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Abstract—Resistive RAM (RRAM) has been presented as a promising memory technology
towards deep neural network (DNN) hardware design, with non-volatility, high density, high
on-off ratio, and compatibility with logic process. However, prior RRAM works for DNNs have
shown limitations on parallelism for in-memory computing, array efficiency with large peripheral
circuits, multi-level analog operation, and demonstration of monolithic integration. In this work,
we propose circuit-/device-level optimizations to improve the energy and density of RRAM-based
in-memory computing architectures. We report experimental results based on prototype chip
design of 128×64 RRAM arrays and CMOS peripheral circuits, where RRAM devices are
monolithically integrated in a commercial 90nm CMOS technology. We demonstrate CMOS
peripheral circuit optimization using input-splitting scheme and investigate the implication of
higher low resistance state on energy-efficiency and robustness. Employing the proposed
techniques, we demonstrate RRAM based in-memory computing with up to 78.3 TOPS/W
energy-efficiency and 84.2% CIFAR-10 accuracy. Furthermore, we investigate four-level
programming with single RRAM device, and report the system-level performance and DNN
accuracy results using circuit-level benchmark simulator NeuroSim.

DEEP learning algorithms have shown tremen-
dous success in recent years [1] for various
applications including computer vision, speech

recognition, language translation, etc. However,
an increasing gap exists between the exponential
network size growth of state-of-the-art DNNs
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(e.g. tens of millions of parameters) and the incre-
mental energy-efficiency improvement of conven-
tional memory technologies (e.g. CMOS scaling)
for hardware accelerator designs [2].

To bridge this gap and largely improve the
memory energy-efficiency, in-memory computing
(IMC) has been proposed in recent years across
different memory technologies [3], [4], [5], [6],
[7], [8], [9]. IMC typically asserts multiple or
all rows simultaneously to perform multiply-and-
accumulate (MAC) computations of DNNs inside
the memory, e.g. along the bitlines with analog
current/voltage.

SRAM based IMC works [3], [4], [5] demon-
strate high energy-efficiency, however typically
such IMC SRAM bitcells include a few additional
transistors, which degrades density and leakage.
In addition, custom peripheral circuits such as
analog-to-digital converters (ADC) incur lower
array efficiency. Since one SRAM cell occupies
150-300 F 2 (F is the feature size of a technology
node), on-chip SRAMs cannot hold all weights of
DNNs. Therefore, CMOS hardware accelerators
inevitably involve off-chip DRAMs at the system
level, which results in high energy consumption.

Consequently, a number of works proposed to
bring computation closer to the DRAM. DRAM
based near-memory computing proposes to add
logic in the DRAM die, however logic capability
in the optimized DRAM process is relatively
limited. On the other hand, DRAM based in-
memory computing is more challenging, because
the conventional 1T1C DRAM read is destructive,
and thus requires additional overheads such as
data copy and write back [6]. DRAM cell designs
with non-destructive read have been proposed
(e.g. 2T1C, 3T1C) [7], but they directly degrade
density, which is especially disadvantageous for
area-efficient DRAMs.

In addition, both SRAM and DRAM are
volatile and have increasing concerns on leak-
age power in scaled CMOS nodes. To that
end, resistive non-volatile memory (NVM) has
emerged as a good alternative due to high density,
non-volatility, and non-destructive read. Among
several well-known candidates including phase
change memory (PCM), resistive RAM (RRAM),
and magnetic RAM (MRAM), this work focuses
on RRAM owing to its high on/off ratio, multi-
level programmability, and monolithic integration

capability.
There has been only a few works that have

demonstrated monolithically integrated RRAM
and CMOS for DNN hardware design [8], [9],
[10]. The authors of [8] designed 180nm and
40nm prototype chips with embedded RRAM
arrays. However, only simple multi-layer per-
cepton (MLP) has been demonstrated that re-
sulted in low inference accuracy of 90.8% for
MNIST dataset. An RRAM macro integrated with
multi-level sense amplifiers in 55nm CMOS logic
process was recently reported in [9], targeting
convolutional neural networks (CNNs). However,
a relatively low CNN accuracy of 81.83% ac-
curacy for CIFAR-10 dataset was achieved with
binary/ternary precision. Moreover, only 9 WLs
are asserted simultaneously in the 256×512 sub-
array, which limits further parallelism, and a
relatively complex 4-bit ADC was employed
at the RRAM array periphery, degrading ar-
ray efficiency and energy consumption. In [10],
a monolithically integrated 3D nanosystem has
been presented, which connects CMOS transis-
tors, carbon nanotube transistors (CNFET), and
RRAM devices in different layers with inter-
layer vias (ILVs). A small-scale support vector
machine accelerator has been demonstrated, but
applicability for larger DNNs has not been shown.
While there has been considerable improvement
in CNFET integration with CMOS or RRAM, in
terms of manufacturability and yield, integration
of RRAM with CMOS in commercial technology
is much superior [11].

In this work, we address such limitations
in RRAM based in-memory computing towards
energy-/area-efficient and accurate DNN hard-
ware design, using monolithic integration of
RRAM and CMOS. In particular, we investi-
gate three different device/circuit techniques: (1)
modulating resistance values for binary RRAM
devices, (2) peripheral circuit minimization with
input-splitting technique, and (3) multi-level
RRAM programming. We report measurement
results of 90nm CMOS prototype chip that mono-
lithically integrated RRAM arrays, which exe-
cutes in-memory computing operations of CNNs
for CIFAR-10 dataset.

In our in-memory computing architecture,
monolithic integration of RRAM and CMOS is
crucial, since we need dense connections to all
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Figure 1. Prototype chip design with monolithi-
cally integrated RRAM and 90nm CMOS technol-
ogy (adapted from [14], with permission). This work
presents further energy/area optimization.

wordlines and bitlines of the RRAM array. If
RRAM and CMOS are not monolithically in-
tegrated (e.g. using through-silicon-vias or sili-
con interposers), the bitline and wordline delays
will be excessive and the integration density
will be too low. Furthermore, monolithic inte-
gration of RRAM with CMOS is simpler and
less expensive than that with CNT [10]. RRAM
process is CMOS fabrication compatible, with
just a few layers of oxide deposition at the
contact via at back-end-of-line (BEOL) compat-
ible temperature. Typically only one additional
mask/lithography is required, allowing RRAM
integration to be low-cost.

RRAM PROTOTYPE CHIP DESIGN
We designed a prototype chip for RRAM-

based robust in-memory computing with Win-
bond’s embedded RRAM technology [11], which
monolithically integrates 90nm CMOS and
RRAM between M1 and M2 (Figure 1(a)). Fig-
ure 1(b) shows the pad-limited chip micrograph
and the core area of the chip. As shown in
the top-level block diagram in Figure 1(c), the
chip design includes a 128×64 1T1R array, row
decoder, level shifter, eight 8-to-1 column multi-
plexers, eight 3-bit flash ADCs based on seven
voltage-mode sense amplifiers (SAs), and two
64-to-1 column decoders for RRAM cell-level
programming. The row decoder has two modes of
operation: (1) it asserts all differential wordline
(WL) signals simultaneously for binary or low-
precision multiply-and-accumulate (MAC) opera-

Figure 2. In-memory computing operation of XNOR-
RRAM (adapted from [14], with permission).

tion, or (2) generates one-hot WL signals for cell-
level programming. Eight ADCs (shared among
64 columns) and eight column multiplexers oc-
cupy 20% and 12% of the core area, respectively
(Figure 1(d)). In this work, further energy/area
optimization is investigated including peripheral
circuit minimization by using higher LRS and
input-splitting scheme.

Conventional binary RRAMs cannot effec-
tively represent the positive and negative weight
values (+1 and -1) in binarized neural networks
(BNNs) [12], because the high resistance state
(HRS) and low resistance state (LRS) values of
binary RRAM devices are both positive. In addi-
tion, as shown in Figure 2, the activation/weight
value combinations of +1/+1 and -1/-1 should
result in the same effective resistance. To that
end, we proposed to use a “XNOR-RRAM”
bitcell design [13], [14] for BNNs. As shown
in Figure 2, the XNOR-RRAM bitcell involves
differential RRAM cells and differential word-
lines. The binary activations are mapped onto
the differential wordlines, and the binary weights
are mapped onto the HRS/LRS values of XNOR-
RRAM bitcells. By asserting all differential WLs
of the RRAM array simultaneously, all cells in
the same column are computed in parallel, which
implements the binary MAC computations. The
128×64 1T1R array effectively represents 64×64
XNOR-RRAM bitcells, since one XNOR-RRAM
bitcell consists of two 1T1R baseline bitcells to
represent positive/negative weights and to per-
form embedded XNOR computation inside the
XNOR-RRAM bitcell.
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Both the preliminary simulation results [13]
and initial measurement results [14] of the
XNOR-RRAM design only considered the default
LRS and HRS values for the binary RRAM
devices, and employed a 3-bit ADC at the pe-
riphery for digitizing the analog partial MAC
value. In this work, we investigate three fur-
ther optimizations in monolithically integrated
RRAM devices and peripheral circuits, towards
enhancing the energy-efficiency and density of
the RRAM-based IMC systems.

First, since the default LRS value (∼6kΩ)
consumes large current and the on/off ratio is
relatively high (∼150), we explore using higher
LRS values (e.g. ∼12kΩ and ∼24kΩ) to evaluate
the trade-off between current reduction, on/off
ratio, and CNN accuracy.

Second, although a 3-bit ADC is relatively
simple, it still consumes a large area compared
to the RRAM array itself, resulting in low array
efficiency. We present further algorithm/hardware
improvements beyond the previous input-splitting
techniques [15], and employ binary sense ampli-
fiers with an unified reference voltage across all
columns, instead of ADCs at the RRAM array
periphery, for digitizing the analog partial MAC
values. Considering that tightly-spaced reference
voltages make flash ADCs more susceptible to
variability at low voltages, we show that the
proposed input-splitting scheme actually results
in much improved accuracy at lower supplies.

Finally, beyond binary RRAM devices, we
investigate four-level programming with the same
RRAM devices in our prototype chip, and exper-
imentally validate the density, energy and perfor-
mance gains by benchmarking a CNN for CIFAR-
10 dataset.

HIGHER RESISTANCE FOR LRS
DEVICES

In binary RRAM devices, only two states per
device exist, namely LRS (high conductance) and
HRS (low conductance). In commercial RRAM
technologies that are typically used for storage
applications, on-off ratio of higher than 100 has
been reported. Having a large on-off ratio is
certainly good, but on the other hand, having
high conductance value for the LRS leads to high
current consumption.

To that end, for a given HRS value is fixed,

Figure 3. New input-splitting scheme that allows uni-
fied reference voltage for all sense amplifiers in the
RRAM array periphery.

and if we have higher LRS values in binary
RRAM devices, then the current and energy con-
sumption could be largely reduced. On the other
hand, compared to the default LRS, targeting
LRS to have a higher resistance value can result
in wider distribution after programming or more
susceptible to non-ideal effects such as read dis-
turb. In addition, and if the LRS and HRS ranges
become relatively close, it will adversely affect
the DNN accuracy for the RRAM-based IMC
hardware.

PERIPHERAL CIRCUIT
MINIMIZATION WITH
INPUT-SPLITTING SCHEME

Input-splitting is a method of BNN archi-
tecture design for ADC-free in-memory comput-
ing [15]. Input-splitting reconstructs a large BNN
layer with a network of small layers. It splits input
of a large layer so that the number of inputs per
split group is less than or equal to row count
of the given RRAM array. Each split group con-
structs a new small layer, and the binary output
generated from small layers are accumulated and
subsequently binarized with a threshold value of
zero. Then, each layer of input-split BNN can fit
on RRAM array so that the array can generate
binary neuron values as output values. However,
batch normalization governs that each neuron
has its own threshold value, which necessitates
each column to have a digital-to-analog converter
(DAC) [4], adding a large overhead.

In this work, we modified the conventional
input-splitting method [15] to eliminate column-
wise threshold values. Batch normalization con-
ducts scaling and shifting operation, and the shift-
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Figure 4. Conductance distribution is shown for four levels of RRAM device programming. Both measurement
data from prototype chip and fitted Gaussian distribution curves are shown.

ing operation generates threshold values. There-
fore, as illustrated in Figure 3, we removed batch
normalization before output binarization of small
layers. Instead, we experimentally found a proper
scaling factor for pre-binarization values of small
layers. For the RRAM array with 64 rows, we
found that, by scaling pre-binarization value with
1/20, most of scaled values lie in the range of
[-1, 1]. As there is no shifting operation on pre-
binarization value of small layers, the column-
wise threshold is fixed to 0. Then, we added batch
normalization after the merge to compensate for
the loss of batch normalization on small layers.

We tested a VGG-like CNN for CIFAR-
10 dataset, which has the network structure
of input-128C3-128C3-MP2-256C3-256C3-MP2-
512C3-512C3-MP2-1024FC-1024FC-10FC [12].
Here, 128C3-128C3 refers to the convolution
layer with 128 input feature maps, 3×3 kernels
and 128 output feature maps, MP2 refers to 2x2
max-pooling, and 1024FC refers to the fully-
connected layer with 1024 hidden neurons.

As we used RRAM arrays with 64 effec-
tive rows, the input counts per input-split BNN
layer was set to 63 for convolution layers and
64 for fully-connected layers. We used 63 for
convolution layer because we use 3×3 kernel for
convolution, and 63 is the closest value less than
equal to 64. In addition, to make the input of
convolution layer be divided by 63, we changed
the number of channels to be an integer multiple
of 7. Using Torch, we trained the input-split
BNN with the same training condition used in
conventional input splitting [15]. For comparison,

we trained baseline BNN (non-split BNN), input-
split BNN with column-wise threshold, input-split
BNN without column-wise threshold. The algo-
rithm simulation results showed that the input-
split BNN without column-wise threshold model
has compatible accuracy (86.64%) with the base-
line BNN (88.46%) and input-split BNN with
column-wise threshold (88.24%).

MULTI-LEVEL RRAM DEVICES
Multi-level programming scheme

To achieve 2-bit RRAM, two more conduc-
tance states are inserted between minimum and
maximum conductance levels so that the conduc-
tance interval is equal between adjacent states. A
write-verify programming scheme is iterated until
less than 2% of RRAM cells are outside the target
conductance range for each of the four levels.
The maximum number of write-verify iterations
to program one RRAM cell is specified as Nmax.
For each conductance state, 4,096 RRAM cells in
the prototype chip are programmed and measured.
It is observed that the conductance distribution
becomes more concentrated as Nmax increases.
The Nmax to achieve the target conductance
range are 15, 30, 15 and 10 for the four conduc-
tance states, respectively. After programming, the
percentage of the RRAM cells that are outside the
target conductance ranges were 0.32%, 1.32%,
0.92% and 0.44%, respectively.

Inference accuracy simulation
The inference accuracy for a CNN is simu-

lated with the measured 2-bit RRAM data. How-
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ever, considering the limited measurement data
(4,096 data points for each state) compared to
the total number of parameters in a CNN, we
first fitted the probability density function (PDF)
of the measured conductance data with a linear
combination of multiple Gaussians as the fitted
PDF. Then, the conductance values are generated
with the fitted PDF for a large CNN. Figure 4
shows the PDF of the measured conductance and
the conductance values generated with fitted PDF.
The distribution tails of the experiment data are
captured with the fitted PDF.

Using 2-bit weights and 4-bit activations,
we benchmarked the same VGG-like CNN for
CIFAR-10. It is assumed that each 2-bit weight
is stored into one RRAM cell. We first trained
the CNN with the quantized training method
proposed in [16], and obtained the software base-
line accuracy of 91.7%. The 2-bit weights are
then mapped to conductance states, where the
conductance values of each RRAM cell are gen-
erated with the fitted PDFs of the corresponding
states. The inference accuracy is simulated for
three different array size 64×64, 128×128 and
256×256, where we employed flash ADCs with
5-bit precision using non-linear quantization [13].

MEAUSUREMENT AND SIMULATION
RESULTS

Binary RRAM based IMC energy and accuracy
characterization with higher LRS and
input-splitting

We envision that large binary CNNs are
mapped onto multiple RRAM arrays, where
weights for different input channels are stored on
different rows, weights for different output chan-
nels are stored on different columns, and weights
within each convolution kernel (e.g. 9=3×3) are
stored in different RRAM macros [3], [14]. Sub-
sequently, the partial MAC results from different
RRAM macros are accumulated via digital sim-
ulation. In [14], 3-bit ADC was used to digitize
the analog partial MAC values, where seven refer-
ence voltages for each flash ADC required offset
cancellation in order to achieve >83% CIFAR-
10 accuracy. The new input-splitting scheme pre-
sented in this work substantially reduces such
calibration overhead, since we only need binary
sense amplifiers to digitize the analog partial sum,

and the same reference voltages are used for all
64 columns of the RRAM array.

Another important challenge for the flash
ADC is that, the adjacent reference voltages are
very close to each other, especially since the
partial sum data distribution is concentrated near
zero [13]. If we lower the supply voltage, the
reference voltages actually become even closer
to each other, which makes it more susceptible
to process variation. On the other hand, since the
input-splitting scheme allows to have only one
reference voltage for the sense amplifiers, the dig-
itization is inherently more robust to variability
and noise.

We performed chip measurements for the ex-
periments of higher LRS values and the input-
splitting scheme. For the higher LRS experiment,
we programmed RRAM devices with different
target LRS values of 6kΩ, 12kΩ and 24kΩ. For
the input-splitting scheme experiment, with the
same XNOR-RRAM prototype chip, we only use
one SA out of the seven SAs that are present in
the flash ADC. This means that, when we employ
the input-splitting scheme, the overall ADC area
in the RRAM macro is effectively reduced by 7X.

In Figure 5, we show the comparison of the
bitcount values from the BNN algorithm (i.e.
ideal partial sum values) and the measured ADC
output values using 12kΩ LRS target, for both
the conventional scheme with 3-bit ADCs and the
input-splitting scheme with binary SAs. As we
compare the 1.2V and 0.8V supply results, it can
be seen that the ADC output values become less
accurate at 0.8V. However, with a single reference
level, the input-splitting scheme still maintains
more robust operation even at lower voltages.

As shown in Figure 6, the energy-efficiency
(TOPS/W) of RRAM-based IMC increases with
higher LRS values and with lower supply volt-
ages. The CIFAR-10 accuracy values for the
VGG-like CNN with voltage scaling are reported
in Figure 7 with different LRS values for both
the input-splitting scheme with binary SAs and
the conventional scheme with 3-bit ADCs. For the
conventional scheme with ADCs, it can be seen
that the CIFAR-10 accuracy degrades by a large
amount when the supply voltage scales below the
nominal 1.2V. This is due to the fact that that the
seven reference voltages for the flash ADC are
separated only by a small voltage value, which
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Figure 5. Measured ADC output results compared with bitcount values from BNN algorithm.

Figure 6. Energy-efficiency with voltage scaling for
RRAM IMC with different LRS values.

aggravates with lower supply voltages, incurs
more ADC output errors, and adversely affects
the DNN accuracy.

For the input-splitting scheme, there is only
one reference voltage used by all eight sense
amplifiers for 64 columns, the SA operation is
more robust against voltage scaling, noise and
variability. As a result, Figure 7 shows that
high CNN accuracy is maintained for the input-
splitting scheme for 12kΩ/24kΩ LRS values,
down to 0.8V supply. The input-splitting scheme
also shows higher accuracy for cases when RBL

Figure 7. CIFAR-10 accuracy with voltage scaling
for RRAM IMC with different LRS values and input-
splitting scheme.

voltage is around 0.6-0.7V (high gain region for
SA with differential NMOS input) for bitcount
values near zero, e.g. higher supply with 6kΩ
LRS and lower supply with 24kΩ LRS value.

The conventional scheme [14] achieves
energy-efficiency of 20.8 TOPS/W at 1.2V supply
(Figure 6), while achieving 83.5% accuracy with
binary CNN. Jointly optimizing the use of higher
LRS value of 12kΩ (24kΩ) and the proposed
input-splitting scheme effectively enabled voltage
scaling down to 0.8V without any additional
accuracy loss, improving the energy-efficiency by
3.1X (3.8X), achieving 64.5 (78.3) TOPS/W.
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Table 1. CNN simulation results with 2-bit RRAM for
different RRAM array sizes.

2-bit RRAM based CNN accelerator
performance benchmarking with NeuroSim

2-bit RRAM could further increase the inte-
gration density for the CNN accelerator. The per-
formance benchmarking for 2-bit RRAM based
CNN accelerator is conducted in NeuroSim [17],
where the aforementioned VGG-like CNN is uti-
lized. We assume that eight columns share one
ADC in the RRAM array, and there are a total of
eight ADCs in the RRAM array periphery. The
inference computation is processed layer by layer.
Table 1 presents the benchmarking results with
different RRAM array sizes.

First, the inference accuracy drops as the array
size is increased, since the ADC precision is
fixed at 5-bit. This is attributed to the fact that
the partial sum distribution becomes broader with
larger array size, and therefore quantization loss is
increased. It should be noted that the conductance
variation of 2-bit RRAM only leads to small
accuracy drop when comparing the accuracy with
ADC quantization only and with both ADC quan-
tization and RRAM conductance variation.

In terms of chip area, 256×256 array shows
smaller chip area compared with 128×128 array
due to the increased array efficiency. However,
only small chip area increase is observed when
array size is reduced to 64×64. Comparing with
128×128 array, for 256×256 array, chip area is
reduced as less subarrays are needed. It can be
explained by the fact that in 64×64 array, the
periphery circuit size is reduced due to lower
maximum column partial sum current, therefore,
the array efficiency does not drop significantly
compared with 128×128 array.

For the read latency and dynamic energy

consumption, comparing with 128×128 array,
64×64 array needs more partial sum accumula-
tions between subarrays, which leads to higher
latency and energy consumption. For 256×256
subarray, the large column current leads to sig-
nificantly higher ADC energy consumption and
therefore the overall energy consumption is in-
creased. Besides, the larger column partial sum
current leads to larger transmission gate (TG) size
in the multiplexer, which induces higher latency
for the decoder to drive the TG gate capacitor.

CONCLUSION
In this work, we demonstrated RRAM based

in-memory computing with 90nm CMOS proto-
type chips that monolithically integrated RRAM
and CMOS in different vertical layers. Using
device-/circuit-/algorithm-level techniques, both
the energy-efficiency and density of binary
RRAM based IMC hardware improved substan-
tially, achieving up to 78.3 TOPS/W and 84.2%
accuracy for CIFAR-10 dataset. Experiments with
2-bit RRAM demonstrate sufficient separation
between four conductance levels, and show higher
CNN accuracy up to 128×128 RRAM array size.
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