled image using three line

buffers. Note that we support up-scaling up to 2.0× for robust

detection, which makes the SRAM size to be 186.5KB, a 3.7×

increase compared to the case of only supporting down-scaling.

2) Channel generation

This method uses 10 feature maps consisting of seven HOG

channels (1 gradient magnitude and 6 quantized orientations)

and LUV color space channels. The quantized orientation of

HOG is a weighted histogram where the gradient angle and

magnitude determine the bin index and the weight, respectively,

as shown in the following equation:

 𝑄𝜃(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) ∙ 1[𝛩(𝑥, 𝑦) = 𝜃], (1)

where G(x,y) and Θ(x,y) are the gradient magnitude and

quantized gradient angle, respectively, at I(x,y) [20].

Piecewise linear approximation is used for complex non-linear

computations such as square and cube root. 7-bit precision is

used for channel data. Channels are then down-sampled by 4

and stored in SRAM blocks. To reduce the on-chip memory

size, we propose a compression method for six HOG features,

such that we reduce the number of SRAMs from 10 to 5 SRAMs

(details in Section III-B). Note that all processes such as

generating, down-sampling, storing, and loading for 10-channel

feature data are executed in parallel.

3) Integral function

Integral images defined over the 10 channels are used for fast

summation over random rectangular pooling regions. A key

concern of the integral function scheme in terms of hardware

implementation is that a huge memory is needed to store

integral data. For example, we need a SRAM size of 234.4KB

for 8-bit precision data of QVGA (320×240) image to store an

entire of integral data. To reduce the memory size, we propose

that integration is performed over 12×10 windows and integral

data are stored within 160 (whole horizontal pixel)×32 size,

instead of an entire size of 160×120 (details in Section III-B).

4) Classifier operation

Fig. 5 shows the block diagram and data flow of the classifier

operation. The trained data of five different templates, each

with 2,000 weak classifiers are stored in SRAM. One of 10

SRAMs that store 10-channel integral data is selected by the

channel information given by the trained data, which means that

the 10-channel integral data should be ready altogether and be

accessible from the 10 SRAMs. The two row data in the

selected SRAM are loaded according to the coordinate

information from the trained data to use pooling over

rectangular regions as the feature. A Classifier Engine (CE)

computes the area of the rectangular region, and adds or

subtracts weights according to the results by comparing the area

with a threshold value given by the trained model. One hundred

forty one CE modules compute the weak classifier for all

horizontal search windows in parallel. After computing five

rigid templates, the classifier operation is iterated over different

vertical locations. During the detection process, all five

templates are evaluated over each search window and their

results are combined using NMS.

5) NMS function

Multiple scales, sliding windows and five different templates

result in a cluster of detections around a single object. NMS

method is used to select the best detection and remove the

redundant ones. In this work, we decided the maximum of

detectable objects per image to be 50, balancing the NMS

computation time. All detection results are sorted based on their

scores. If the overlap is greater than a 0.3 (adopted from [3]),

Fig. 5. Block diagram and data flow of classifier operation.

(a)

(b)

Fig. 6. Illustration of the down-sampling and storage of generated channel

data in (a) the baseline scheme and (b) the proposed scheme.

 5

then the detection was suppressed. After sorting the values from

all scales and templates, post-NMS result is used as the final

bounding box of the detected object in the image.

B. Hardware Optimization Techniques

We propose an adaptive pooling scheme when we perform

down-sampling by 4 after channel generation in order to reduce

SRAM size. The baseline algorithm [3] adopted 4×4 average

pooling for the down-sampling and 10 channels are stored into

SRAM as shown in Fig. 6(a). As illustrated in Fig. 6(b), we

proposed a compression technique for six HOG values for the

accelerator. Based on (1), the six HOG channel values are the

gradient magnitude value or zero according to the quantized

gradient angle. In other words, one of six HOGs is non-zero

while the rest of the five HOGs are zero at the same pixel

location. Based on this HOG feature, the six HOG values can

be replaced to the index value indicating the non-zero HOG

channel after down-sampling, following the computation in (2).

𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑦) = 𝑎𝑟𝑔max
𝑗

[∑ 𝐻𝑂𝐺𝑗(𝑥, 𝑦), 𝑗 = 1…6

4

𝑥,𝑦=1

]

 (2)

The other four channels are down-sampled by 4 with average

pooling. The index value and the data of four channels are then

stored at SRAM. This reduces the SRAM size for storing

channel data by ~2× without any degradation of accuracy. The

data of 6 HOG channels can be reproduced through the decoder

with index value from SRAM, as described in (3):

 𝐻𝑂𝐺𝑗(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) ∙ 1[𝐼𝑛𝑑𝑒𝑥(𝑥, 𝑦) = 𝑗] (3)

where G(x,y) and Index(x,y) are the gradient magnitude and the

index value, respectively, at I(x,y).

In addition, to reduce the number of bits in the integral data,

integration is performed over 12×10 windows. When pooling

over a 20×20 window, the offset from the previous integral

window is added to get the correct result. An example is

illustrated in Fig. 7. We can obtain the correct integral data at

location 4 with three appropriate offset values at location 1, 2,

and 3. The values of the integral image at location 1, 2, 3, and

4 are the sum of the pixels in rectangle A, B, C, and D,

respectively. The correct integral data at location 4 for 20× 20

window can be computed as A+B+C+D. By using a window

size of 12×10 for generating integral channel data, the number

of bits used for integral data is reduced to 14 bits (22 bits are

Fig. 8. Pre-processing step for the NMS function is illustrated. The largest
detection result is stored at local registers while sliding the search window

within 30×30 pixels, such that 120 detection results that have overlap greater

than a 0.25 are suppressed.

Fig. 10. Weight reordering and adaptive classification. If the intermittent sum is larger than upper threshold (left) or smaller than lower threshold (right), the

remaining classifier operations are skipped. Otherwise, 2000 classifiers are computed (middle).

Fig. 7. Illustration of obtaining correct integral data over 20×20 window with

12x10 window of integration.

Fig. 9. Data re-use and parallel computing scheme for multiple adjacent search
windows.

 6

required when integrating over the entire image), reducing the

SRAM size by 36%.

Furthermore, a pre-processing step for the NMS function was

introduced. There are 17 scales to process and each scale has a

very large number of search windows that produce object

detection results. To alleviate the large memory requirement to

store such many results, while sliding the search window in

each scaled image, we directly remove redundant boxes of the

detected object within specific ranges as shown in Fig. 8. This

reduces the computation time and SRAM size for NMS

function by 14-89× depending on the pixel stride (1-3). To

simplify the computation, we determined the fixed overlap ratio

threshold for each scaled image called intra-scale overlap

threshold to be a value (0.25) that minimally degrades AP based

on our experimental results. On the other hand, after completing

the pre-processing of NMS for the entire 17 scales, we perform

NMS function to remove overlapping detection boxes with a

configurable inter-scale overlap threshold parameter.

Finally, instead of computing different weak classifiers in

parallel, we compute a single weak classifier across multiple

windows in parallel. As shown in Fig. 9, this re-uses data that

are overlapped among adjacent search windows, reducing the

number of memory access by 77× in average for 17 scales.

IV. ALGORITHM ADAPTATIONS FOR HARDWARE EFFICIENCY

As described in Section II, HeadHunter model based on a set

of rigid templates with Adaboost weak classifiers can be

implemented with a more modular hardware. We employ five

rigid templates in our hardware accelerator and have five

trained models for face detection. On the other hand, we only

have one trained model for other object classes, such as traffic

sign, car license plate, and pedestrian. We propose a multi-class

object detection method using five rigid templates. When using

five different types of trained models for different object classes

through five rigid templates, we can detect up to five different

object classes simultaneously. Since we can use five different

rigid templates for different types of object classes instead of

using a set of rigid templates for single object class, the

proposed method can detect multiple object classes at the same

time without any hardware redundancy, in contrast to [9, 12].

The architectures in [9, 12] have two classifier engines to detect

two object classes. In this work, since we have only four types

of trained models for face, traffic sign, car license plate, and

pedestrian, we are capable of detecting four object classes at the

same time.

In addition, we employ 2,000 Adaboost weak classifiers to

build a strong classifier similar to [3]. The experimental results

in [3] described that 83.35% and 85.57% average precision

were obtained with 200 weak classifiers and 2,000 weak

classifiers, respectively. To reduce the computation load from

the large number of weak classifiers with less degradation in the

detection accuracy, we propose two efficient techniques:

adaptive cascading and weight re-ordering, as shown in Fig. 10.

Adaptive classifier cascading is proposed to dynamically scale

(a)

(b)

Fig. 11. (a) 65nm prototype chip micrograph. (b) Chip measurement results

of multi-scale multi-object detection on face and traffic sign images.

TABLE I

CHIP SPECIFICATIONS

Technology 65nm CMOS

Chip size 3.6×3.3 mm2

Core size 3.1×2.8 mm2

SRAM 339.9KB

Frame buffer 225KB (SRAM)

Input resolution 1920×1080

Supply voltage 0.58 – 1.1 V

Clock frequency 100 – 250 MHz

Frame rate 20 – 50 fps

Power 22.5 – 181.7 mW

Energy 0.54 – 1.75 nJ/pixel

Fig. 12. System test environment.

 7

the amount of classifier computation based on input images. We

intermittently check the sum of classifiers with a configurable

subset of 2,000 classifiers (e.g., 400 as shown in Fig. 10)

whether it is higher than a conservative upper threshold or

smaller than a lower threshold value, in which case the true or

false object detection result is determined without going

through 2,000 classifiers. After going through a subset of

classifiers, if the intermediate result in a search window is

strongly positive or negative compared to the object threshold,

the remaining classifier operations are skipped. In weight re-

ordering, based on our proposed adaptive classifier cascading

scheme, the weak classifiers with higher weight values are

computed first. This helps the intermediate result to reach a

strongly positive or negative value earlier, and therefore we can

expedite the detection of an object. The proposed techniques

achieved 5.5× speed-up while having less than 1% degradation

in the average precision.

Furthermore, we employed a number of configurable

parameters in the algorithm and the implemented hardware, in

order to show the trade-offs of performance/accuracy and

power. These include (1) the number of different scales (up to

17) and various scale factors (0.4× to 2.0× with as low as 0.1×

step), (2) programmable horizontal and vertical stride (1-3

pixels) for the sliding search window, (3) threshold for object

classification, and (4) variable inter-scale overlap ratio for

NMS (0.25-0.55).

V. 65NM IMPLEMENTATION RESULTS

The proposed ASIC accelerator was implemented in 65nm

CMOS. The chip micrograph is shown in Fig. 11(a), where the

total area is 3.1×2.8 mm2, including the input image buffer. Fig.

11(b) shows the output of the prototype chip that demonstrates

Fig. 15. Precision-recall curves on the FDDB datasets for the different number
of weak classifiers in our proposed adaptive classifier cascading

Fig. 13. Measured frame rate and total/leakage power with voltage scaling.

TABLE II

POWER BREAKDOWN WITH VARIOUS CONFIGURATIONS

 Config1 Config2 Config3 Config4

Number of scales
17

(0.4-2.0×)

8

(0.4-1.8×)

8

(0.4-1.5×)

8

(0.4-1.5×)

Pixel stride 1 1,2,3 1,2,3 1,2,3 Max

Adaptive stage 2 500 500 400 400

Logic power 3
(a)/(b) (mW) @ 1.0V

20/120 20/110 20/93 20/85.5

SRAM power 4

(a)/(b) (mW) @ 1.0V
20/48 20/43 20/37 20/34

Total power
(mW) @ 1.0V

215 193 170 159.5

Frame rate (fps) 10.7 22.7 30.3 39.5

1 (1,2,3): pixel stride pre-configured 1 - 3 based on scale (small→large)

 (Max): pixel stride is 2 for horizontal, 3 for vertical
 2 Classification stage when sum is compared with upper/lower threshold
 3,4 (a): pre-processing of image, (b): integral and classification processing

Fig. 14. Measured precision1 versus recall2 curve with multiple object classes.

 1Precision: (true positive) / (true positive + false positive)
 2 Recall: (true positive) / (true positive + false negative)

Fig. 16. Precision-recall curves on the FDDB datasets for the various number

of scale factors.

 8

multi-scale multi-object detection for face, traffic sign, car

license plate and pedestrian detection, where bounding boxes

(measured chip outputs) are drawn on top of the input image to

localize the detected objects. The chip specifications are

summarized in Table I.

Fig. 12 shows the prototype chip measurement environment

and system that was used to evaluate real-time object detection.

It is composed of the custom PCB that mounts the 65nm

prototype chip, a FPGA board, a HDMI interface board, and a

LCD display. Our prototype chip performs end-to-end object

detection, where it takes an input video data and outputs the

video data enclosing a detected object with a final bounding

box. All the image processing and computations for object

detection are done in the prototype chip. We only use the FPGA

board to configure the chip and read information of detected

object such as coordinate and score to evaluate the accuracy.

Note that we down-sampled higher-resolution images (up to

full HD 1920×1080) to QVGA (320×240) to store an entire of

input frame image in the on-chip frame buffer instead of using

external storage such as DRAM. Then, on-chip QVGA input

frame buffer was used to scale images on-the-fly for 17 scales

and iteratively compute the same sliding window. In other

words, our chip demonstrated object detection for full HD

resolution images with down-sampling as a pre-processing step.

Since a down-sampled pixel is only read in the pre-processing

step while the full HD videos is transmitted in a row raster scan

order, no extra process such as interpolation is required. An

alternative would be to use a single-size image and scale the

sliding window for a number of scales. This method will have

a smaller on-chip frame buffer, but will require a larger memory

for trained models that increases with the number of scale

factors. Performing a fine-grain search on a lower-resolution

image is more favorable than a coarse-grain search on a high-

resolution image, due to the reduction in image sensor power

and data communication.

To characterize the object detection accuracy, performance,

and power consumption, we used the AFW and FDDB database

[17, 18] for face detection, the BTSD database [22] for traffic

sign detection, Caltech database [23] for car license plate

detection, and INRIA database [24] for pedestrian detection.

The measured chip performance (frames per second) and

total/leakage power consumption with dynamic voltage scaling

are shown in Fig. 13. Full object detection functionality was

verified down to 0.58V, where the chip performs real-time

detection at 20.1 fps with 22.5mW power. In Table II, the power

breakdown in logic and memory at the nominal voltage as 1.0V

is detailed for four different chip configurations, where the

number of scales, pixel stride, and the classification stage are

TABLE III

DELAY TIME, POWER, ENERGY VERSUS DIFFERENT NUMBER OF STAGES IN ADAPTIVE CASCADING

 200 stages 300 stages 500 stages 1000 stages 1500 stages 2000 stages

Delay time (ms) 22.9 28.5 39.8 63.6 98.3 127.1

Power (mW) @ 1.0V 156.6 170.5 172.6 184.3 185.2 187.1

Energy (nJ/pixel) 1.73 2.34 3.31 5.65 8.78 11.47

(a)

(b)

Fig. 17. (a) Design comparison using up-/down-scaling. (b) Measurement
results show that smaller faces can be detected through up-scaling.

(a)

(b)

Fig. 18. (a) Area and (b) power breakdown of the overall system.

 9

varied to check intermediate sum for adaptive cascading. With

regards to voltage scaling, the power/energy values in Table II

and Table III also scales down in a similar manner that is

reported in Fig. 13.

Fig. 14 shows the precision versus recall (PR) curves [25] of

the prototype chip measured for AFW, FDDB, BTSD, Caltech

car license plate, and INRIA person datasets. The average

precision (AP) can be computed as the area under the PR curve.

We achieved AP of 0.876 and 0.806 for the FDDB and AFW

datasets for face detection, respectively. For traffic sign

detection, we achieved AP of 0.72 for the BTSD dataset. We

achieved AP of 0.763 for the Caltech dataset for car license

plate detection. For pedestrian detection, we achieved AP of

0.541 for the INRIA dataset. Since our proposed system

supports input image resolution up to full HD (1920×1080) with

down-sampling into QVGA (320×240) as a pre-processing

step, images that are over full HD size in the AFW and BTSD

datasets are cropped to full HD size. However, note that we

used the original annotation data of AFW and BTSD datasets in

our AP measurements. In other words, we counted the number

of objects that were not detected as false negatives due to

truncated or lost objects after cropping the images.

Fig. 15 shows the AP values for the FDDB datasets with

various stage number when using our proposed adaptive

classifier cascading methods. We achieved AP of 0.862 with

200 stages in the adaptive cascading scheme, which is only

0.85% degradation in the average precision comparing to the

AP of 0.869 with 2,000 stages (i.e., without the adaptive

cascading scheme). Note that this AP degradation represents a

~3× reduction (0.85% vs. 2.22%) compared to the experimental

results of [3]. In addition, the AP measured results with the

detection quality versus number of scale factors is shown in the

Fig. 16. We achieved the similar accuracy as AP of 0.862 in the

nine scale factors from 0.4× to 2.0×, with a step size of 0.2×,

comparing to the all (17) scale factors. For the six scale factors,

we achieved AP of 0.843 in the FDDB dataset with a small

amount of degradation. However, the AP value decreased

somehow when using the five scale factors, and especially,

there is significant deterioration in the four scale factors using

only down-scaling. Table III summarized the measurement

results of delay time, power, and energy with the different

number of weak classifier stages in our proposed adaptive

cascading technique. Comparing to our system without

adaptive cascading skill, the proposed adaptive cascading

method with 200 weak classifier stages reduced the total delay

time of system by 5.5× and achieved 16.3% power reduction.

Our proposed accelerator using adaptive cascading method

reduces the overall system energy consumption by 6.6×.

Furthermore, through 2× up-scaling, our design can detect

objects as small as 40×40 pixels, which is much smaller than

the detectable objects in previous works [9-12]. Fig. 17 shows

the comparison between the designs when only down-scaling

(0.4-1.0×) was used and when both up-scaling and down-

scaling (0.4-2.0×) are used. Up-scaling improves the AP

significantly at the expense of moderate memory/power

increase.

Fig. 18 shows the area and measured power breakdown of

the prototype chip. 63% of the total chip area is occupied by on-

chip SRAM arrays, due to the requirement to store the trained

models, integral data, input image frame buffer, etc. On the

other hand, 66% of the total chip power was consumed by logic

components due to high activity factors, where the power of the

TABLE IV.

COMPARISON TO PRIOR ASIC WORKS ON OBJECT DETECTION

Based on hand-crafted features Based on CNN-learned features

This work
[9] [10] [11] [12] [27] [28] [29]

CMOS Tech. 65nm 40nm 45nm SOI 65nm 65nm 65nm 55nm 65nm

Chip size 3.3×1.2 mm2 2.58×2.27 mm2 2.8×0.96 mm2 3.58×3.58 mm2 4×4 mm2 3.8×3.8 mm2 3.3×3.1 mm2 3.1×2.8 mm2

Image

resolution
Full HD HD Full HD Full HD 224×224 448×448 416×416 Full HD

Channel

Feature
9 HOG 1 9 HOG 9 HOG RNN-FIS Yolo V2

Yolo V2/

Yolo tiny
7 HOG + 3 LUV

of scales single single 12 (all down) 12 (all down) single single single 17 (6 down, 11 up)

Classifier SVM
22-stage
cascade

SVM SVM, DPM RNN CNN CNN 2000-stage cascade

Object classes 2 1 1 2 - - - 4

Accuracy
F1=95%

(GTI [26])

F1=93%

(custom

dataset)

AP=0.37
(INRIA)

AP=0.26
(VOC 2007)

- -

AP=0.596

(VOC 2007,

2012)

AP=0.88 (FDDB),

0.81 (AFW),

0.72 (BTSD),

0.76 (Caltech),
0.54 (INRIA)

Frame rate 30 fps 5.5 fps 60 fps 30-60 fps 30 fps 12.05 fps 5.5/27.7 fps 20–50 fps

Power
84mW

(@0.7V)

23mW

(@0.6V)

45.3mW

(@0.72V)

58.6-216.5mW

(@0.77-1.11V)

330mW

(@1.2V)
280mW

68mW

(@1.1V)

22.5–181.7mW

(@0.58–1.1V)

Energy 1.35 nJ/pixel 4.5 nJ/pixel 0.36 nJ/pixel
0.94-1.74

nJ/pixel
15.3 nJ/pixel

116.6

nJ/pixel

77.37/14.2

nJ/pixel
0.54-1.75 nJ/pixel

 10

classifiers (56% of chip power) dominated.

Table IV shows the comparison with hand-crafted features

based object detection accelerators [9-12]. The architecture in

[10] achieved low power consumption similar to this paper, but

the energy per pixel value is much higher than this work due to

the lower image resolution and frame rate. The implementation

in [11] achieved low energy per pixel number with high frame

rate, but it was post-layout results. In addition, the accuracy in

[11] is lower than this paper. Two object detection accelerators

are presented in [9] and [12]. Both accelerators process full HD

videos in real-time and support multiple object detection similar

to this work. However, our proposed accelerator employs color

based LUV channels and fine-grained up-scaling, which

increase the detection accuracy and robustness, while achieving

60% and 42.5% energy/pixel reduction compared to [9] and

[12], respectively. Note that our work evaluated AP across

multiple datasets for multiple object classes, the most among

any prior works [9-12]. In addition, our proposed accelerator is

compared with CNN-learned feature based object detection

accelerators [27-29]. Note that we calculated the energy per

pixel numbers based on the energy efficiency numbers in [27-

29]. The reference [27] proposed an advanced driver-assistance

system (ADAS) processor that achieved 0.862 TOPS/W with a

4-layer recurrent neural network (RNN) connected to a fuzzy

inference system (FIS), but the energy per pixel value is 28×

higher than our accelerator. Two CNN processors for object

detection are presented in [28-29]. Both processors

implemented YOLO CNN [30], which is a representative end-

to-end object detection CNN model. As a reconfigurable

hybrid-NN processor, Thinker [28] achieved 1.26 TOPS/W for

YOLO V2, but the energy consumption per pixel of our work

is 216× less than that of Thinker. The CNN design in [29]

achieved high energy efficiency of 2.2 TOPS/W and good

accuracy of 0.6 mAP for VOC 2007 and VOC 2012 [19]

datasets. However, due to the lower image resolution

(416×416) the energy per pixel is 143× and 26× higher than our

proposed work.

VI. CONCLUSION

In this paper, we presented a 65nm accelerator for real-time

programmable object detection. The accelerator employed

HeadHunter model based on a set of five rigid templates with

2,000 Adaboost weak classifiers. A large number of classifiers

are used to make a strong object classification, and adaptive

cascade is realized for dynamic computation scaling. High

average precision of 0.88, 0.81, 0.76, 0.72 and 0.54 was

achieved in FDDB, AFW, Caltech car plate, BTSD, and INRIA

person datasets, respectively, by using integral channel features

on 7 HOG and 3 LUV channels, 17 scale factors with 6 down-

scaling and 11 up-scaling, configurable thresholding, adaptive

cascading classification, and optimal non-maximum

suppression. The accelerator achieved 0.54/1.75 nJ/pixel while

consuming 22.5/181.7 mW at 0.58/1.1V with 20/50 fps in full

HD videos, respectively. The hardware optimization techniques

reduced on-chip SRAM size by overall 2.9×. Our proposed

adaptive classifier cascading method achieved an overall 6.6×

energy per pixel reduction. The capability of programmable and

voltage-/performance-scalable many-object detection will

enhance smart vision processors in ubiquitous mobile systems.

REFERENCES

[1] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted

cascade of simple features,” IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2001.
[2] P. Felzenszwalb, et al., “Object detection with discriminatively trained

part based models,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 32, no. 9, pp. 1627-1645, Sep. 2010.
[3] M. Mathias, et al., “Face detection without bells and whistles,” European

Conf. in Computer Vision (ECCV), 2014.

[4] H. Li, et al., “A convolutional neural network cascade for face detection,”
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[5] S. Yang, et al., “Faceness-Net: Face Detection through Deep Facial Part

Responses,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 40, no. 8, pp. 1845-1859, Aug. 2018.

[6] R. Ranjan, V- M. Patel, and R. Chellappa, “HyperFace: A Deep Multi-

Task Learning Framework for Face Detection, Landmark Localization,

Pose Estimation, and Gender Recognition,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 41, no. 1, pp. 121-135, Jan. 2019.

[7] R. Benenson, et al., “Pedestrian detection at 100 frames per second,” IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2012.

[8] S. Advanim, et al., “A scalable architecture for multi-class visual object

detection,” Int. Conf. Field Programmable Logic and App. (FPL), 2015.
[9] K. Takagi, et al.,“A real-time scalable object detection system using low-

power HOG accelerator VLSI,” J. Signal Process. Syst., vol. 76, no. 3, pp.

261-274, Sep. 2014.
[10] D. Jeon, et al., “A 23mW face recognition accelerator in 40nm CMOS

with mostly-read 5T memory,” IEEE Symp. on VLSI Circuits, 2015.

[11] A. Suleiman and V. Sze, “An energy-efficient hardware implementation
of HOG-based object detection at 1080HD 60 fps with multi-scale

support,” Journal of Signal Processing Systems, pp. 1-13, Dec. 2015.

[12] A. Suleiman, et al., “A 58.6 mW 30 Frame/s Real-Time Programmable
Multiobject Detection Accelerator With Deformable Parts Models on Full

HD 1920x1080 Videos,” IEEE Journal of Solid-State Circuits, vol. 52,

no. 3, pp. 844-855, Mar. 2017.

[13] M. Kim, et al., “A Real-tim 17-Scale Object Detection Accelerator with

Adaptive 2000-Stage Classification in 65nm CMOS,” IEEE International

Symposium on Circuits and Systems (ISCAS), 2017.
[14] A. Suleiman, et al., “Towards Closing the Energy Gap Between HOG and

CNN Features for Embedded Vision,” IEEE International Symposium on

Circuits and Systems (ISCAS), 2017.
[15] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6mW real-time programmable

object detector with multi-scale multi-object support using deformable

parts model on 1920×1080 video at 30 fps,” in Proc. IEEE Symp. VLSI
Circuits, Jun. 2016, pp. 1–2.

[16] Y.-H. Chen, et al., “Eyeriss: An Energy-Efficient Reconfigurable

Accelerator for Deep Convolutional Neural Networks,” IEEE
International Solid-State Circuits Conference (ISSCC), 2016.

[17] X. Zhu and D. Ramanan, “Face detection, pose estimation and landmark
localization in the wild,” IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2012.

[18] Jain, V., Learned-Miller, E.: FDDB: A benchmark for face detection in
unconstrained settings. Tech. Rep. UM-CS-2010-009, University of

Massachusetts, Amherst (2010).

[19] M. Everingham, et al., “The PASCAL visual object classes challenge
2012 (VOC2012) results,” http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html.

[20] P. Dollar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,”
British Machine Vision Conference (BMVC), 2009, pp. 91.1-91.11.

[21] M. Köstinger, et al., “Annotated facial landmarks in the wild: a large-

scale, real-world database for facial landmark localization,” IEEE Int.
Conf. on Computer Vision Workshops, 2011.

[22] R. Timofte, K. Zimmermann, and L. Van Gool, “Multi-view traffic sign

detection, recognition, and 3D localisation,” Machine Vision and
Applications (MVA), pp. 633-647, 2014.

[23] Caltech Car Dataset for Car License Plate Detection. http://www.vision.

caltech.edu/archive.html
[24] INRIA Person Dataset for Pedestrian Detection. http://pascal.inrialpes.fr/

data/human/.

[25] D. Jesse and M. Goadrich, “The relationship between precision-recall and
ROC curves,” Int. Conf. on Machine Learning (ICML), 2006.

 11

[26] GTI’s Vehicle Image Database. http://www.gti.ssr.upm.es/data/Vehicle
_database/Vehicle_database.html

[27] K. K. Lee, et al., “A 502GOPS and 0.984mW Dual-Mode ADAS SoC

with RNN-FIS Engine for Intention Prediction in Automotive Black-Box
System,” IEEE International Solid State Circuits Conference (ISSCC),

2016.

[28] S. Yin, et al., “A High Energy Efficient Reconfigurable Hybrid Neural
Network Processor for Deep Learning Applications,” IEEE Journal of

Solid-State Circuits, vol. 53, no. 4, pp. 968-982, Apr. 2017.

[29] X. Chen, et al., “A 68 mw 2.2 Tops/w low bit-width and multiplierless
DCNN object detection processor for visually impaired people,” IEEE

Transactions on Circuits and Systems for Video Technology, Nov. 2018.

[30] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

Minkyu Kim (S’15) received the B.E. degree in

electronics and electrical engineering from Pusan
National University, Busan, South Korea, in 2005,

and the M.S. degree in electrical engineering from the

Pohang University of Science and Technology,
Pohang, South Korea, in 2007. He is currently pur-

suing the Ph.D. degree in electrical engineering with
Arizona State University, Tempe, AZ, USA.

 From 2007 to 2013, he was with LG Display Co.

Ltd., Paju-si, South Korea, where he worked on the
development of timing controller chip and image processing for high-quality

display. He worked as a summer intern at Qualcomm Inc., San Diego, CA,

USA, in 2017 and 2018. His research interests include efficient hardware design
and application of machine learning and neuromorphic algorithms.

 Mr. Kim was a recipient of the LG Display Scholarship from 2005 to 2007

and the Qualcomm Roberto Padovani Scholarship Award in 2017.

Abinash Mohanty (S’15) received the B.Tech.
degree in electronics and communications enginee-

ring from the National Institute of Technology,

Rourkela, India, in 2010. He is currently working
towards Ph.D. degree in electrical engineering from

Arizona State University, Tempe, AZ, USA.

 He was with Samsung Research & Development
Institute, New Delhi, India, from 2010 to 2013, where

he worked on embedded software platform for Smart

devices. His research interests include reliability
modeling, neuromorphic design for learning and stochastic design with

extremely scaled CMOS.

Deepak Kadetotad (S’15) received the B.E. degree

in electronics and communication engineering from
the M.S. Ramaiah Institute of Technology, Karnataka,

India, in 2013. He is currently working towards the

Ph.D. degree in electrical engineering from Arizona
State University, Tempe, AZ, USA.

 His research interests include hardware design and

application of machine learning and neuromorphic
algorithms.

 Mr. Kadetotad was a recipient of the LSI Chair-

man’s International Scholarship from 2009 to 2013.

Xiaofei He (SM’10) received the BS degree in
computer science from Zhejiang University, China, in

2000 and the PhD degree in computer science from

the University of Chicago, in 2005.
 He is a professor in the State Key Lab of

CAD&CG, Zhejiang University, China. Prior to

joining Zhejiang University, he was a research
scientist with Yahoo! Research Labs, Burbank,

California. His research interests include machine

learning, information retrieval, and computer vision.

Yu Cao (S’99-M’02-SM’09-F’17) received the B.S.
degree in physics from Peking University, Beijing,

China, in 1996, and the M.A. degree in biophysics and

the Ph.D. degree in electrical engineering from
University of California at Berkeley, Berkeley, CA,

USA, in 1999 and 2002, respectively.

 He worked as a summer intern at Hewlett-Packard
Labs, Palo Alto, CA in 2000, and at IBM Micro-

electronics Division, East Fishkill, NY, in 2001. After

working as a post-doctoral researcher at the Berkeley
Wireless Research Center (BWRC), he is now a Professor of Electrical

Engineering at Arizona State University, Tempe, Arizona. He has published

numerous articles and two books on nano-CMOS modeling and physical
design. His research interests include brain-inspired computing, hardware

design for on-chip learning, and reliable integration of nanoelectronics.

 Dr. Cao was a recipient of the 2012 Best Paper Award at IEEE Computer
Society Annual Symposium on VLSI, the 2010, 2012, 2013, 2015 and 2016

Top 5% Teaching Award, Schools of Engineering, Arizona State University,

2009 ACM SIGDA Outstanding New Faculty Award, 2009 Promotion and
Tenure Faculty Exemplar, Arizona State University, 2009 Distinguished

Lecturer of IEEE Circuits and Systems Society, 2008 Chunhui Award for

outstanding oversea Chinese scholars, the 2007 Best Paper Award at
International Symposium on Low Power Electronics and Design, the 2006 NSF

CAREER Award, the 2006 and 2007 IBM Faculty Award, the 2004 Best Paper

Award at International Symposium on Quality Electronic Design, and the 2000
Beatrice Winner Award at International Solid-State Circuits Conference. He

served as Associate Editor of the IEEE Transactions on CAD, and on the

technical program committee of many conferences.

Jae-sun Seo (S’04–M’10–SM’17) received the B.S.

degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2001, and the M.S.

and Ph.D. degrees in electrical engineering from the

University of Michigan, Ann Arbor, MI, USA, in
2006 and 2010, respectively.

 From 2010 to 2013, he was with IBM T. J. Watson

Research Center, Yorktown Heights, NY, USA,
where he worked on cognitive computing chips under

the DARPA SyNAPSE Project and energy-efficient

integrated circuits for high-performance processors. In 2014, he joined the
School of Electrical, Computer and Energy Engineering, Arizona State

University, Tempe, AZ, USA, as an Assistant Professor. In 2015, he was with

the Intel Circuits Research Lab as a Visiting Faculty. His current research
interests include efficient hardware design of machine learning and

neuromorphic algorithms and integrated power management.

 Dr. Seo was a recipient of the Samsung Scholarship from 2004 to 2009, the
IBM Outstanding Technical Achievement Award in 2012, and the NSF

CAREER Award in 2017.

