Minimal percolating sets for mutating infectious diseases

Yuyuan Luo® and Laura P. Schaposnik®¢
(a) Central High School, Grand Rapids, MI 49546, USA.
(b) University of Illinois, Chicago, IL 60607, USA.
(c) Mathematical Sciences Research Institute, Berkeley, CA 94720, USA.

This paper is dedicated to the study of the interaction between dynamical systems and percolation
models, with views towards the study of viral infections whose virus mutate with time. Recall that
r-bootstrap percolation describes a deterministic process where vertices of a graph are infected
once r neighbors of it are infected. We generalize this by introducing F(t)-bootstrap percolation,
a time-dependent process where the number of neighbouring vertices which need to be infected
for a disease to be transmitted is determined by a percolation function F'(t) at each time t. After
studying some of the basic properties of the model, we consider smallest percolating sets and
construct a polynomial-timed algorithm to find one smallest minimal percolating set on finite trees

for certain F'(t)-bootstrap percolation models.

Keywords: Bootstrap percolation, dynamical disease propagation, minimal percolating sets.

I. INTRODUCTION

The study of infectious diseases though mathematical
models dates back to 1766, when Bernoulli developed a
model to examine the mortality due to smallpox in Eng-
land [1]. Moreover, the germ theory that describes the
spreading of infectious diseases was first established in
1840 by Henle and was further developed in the late 19th
and early 20th centuries. This laid the groundwork for
mathematical models as it explained the way that infec-
tious diseases spread, which led to the rise of compart-
mental models. These models divide populations into
compartments (also called coarse-grained models), where
individuals in each compartment have the same charac-
teristics; Ross first established one such model in 1911 in
[2] to study malaria and later on, basic compartmental
models to study infectious diseases were established in a
sequence of three papers by Kermack and McKendrick
[3] (see also [4]).

In this paper we are interested in the interaction be-
tween dynamical systems and percolation models, from
the point of view of infections which mutate with time.
The use of stochastic models to study infectious diseases
has been popular for a long time, and dates back to
the 1970’s (e.g., see the celebrated work of Harris [5]
and Metz [4]). There are many ways to mathematically
model infections, including statistics-based models such
as regression models (e.g. [6]), cumulative sum charts
(e.g. [7]), hidden Markov models (e.g. [8]), and spatial
models (e.g. [7]), as well as mechanistic state-space mod-
els such as continuum models which are described by dif-
ferential equations (e.g. [9]), stochastic models (e.g. [10]),
complex network models (e.g. [11]), and agent-based sim-
ulations (e.g. [12] — see also [1] and references therein).

Difficulties when modeling infections include incorpo-
rating the dynamics of behavior in models, as it may be
difficult to access the extent to which behaviors should
be modeled explicitly, quantifying changes in reporting
behavior, as well as identifying the role of movement and
travel [13]. When using data from multiple sources, dif-
ficulties may arise when determining how the evidence

should be weighted and when handling dependence be-
tween datasets [14].

In what follows we shall introduce a novel type of dy-
namical percolation which we call F'(t)-bootstrap percola-
tion, thought of as a generalization of classical bootstrap
percolation. This approach allows us to model mutating
infections, and thus we dedicate this paper to the study
of some of its main features. After recalling classical -
bootstrap percolation in Section I A, we introduce a time-
dependent percolation function F(¢) through which we
introduce a dynamical aspect for the percolating model,
as described in Definition 1 in Section II, given as fol-
lows. Given a function F(t) : N — N, we define an F(t)-
bootstrap percolation model on a graph G with vertices V'
and initially infected set Ay as the process which at time
t + 1 has infected set given by

At_;,_l:AtU{'UEV|N(’U)0At‘2F(t)}, (1)

where N (v) denotes the set of neighbouring vertices to v,
and we let Ao be the final set of infected vertices once
the percolation process has finished.

As mentioned before, this model allows one to study
situations in which an infection propagates at different
rates depending on the time. As an example one may
consider the case of the mutating virus of influenza within
this setting: instead of having a mutating virus for which
the current vaccination becomes ineffective for the new
mutation, we can think of the setting as a model with a
fixed virus for which it is the rate of infection which is
the one that changes with time — in this case, the rate
becomes higher as time passes.

In Section IT we study some basic properties of this
model, describe certain (recurrent) functions which en-
sure the model percolates, and study the critical proba-
bility p.. Since our motivation comes partially from the
study of effective vaccination programs which would al-
low to contain an epidemic, we are interested both in the
percolation time of the model, as well as in minimal per-
colating sets. We study the former in Section III, where
by considering equivalent functions to F(t), we obtained
bounds on the percolating time.

Finally, in Section IV and Section V we introduce
and study smallest minimal percolating sets for F(t)-
bootstrap percolation on (non-regular) trees. This leads
to one of our main results in Section V D, where we de-
scribe an algorithm for finding the smallest minimal per-
colating sets. Lastly, we conclude the paper with a com-
parison in Section VII between our model and our algo-
rithm for this model with the one considered in [15] that
solves the same problem for classical bootstrap percola-
tion, and analyse the effect of taking different functions
within our dynamical percolation.

A. Bootstrap percolation

The model introduced in this paper, described in (1),
is a dynamical generalization of what is known as boot-
strap percolation, introduced in 1979 in the context of
solid state physics in order to analyze diluted magnetic
systems in which strong competition exists between ex-
change and crystal-field interactions [16]. Bootstrap per-
colation has seen applications in diverse areas, including
the studies of fluid flow in porous areas, the orientational
ordering process of magnetic alloys, as well as the failure
of units in a structured collection of computer memory
(e.g., see [17]).

Bootstrap percolation has long been studied mathe-
matically on arbitrary trees [18], as well as on finite and
infinite rooted trees including Galton-Watson trees (e.g.
see [19]). Compared with other models for infectious dis-
eases, cellular automata models better simulate the ef-
fects of individual behavior and the spatial aspects of
epidemic spreading, and better account for the effects
of mixing patterns of individuals, as each individual is
modeled separately, instead of all individuals being as-
sumed as homogeneous. Hence, contagious diseases in
which these factors have significant effects are better un-
derstood when analyzed with cellular automata models
such as bootstrap percolation [20], which is defined as
follows. For n € Z*, we define an r-bootstrap percolation
model on a graph G with vertices V' and initially infected
set Ag as the process in which at time ¢ + 1 has infected
set given by

At+1:AtU{v€V:\N(v)ﬁAt\Zr}. (2)

Here, as before, we denoted by N(v) the set of neigh-
bouring vertices to v.

In contrast, a SIR Model relates at each time ¢ the
number of susceptible individuals S(t) to the number of
infected individuals I(t) and the number of recovered in-
dividuals R(t), by a system of differential equations — an
example of a SIR model used to simulate the spread of
the dengue fever disease appears in [21]. In these mod-
els, a fixed parameter § denotes the average number of
transmissions from an infected node per time period. In
particular, the rate of spread of diseases are not nec-
essarily constant in these models. This helps motivate
the introduction of a time-dependent model of bootstrap
percolation where the rate of spread varies according to
time, done in Section II.

In what follows we shall present a dynamical general-
ization of the above model, for which it will be useful
to have an example to establish the comparisons. Con-
sider the (irregular) tree with three infected nodes at time
t = 0, given by A9 = {2,4,5} as shown in Figure 1.
Through 2-bootstrap percolation at time ¢ = 1, node 3
becomes infected because its neighbors 4 and 5 are in-
fected at time t = 0. At time ¢ = 2, node 1 becomes
infected since its neighbors 2 and 3 are infected at time
t = 1. Finally, note that nodes 6,7,8 cannot become in-
fected because they each have only 1 neighbor, yet two or
more infected neighbors are required to become infected.

FIG. 1: Depiction of 2-bootstrap percolation, where shaded
vertices indicated infected nodes.

II. TIME-DEPENDENT PERCOLATION

The motivation of time-dependent percolation models
appears since the rate of spread of diseases may change
over time. In the SIR models mentioned before, since 3
is the average number of transmissions from an infected
node in a time period, 1/ is the time it takes to infect a
node. If we “divide the work” among several neighbors,
then 1/ is also the number of infected neighbors needed
to infect the current node.

Consider now an infection which would evolve with
time. This is, instead of taking the same number of
neighbours in r-bootstrap percolation, consider a perco-
lation model where the number of neighbours required
to be infected for the disease to propagate changes with
time, following the behaviour of a function F'(t). We shall
say a function is a percolation function if it is a function
F : I — N where I is an initial segment of N (or all of
N) that we use in a time-dependent percolation process,
and which specifies the number of neighbors required to
infect a node at time ¢.

Definition 1 (F(¢)-Bootstrap percolation). Given a
function F(t) : N = N, we define an F(t)-bootstrap per-
colation model on a graph G with vertices V' and initially
infected set Ay as the process in which at time ¢ + 1 has
infected set given by

A =AU eV INWNA|l>FO). (3

Here, as before, we denoted by N (v) the set of neighbour-
ing vertices to v, and we let A, be the final set of infected
vertices once the percolation process has finished.

One should note that r-bootstrap percolation can be
recovered from F'(t)-bootstrap percolation by setting the
percolation function to be the constant F(t) = r. In
what follows, unless otherwise stated, the initial set Ag
is chosen in the same way as in r-bootstrap percolation:
by randomly selecting a set of initially infected vertices
with probability p, for some fixed value of p which is
called the probability of infection.

If there are multiple percolation functions and initially
infected sets under consideration, we may use the nota-
tion AL" to denote the set of infected nodes at time t per-
colating under the function F'(t) with Ay as the initially
infected set. In particular, this would be the case when
generalising the above dynamical model to a multi-type
bootstrap percolation model such as the one introduced
in [22].

In order to understand some basic properties of F(t)-
bootstrap percolation, we shall first focus on a single up-
date function F'(t), and consider the critical probability
pe of infection for which the probability of percolation is
% on finite trees — in the case of infinite trees, this is the
value below which there are no clusters, and above which
there are infinite clusters, with probability 1. When con-
sidering classical bootstrap percolation, note that the re-
sulting set A7 of r-bootstrap percolation is always con-
tained in the resulting set A7 of n-bootstrap percola-
tion provided n < r. From the above, setting the value
m := min; F(¢), the resulting AL set of F(t)-bootstrap
percolation will be contained in AZ}.

Note that for any time ¢, such that

F(ty) =m,

one has that if v € Af, then v € Afz for the next time ¢/,
for which F(t,) = m. Moreover, since for the recurrent
functions we are considering there are infinitely many
times t, such that F'(¢,) = m, one has that the final re-
sulting set A7Z. of m-bootstrap percolation is contained
in the final resulting set AL of F(t)-bootstrap percola-
tion. Then, the resulting sets of m-bootstrap percola-
tion and F'(t)-bootstrap percolation need to be identi-
cal, and hence the critical probability for F(t)-bootstrap
percolation is that of m-bootstrap percolation. In other
words, we have shown that if F(t) equals its minimum
for infinitely many times ¢, then the critical probability
of infection p. for which the probability of percolation is
1/2, is given by the value of the critical probability in
m-bootstrap percolation for m := min; F'(¢), this is

pe(F(t) — bootstrap) = p.(m — bootstrap) (4)

form = mtinF(t).

The type of update functions that satisfy this include si-
nusoidal functions and, since we restricted the codomain
to be positive, weakly decreasing functions.

The percolation function F(t) can be written in terms
of a one-parameter family of parameters [by setting
F(t) := fﬁl As we shall see later, different choices

of the one-parameter family 3(t) defining F(¢) will lead
to very different dynamical models. A particular set-
up arises from [23], which provides data on the time-
dependent rate of a specific virus spread, and through

which one has that an interesting family of parameters
appears by setting

B(t) = (bo—bys) - (1 — k)" +by,

where by is the initial rate of spread, b is the final rate
of spread, and 0 < k < 1. Then at time ¢, the number of
infected neighbors it takes to infect a node is

1

T sl

In this case, since 3(t) tends to by, and % tends to b%-’

one cans see that there will be infinitely many times ¢
such that

1

) =T3-1
f

Hence, in this setting from (4), the critical probability

will be same as that of a r-bootstrap percolation where

rz[ﬁ].

III. PERCOLATION TIME

Informally, the percolation time (for finite graphs) is
the time it takes for the percolation process to terminate,
starting from a specific initially infected set of a graph.
In terms of limits, recall that the final percolating set is
defined as

Aoo = tli>nolo At7 (5)
and thus one may think of the percolation time as the
smallest time ¢ for which A; = A.. Note that for per-
colation on all infinite trees, there exists a percolation
function and an initially infected set such that a percola-
tion time does not exist, whereas there is always a defined
percolation time for percolation on finite trees. Thus, we
restrict our following discussions to finite trees.

By considering different initial probabilities of infec-
tion p which determine the initially infected set Ag, and
different percolation functions F'(¢) one can see that the
percolation time of a model can vary drastically. To illus-
trate this, in Figure 2 we have plotted the percentage of
nodes infected with two different initial probabilities and
four different percolation functions. The model was ran
103 times for each combination on random graphs with
102 nodes and 300 edges.

In the settings of Figure 2, one can see that all the
models stabilize by time 10, implying that the percolation
time is less than or equal to 10. Generally, understanding
the percolation time is useful in determining when the
disease spreading has stabilized. In what follows, we find
a method to generate an upper bound on the percolation
time given a specific graph and function. Formally, for
the percolation functions considered in this paper, we
define the percolation time t, as the minimum

ty = mtln{ t | At+1 = At }

0.8

o
L W e ————— e —————— =
3 7

= T T T
i 0.6 /_.__‘_. ma e me e ma s me e me e se e ma e se e me e se ee e we e ee e
°

s}

z /

5 /!

c 0.4 //

k<)

3 /

o /

[

o« /o

- Ft)y=t>+1, p=10.5
...... F(t) =In(t+1), p=10.01
— F(t)=t+1, p=0.01
........ F(t) =2 p=0.01

---------- F(t)=In(t+1)+1, p=0.05
——— F(t)=t+1, p=005
S F(t) =2, p=0.05

FIG. 2: Percentage of nodes infected at time ¢ for F(¢)-
bootstrap percolation with initial probability p, on graphs
with 100 nodes and 300 edges.

A. Equivalent functions

Expanding on the notation of (5), we shall denote
by AL the set of nodes infected by percolating the set
Ap on the graph with percolation function F(t), and we
shall simply write A, when the percolation function F(t)
is clear from context or irrelevant. Moreover, we shall
say that two percolation functions F} : Iy — Z% and
Fy: Iy — Z7* are equivalent (written as Fy = F3) for the
graph G if for all initially infected sets Ag, one has that

Al = A2 (6)

This equivalence relation can be understood through the
lemma below, which uses an additional function () to
relate two percolation functions Fy and Fy if F{j can be
intuitively “generated” by removing some values of Fj.
This removal procedure is further specified below.
Given two subsets I; and Is of N, we say a function
~v: I = ILU{—1} is a nice function if it is surjective and

e it is injective on 71 (I5);
e it is increasing on v~ 1(I5);
e it satisfies v(a) < a or y(a) = —1.

The notion of a nice function allows us to understand
the relation between two different dynamical percolation
models defined through two functions F'(t) and F’(¢).
Given I,Io C N, let F(t) be any percolation function
with domain I, and define the percolation function F” ()
with domain I5 as

F'(t) = F(y~'(t))

for v(t) a nice function. Through the function F’(t), for
any fixed initially infected set Ag and t € I, one can
show by induction (see Appendix A) that

Al c AP, (7)

Intuitively, the above results tell us that given a fixed
time to and some t > tg, if F(t) = ¢ is the smallest
value the function takes on after the time ¢y, and F(t)
has already taken on that value more than ¢ times, for £
the number of nodes in the graph, then there will be no
nodes that will be infected at that time and the value is
safe to be “removed”.

B. Removal process

In what follows we shall clarify the removal process, by
defining an upper bound on percolation time on a speci-
fied tree and function F(t). For this, let G be a regular
tree of degree d and ¢ vertices. Given a percolation func-
tion F'(t), define the functions F'(t) and vy : N — NU{—1}
by setting:

(i) F'(0) := F(0), and ~(0) := 0.

(ii) Suppose the least value we have not considered F(t)
at is a, and let b be the least value where F’(b) has
not yet been defined. If F'(a) has not yet appeared
¢ times since the last time ¢ such that F(t) < F(a)
and F(a) < d, then set F'(b) := F(a), and let
~v(a) = b. Otherwise, y(a) = —1.

Then, one can show (see Appendix B) that the two func-
tions are equivalent as defined in (6), this is,

F'(t) = F(t). (8)

From the above description of equivalent functions, we
can see two things:

(i) The upper bound on the percolation time is the
time of the largest ¢ such that F’(t) is defined, and
we can use this function in an algorithm to find
the smallest minimal percolating set since F'(¢) and
F'(t) are equivalent.

(ii) An upper bound on the percolation time can not be
obtained without regards to the percolation func-
tion.

To see item (ii), suppose we have such an upper bound
b on some connected graph with degree d and with 1
node initially infected and more than 1 node not initially
infected. Then, if we have percolation function F'(¢) such
that F(t) = d+1for all t € N < b and F(m) = 1
otherwise, we see that there will be nodes infected at
time b + 1, leading to a contradiction.

To see the implications of the above points within the
equivalence of functions, suppose that the degree of the
graph in consideration is d, and define a sequence a where
a1 = d and

ant1 = (an + 1)d.
Then, the size of the domain of F'(¢) in equation (8) is

i=1i- 9)

Indeed, suppose each value do appear exactly d times
after the last value smaller than it appears. To count
how large the domain can be, we start with the possible
ts such as F’'(t) = 1s in the function; there are d of
them as 1 can maximally appear d times. Note that this
is equal to a;. Now, suppose we have already counted
all the possible ts when F'(t) < n + 1, for llegn < d,
which amounted to a,. Then, there can be maximally d
instances at the between the appearance of each ¢t when
F'(t) < n as well as before and after all such appearances,
so there are a, + 1 places where F’(t) = n can appear.
Thus there are maximally (a,, + 1)d elements ¢ in the
domain such that F’(t) = n 4+ 1. Summing all of them
yields &, a;, the total number of elements in the domain
in (9). Finally, note that from equation (8), for some
F(t), Ap and n, one has Af,l(") = AEF'. Then if AE is
reached by time ©¢_;a;, the set must be infected by time
7~ Y(2¢_,a;). Hence, in this setting an upper bound of
F(t) percolating on a graph with d vertices can be found
by taking v~1(2L ,a;), as defined in equation (9).

IV. MINIMAL PERCOLATING SETS

When considering percolations within a graph, it is of
much interest to understand which subsets of vertices,
when infected, would lead to the infection reaching the
whole graph. To study those sets, we shall refer to a
percolating set of a graph G with percolation function
F(t) is a set Ay for which AL, = G at a finite time. A
minimal percolating set is a percolating set A such that
if any node is removed from A, it will no longer be a
percolating set.

A natural motivation for studying minimal percolating
sets is that as long as we keep the number of individuals
infected to less than the size of the minimal percolating
set, we know that the entire population will not be deci-
mated. Bounds on minimal percolating sets on grids and
other less regular graphs have extensively been studied.
For instance, it has been shown in [24] that for a grid
[n]?, there exist a minimal percolating set of size

4n?/33 + o(n?),

but there does not exist one larger than (n + 2)2/6. In
the case of trees, [15] gives an algorithm that finds the
largest and smallest minimal percolating sets on trees.
Since then, only a few further results have been obtained
improving those bounds (see, for example, the work on
degree conditions for bootstrap percolation from small
sets in [25] and references therein). However, the results
in the above papers cannot be easily extended to the
dynamical model because it makes several assumptions
such as F(t) # 1 that do not necessarily hold in the
dynamical model.

In the following sections we shall study minimal per-
colating sets for certain models of F'(t)-bootstrap perco-
lations, but before this is done, we shall first consider an
example of a minimal percolating set with F(t) = ¢, as
shown in Figure 3.

FIG. 3: (a) In this tree, having nodes 2,4, 5 infected (shaded)
initially is sufficient to ensure that the whole tree is infected.
(b) This minimal percolating set shaded is of size 5.

In this case, the minimal percolating set has size 3, as
shown in Figure 3 (a). Indeed, we see that if we take away
any of the shaded nodes, the remaining initially infected
shaded nodes would not percolate to the whole tree, and
thus they form a minimal percolating set; further, there
exists no minimal percolating sets of size 1 or 2, thus
this is the smallest minimal percolating set. It should be
noted that minimal percolating sets can have different
sizes. For example, another minimal percolating set with
5 vertices appears in Figure 3 (b).

In what follows we shall work with general finite trees
T(V, E) with set of vertices V and set of edges E. In
particular, we shall consider the smallest minimal perco-
lating sets in the following section.

V. ALGORITHMS FOR FINDING SMALLEST
MINIMAL PERCOLATING SET

Consider F'(t)-bootstrap percolation on a tree T'(V, E)
with initially infected set A9 C V. As before, we shall
denote by A; be the set of nodes infected at time ¢. For
simplicity, we shall use here the word “filled” synony-
mously with “infected”.

A. Smallest and largest times

In order to build an algorithm to find smallest percolat-
ing sets, we first need to introduce a few definitions that
will simplify the notation at later stages. Firstly, we shall
denote by L(a) the largest time ¢ such that a < F(t), and
if there does not exist such a time ¢, then set L(a) = oo,
this is

L(a) = { maxi{t : a < F(t)} if it exists;

00 otherwise. (10)

Similarly, let B(a) be the smallest time ¢ such that

a < F(t), and if such a time ¢ does not exist, set
B(a) = oo, leading to

Bla) = { ming{t : a < F(t)} if it exists; a1)

o0 otherwise.

Given a,b € N, if a < b then L(a) > L(b). Indeed,
this holds because if a node can be infected to with b
neighbors, it can with a neighbors where a < b. Note

that in general, a smallest percolating set Ay must be a
minimal percolating set. To see this, suppose not. Then
there exists some v in Ag such that Ag — {v} percolates
the graph. That means that Ay — {v}, a smaller set that
Ay, is a percolating set. However, since A is a smallest
percolating set, we have a contradiction. Hence, showing
that a percolating set Ag is the smallest implies that Ag
is a minimal percolating set.

The first algorithm one may think of is to try every
case. There are 2™ possible sets Ay, and for each set we
much percolate Ag on T to find the smallest percolating
set. This amounts to an algorithm of complexity

o(t2")

where ¢ is the upper bound on the percolation time. In
what follows we shall describe a polynomial-timed algo-
rithm to find the smallest minimal percolating set on
T(V,E), described in the algorithm. For this, we shall
introduce two particular times associated to each vertex
in the graph, and formally define what isolated vertices
are.

B. Isolated nodes

For each node v in the graph, we let ¢,(v) be the time
when it is infected, and ¢.(v) the time when it is last
allowed to be infected; Moreover, when building our al-
gorithm, each vertex will be allocated a truth value of
whether it needs to be further considered. A node v is
said to be isolated with regards to A if there is no ver-
tex w € V such that v becomes infected when consider-
ing F(t)-bootstrap percolation with initial set Ag U {w}.
From these definitions, a node is isolated with regards to
a set if it is impossible to infect it by adding one of any
other node to that set that is not itself.

Building towards the percolating algorithm, we shall
show a few properties first. Firstly, note that if a node
cannot be infected by including a neighbor in the initial
set, it is isolated. Hence, by filling the neighbor in the
initial set, we either increased the number of neighbors
infected to a sufficient amount, or we expanded the time
allowed to percolate with fewer neighbors so that perco-
lation is possible.

A quick test to see whether a vertex is isolated can be
done as follows. Let v be an uninfected node such that
not all of its n neighbors are in set Ag. Define a function

N:{0,1,..,n} > Z (12)

where N (i) is the smallest time when 7 of the neighbors
of node v is infected, and set N(0) = 0. Then, a vertex
v is isolated iff there exists no 4 such that

F(t) <i+1 for some t € (N(i),t.]. (13)

To see that this test works, suppose s € N(v) N Ap.
Then, if there exists 4 such that F(t) < i+ 1 for some
t € (N(i),ts], using Ag U {s} as the initially infected set
allows percolation to happen at time ¢ since there would

be i + 1 neighbors infected at each time N(i). Thus by
contradiction, the forward direction is proven.

Let v be not isolated, and v € P(Ap U {s}) for some
neighbor s of v. Then there would be i + 1 neighbors
infected at each time N (7). Moreover, for v being to be
infected, the ¢ + 1 neighbors must be able to fill v in the
allowed time, (N (%), t«]. Thus there exists N(¢) such that
F(t) <i+1 for some ¢t € (N(i),t.]. By contradiction,
we proved the backwards direction.

C. Variation of initial sets

Note that if a vertex v is uninfected and N(v) C Ay,
then the vertex must be isolated. In what follows we
shall study the effect of having different initially infected
sets when studying F'(t)-bootstrap percolation. For this,
let @ be an initial set for which a fixed vertex v with n
neighbours is isolated. Denoting the neighbors of v be
81,82, ..., Sn, We let the times at which they are infected
be t?,t?, e ,tff. Here, if for some 1 < ¢ < n, the ver-
tex s; is not infected, then set tiQ to be some arbitrarily
large number. Moreover, consider another initial set P
such that the times at which sq, so, ..., s,, are infected are
tf, t§, . ,tf satisfying

t9 = P fori#j; (14)
Q P .
ty <ty fori=yj, (15)

for some 1 < j < n.

In the above setting, if v ¢ P, then the vertex v must
be isolated with regards to P as well. Indeed, consider
Ng(i) as defined in (12) for the set @, and Np(i) the cor-
responding function for the set P. Then for all integers
k € {0,1,...,n}, one has that No(k) < Np(k). Indeed,
this is because with set P, each neighbor of v is infected
at or after they are with set). Then, from equation (3),
v is isolated with regards to @) so there is no m such that

F(t) <m+1 for some te (Ng(m),t.].
However, since

No(k) < Np(k) forall ke {0,1,...,n},
we can say that there is no m such that

F(t) <m+1 for some t € (Np(m),t.]

as (Np(m),t.] C (Ng(m),t.]. Thus we know that v must
also be isolated with regards to P.

Given a vertex v which is not isolated with n infected
neighbors, we shall define t,(v) € (0,t,] to be the largest
integer such that for ¢ € {0,1,...n}, one has that

F(t,) <i+1. (16)

Note that in order to fill an isolated node v, one can fill
it by filling one of its neighbors by time ¢,(v), or just
add the vertex it to the initial set. Hence, one needs to
fill a node v,, which is either the parent par(v,), a child
chi(v,), or itself.

One can further understand the variation of initially in-
fected sets by noting that, given an isolated node v ¢ Ay,
to achieve percolation, it is always better (faster) to in-
clude v in Ag than attempting to make v unisolated. In-
deed, it is possible to make v isolated by including only
descendants of v in Ag since we must include less than
deg(v) neighbors. But we know that if given the choice
to include a descendant or a v to the initial set, choosing
v is absolutely advantageous because the upwards per-
colation achieved by v infected at some positive time is
a subset of upwards percolation achieved by filling it at
time 0. Thus including v to the initial set is superior.

The above set-up can be understood further to find
which vertex needs to be chosen to be v,. To see this,
consider a vertex v ¢ Ag. Then, in finding a node u to
add to A so that v € A, for the initial set AgU{u} and
such A, is maximized, the vertex v, must be the parent
par(v) of v. This can be understood by noting that fill-
ing v by time t,(v) already ensures that all descendants
of v will be infected, and that all percolation upwards
must go through the parent par(v) of v. This means that
filling any child of v in order to fill v (by including some
descendant of v in Ag) we obtain a subset of percolation
if we include the parent par(v) of v in Ag. Therefore,
the parent par(v) of v or a further ancestor needs to be
included in Ap, which means v, needs to be the parent
par(v) of v.

D. Smallest minimal percolating set algorithm

Note that given a node v ¢ Ay, if we fill its parent
par(v) before t,(v), then the vertex will be infected. We
are now ready for our main result, which improves the
naive O(¢2") bound for finding minimal percolating sets
to O(tn), as discussed further in the last section.

To obtain one smallest minimal percolating set of a
tree T'(V, E) with percolation function F'(t), proceed as
follows:

e Step 1. initialize tree: for each node v, set t.(v) to
be some arbitrarily large number, and set it to true
for needing to be considered.

e Step 2. percolate using current Ay. Save the time
t,’s at which the nodes were infected. Stop the
algorithm if the set of nodes that are infected equals
the set V.

e Step 3. consider a node v that is furthest away
from the root, and if there are multiple such nodes,
choose the one that is isolated, if it exists.

— if v is isolated or is the root, add v to Ag.

— otherwise, set

£ (par(v)) = t(v) — 1

if it is smaller than the current t¢.(par(v)) of
the parent (for t,(v) defined in (16)).

Set v as considered.

e Step 4. go to step 2.

After the process has finished, the resulting set Ag is
one of the smallest minimal percolating sets.

Note that the specification that the tree must be finite
is important as the algorithm is iterative and relies on
the existence of a node furthest from the root.

The description of the algorithm through which one
can find a smallest percolating set, shall be organized as
follows: we will first show that the set Ag constructed
through the steps of the algorithm is a minimal percolat-
ing set, and then show that it is the smallest such set. In
order to see that Ag is a minimal percolating set, we first
need to show that Ay percolates. In step 3, we have in-
cluded all isolated nodes, as well as the root if it wasn’t
infected already, in Ag and guaranteed to fill all other
nodes by guaranteeing that their parents will be infected
by their time %,,.

Showing that Ay is a minimal percolating set is equiv-
alent to showing that if we remove any node from Ay,
it will not percolate to the whole tree. Note that in the
process, we have only included isolated nodes in Ay other
than the root. This means that if any node vy is removed
from A, it will not percolate to vy because we only fill
nodes higher than vy after considering vy and since turn-
ing a node isolated requires filling at least one node higher
and one descendant of vg, it cannot be infected to after
removing it from Ag. Moreover, if the root is in Ay, since
we considered the root last, it is implied that the rest of
Ay does not percolate to the root. Thus, Ay is a minimal
percolating set.

Now we show that the set Ay constructed through the
algorithm is of the smallest percolating size by contra-
diction using Lemma 15. For this, suppose there is some
other minimal percolating set B for which |B| < |A|.
Then, we can build an injection Ay to B in the following
manner: iteratively consider the node a that is furthest
from the root and a € Agy that hasn’t been considered,
and map it to a vertex by which is itself or one of its
descendants of b where b € B. We know that such a by
must exist by induction.

We first consider the case where a has no descendant
in A. Then, if the vertex b € B and b is a descendant of
a, we map a to b. Now suppose there is no node b that
is a descendant of a where b € B. Then, a € B because
otherwise a would be isolated with regards to B as well,
by Lemma 15. This means that we can map a to a in
this case.

Now we can consider the case where all the descendants
d of a such that d € A := A has been mapped to a node
bq € B where by is d or a descendant of d. If there is such
a b € B, then b is a descendant of a, and thus no nodes
in A have been matched to b yet, allowing us to map a
to b. Now suppose there is no such b € B. This means
that there is no b € B such that all of the descendants
of a are descendants of b. Then, all nodes in B that are
descendants of a is either some descendant of a € A or
some descendant of a descendant of a in A. This means

that percolating B, the children of a will all be infected
at later times than when percolating A, and by Lemma
15, one has that a € B because a would be isolated with
regards to B. So in this case, we can map a to a.

The map constructed above is injective because each
element of B has been mapped to not more than once.
Since we constructed an injective function from the set
generated by the algorithm Ag to a smaller minimal per-
colating set By, we have a contradiction because Ay then
must be the same size or larger than By. Thus, the set
generated from the algorithm must be a smallest minimal
percolating set.

From Section VD one can find the smallest minimal
percolating set on any finite tree. Moreover, it gives an
intuition for how to think of the vertices of the graph:
in particular, the property of “isolated” is not an abso-
lute property, but a property relative to the set of nodes
that has been infected before it. This isolatedness is easy
to define and work with in trees since each node has at
most one parent. Moreover, a similar property may be
considered in more general graphs and we hope to ex-
plore this in future work. Below we shall demonstrate
the algorithm of Section VD with an example.

E. Smallest minimal percolating sets on trees

We will preform the algorithm on the tree in Figure 3,
with percolating function F'(t) = ¢t. We first initialize all
the nodes, setting their time ¢, to some arbitrarily large
number, represented as co in Figure 4 below.

FIG. 4: (a)-(c) show the first three updates through the al-
gorithm in Section V D, where the vertices considered at each
time are shaded and each vertex is assigned the value of t..

Percolating the empty set Ag, the resulting infected set
is empty, as shown in Figure 4 (a). We then consider the
furthest node from root. None of them are isolated, so
we can consider any; we begin by considering node v = 6
in the labelling of Figure 3. It is not isolated, so we set
the value to be

t.(par(v)) =tp(v) — 1 =0,

as can be seen in Figure 4 (b). Then we consider another
node furthest from the root, and through the algorithm
set the ¢, of the parent to ¢, —1 = 0, as can be seen in
Figure 4 (c).

The following steps of the algorithm are depicted in
Figure 5 below. As done in the first three steps of Figure

4, we consider the next furthest node v from the root,
and by the same reasoning as node 6, set the t.par(v) of
the parent to t.par(v) = 1, as can be seen in Figure 5 (a)
below.

FIG. 5: (a)-(b) updates 4-5 through the algorithm. (c) set
Ap in light shade, and infected vertices as gridded vertices.

Now we consider node 4: since it is isolated, so we fill
it in as in Figure 5 (b). The set of nodes infected can
be seen in Figure 5 (c). We then consider node 5, the
furthest node from the root not considered yet. Since
it is not isolated, change the t.par(v) of its parent to
tp(v) —1 =0, as in Figure 6 (a) below.

FIG. 6: (a)-(c) updates through the algorithm in Section VD
after setting Ao to be as in Figure 5.

Then we consider node 3, which is isolated, so we in-
clude it in Ag. The infected nodes as a result of percola-
tion by this Ag is shown as red vertices in Figure 6 (c).
In order to finish the process, consider the vertex v = 2
since it is the furthest away non-considered node. It is
not isolated so we change the

t.(par(v)) =tp(v) — 1 =0,

as shown in Figure 7 (a). Finally, we consider the root:
since it is isolated, we include it in our Ag as seen in
Figure 7 (b). Finally, percolating this Ay results in all
nodes being infected as shown in Figure 7 (c), and thus
we stop our algorithm.

FIG. 7: Final steps of the algorithm, as in Figure 5.

Through the above algorithm, we have constructed a
smallest minimal percolating set shown as red vertices in
Figure 7 (c¢), which is of size 3. Comparing it with Figure
3, we see that the minimal percolating set in that example
is indeed the smallest, also with 3 elements. Finally, it
should be noted that in general the times ¢, for each node
could be different from each other and are not the same
object.

From the above example, and its comparison with Fig-
ure 3, one can see that a graph can have multiple differ-
ent smallest minimal percolating sets, and the algorithm
finds just one. In the algorithm of Section V D, one min-
imizes the size of a minimal percolating set , relying on
the fact that as long as a node is not isolated, one can
engineer its parent to become infected so as to infect
the initial node. The motivation of the definition of iso-
lated stems from trying to find a variable that describes
whether a node is still possible to become infected by in-
fecting its parent. Because the algorithm is on trees, we
could define isolation to be the inability to be infected if
we add only one node.

VI. FURTHER PROPERTIES OF
F(t)-BOOTSTRAP PERCOLATION AND OUR
ALGORITHM

We shall dedicate this section to further the analysis of
our algorithm and its complexity, its comparison to the
work in [15], and to consider our model on random trees.

A. Complexity.

Firstly we shall consider the complexity of the algo-
rithm in Section V D to find the smallest minimal perco-
lating set on a graph with n vertices. To calculate this,
suppose t is the upper bound on percolation time; we
have presented a way to find such an upper bound in the
previous sections. In the algorithm, we first initialize the
tree, which is linear timed. Steps 2 and 3 are run at most
n times as there can only be a total of n unconsidered
nodes. The upper bound on time is ¢, so steps 2 will
take ¢ to run. Determining whether a node is isolated is
linear timed, so determining isolated-ness of all nodes on
the same level is quadratic timed, and doing the specifics
of step 3 is constant timed. Thus the algorithm is

O(n +n(t +n?%) = O(tn +n®) = O(tn),

much better than then O(#2") complexity of the naive
algorithm.

B. Comparison on perfect trees.

Finally, we shall compare our algorithm with classical
r-bootstrap percolation. For this, in Figure 8 we show
a comparison of sizes of the smallest minimal percolat-
ing sets on perfect trees of height 4, varying the degree

of the tree. Two different functions were compared: one
is constant and the other is quadratic. We see that the
time-dependent bootstrap percolation model can be su-
perior in modelling diseases with time-variant speed of
spread, for that if each individual has around 10 social
connections, the smallest number of individuals needed
to be infected in order to percolate the whole population
has a difference of around 103 between the two models.

2000 4000 6000 8000 10000

size of smallest minimal percolating set
%

Number of Nodes

FIG. 8: The size of smallest minimal percolating sets on per-
fect trees with height 4, with a constant and a non-constant
percolation function F'(t).

C. Comparison on random trees.

We shall conclude this work by comparing the small-
est minimal percolating sets found through our algorithm
and those constructed by Riedl in [15]. In order to un-
derstand the difference of the two models, we shall first
consider in Figure 10 three percolating functions F(¢) on
random trees of different sizes, where each random tree
has been formed by beginning with one node, and then
for each new node ¢ we add, use a random number from
1 to @ — 1 to determine where to attach this node.

— F(t)=t
-—— F@)=1%
--------- F(t) =2

Fraction of Nodes Infected

Time

FIG. 9: Trials done on 10000 random trees of n nodes, taking
the average, and dividing it by n for the fraction of node
needed to be initially infected for the model to percolate.

In Figure 10, the size of the smallest minimal perco-
lating set can be obtained by multiplying the size of the
minimal percolating set by the corresponding value of n.
In particular, one can see how the exponential function
requires an increasingly larger minimal percolating set
in comparison with polynomial percolating functions.

D. Comparison with [15].

Riedl provided an algorithm for the smallest minimal
percolating sets in trees for r-bootstrap percolation in
[15] that runs in linear time. We shall describe his algo-
rithm generally to clarify the comparisons we will make.
Riedl defined a trailing star or trailing pseudo-star as a
subtree with each vertex being of distance at most 1 or
2 away, respectively, from a certain center vertex that is
connected to the rest of the tree by only one edge. Then,
the first step of Riedl’s algorithm is a reduction proce-
dure that ensures every non-leaf has degree at least r:
intuitively, one repeatedly finds a vertex with degree less
than 7, include it to the minimal percolating set, remove
it and all the edges attached to it, and for each of the
connected components, add a new node with degree 1
connected to the node that was a neighbor of the node
we removed.

Then, the algorithm identifies a trailing star or pseudo-
star, whose center shall be denoted by v and its set of
leaves by L. Letting the original tree be T, if the number
of leafs on v is less than r, then set 7/ = T \ (v U L);
otherwise, set 7" = T \ L. Recursively set A’ as the
smallest minimal percolating set of 7" under r-bootstrap
percolation. Then, the smallest minimal percolating set
for T'is A/UL if |L| < r and A’ U L\ v otherwise. Using
Riedl’s algorithm, we first note that there is a trailing
star centered at 3 with 2 leaves. Removing the leaf, there
is a trailing star at 1 with 1 leaf. Removing 1 and 2,
we have one node left, which is in our A’. Adding the
leaves back and removing 3, we have an Aj of 2,3 and
5, a smallest minimal percolating set. Thus the smallest
minimal percolating set with Riedl’s algorithm also has
size 3, as expected.

To compare with the work of [15], we shall run the
algorithm with F(t) = 2 (leading to 2-bootstrap percola-
tion as considered in [15]) as well as linear-timed function
on the following graph:

FIG. 10: Degree 2 tree with 5 nodes.

With our algorithm, we see that nodes 2, 3 and 5 are
isolated respectively, and when we add them to the ini-
tial set, all nodes become infected. Thus the smallest
minimal percolating set with our algorithm has size 3.

We shall now compare our algorithm to that of Riedl.
A key step in Riedl’s algorithm, which is including the
leaves of stars and pseudo-stars in the final minimal per-
colating set, assumes that these leaves cannot be infected
as it is assumed that » > 1. However, in our algorithm,
we consider functions that may have the value of 1 some-
where in the function, thus we cannot make that assump-
tion. Further, in r-bootstrap percolation, time of infec-

10

tion of each vertex does not need to be taken into account
when calculating the conditions for a node to be infected
as that r is constant, whereas in the time-dependent case,
it is necessary: suppose a node has n neighbors, and there
is only one t¢ such that F(t) < n, so all neighbors must
be infected by time n in order for n to become infected.

The problem our algorithm solves is a generalization
of Riedl’s, for that it finds one smallest minimal perco-
lating set for functions including constant ones. It has
higher computational complexity for that it is not guar-
anteed for an unisolated node to be infected once one
other neighbor of it is infected without accounting for
time limits.

VII. CONCLUDING REMARKS

This paper is dedicated to the introduction and study
of a novel time-dependant percolation model. The set
up generalises the standard r-bootstrap percolation by
introducing a time-dependant percolation function F'(¢),
through which we define F'(t)-bootstrap percolation (see
Definition 1). Some basic properties of F(t)-bootstrap
percolation are then studied, with particular attention
given to the critical probability p. for certain recurrent
functions F'(¢), for which we give bounds in Section II.

Our motivation comes partially from the study of ef-
fective vaccination programs which would allow to con-
tain an epidemic, and thus we are interested both in the
percolation time of the model, as well as in minimal per-
colating sets. We study the former in Section III, where
by considering equivalent functions to F'(t), we obtained
bounds on the percolating time (see Figure 2). In partic-
ular, the results in Section III we show that if F'(t) = ¢ is
the smallest value the function takes on after some fixed
time to, and F'(t) has already taken on that value more
than times than the number of nodes in the graph, then
there will be no nodes that will be infected at that time
and the value is safe to be “removed”. The removal pro-
cess is explained in the same section, and is characterized
by obtaining an upper bound on percolation time on a
specified tree and function F'(¢).

In Section IV and Section V we introduce and study
smallest minimal percolating sets for F'(¢)-bootstrap per-
colation on (non-regular) trees. Our main results appear
in Section VD, and are given by an algorithm for find-
ing the smallest minimal percolating sets. In order to
show the relevance of our work, we shall conclude this
note with a short comparison of our model with those
existing in the literature.

Finally, we should mention that the work presented
in previous sections could be generalized in several di-
rections and, in particular, we hope to develop a similar
algorithm for largest minimal percolating set; and study
the size of largest and smallest minimal percolating sets
in lattices.

Acknowledgements. The authors are thankful to MIT
PRIMES-USA for the opportunity to conduct this re-
search together, and in particular Tanya Khovanova for
her continued support, to Eric Riedl and Yongyi Chen for
comments on a draft of the paper, and to Rinni Bhansali
and Fidel I. Schaposnik for useful advice regarding our
code. The work of Laura Schaposnik is partially sup-
ported through the NSF grants DMS-1509693 and CA-
REER DMS 1749013, and she is thankful to the Simons
Center for Geometry and Physics for the hospitality dur-
ing part of the preparation of the manuscript. This ma-
terial is also based upon work supported by the National
Science Foundation under Grant No. DMS- 1440140
while Laura Schaposnik was in residence at the Math-
ematical Sciences Research Institute in Berkeley, Cali-
fornia, during the Fall 2019 semester.

Appendix A: On nice functions

In what follows we shall prove (7). One should note
that F’(t) is well-defined. Indeed, since the domain of
F'(t) is I, we have that t € I, and thus v~ !(¢) is a
valid expression. Moreover, v~ 1(t) exists because v is
surjective, and it is unique since I is an initial segment
of N and hence t # —1. Furthermore, for any a,b € I,
if v(a) = v(b) # —1, then a = b. Since the domain of
is I, then y~1(t) € I;. This means that y~1(¢) is in the
domain of F(t) and thus one has that F’(t) is defined for
allt € Is.

In order to prove (7), note that since v~1(0) = 0 and
the initially infected sets for the models with F(¢) and
F'(t) are the same, it must be true that Af C AL,
and in particular, AY" = AL = Ag. In order to perform
the inductive step, suppose that for some t € Iy and
t+1 € I, one has A" C Af,l(t). Moreover, suppose

there is a node n such that n € Afll but n ¢ Af;,l(t+l).
Then, this means that there exists a neighbor n’ of n such
that n' € AF but n’ ¢ Ag‘*l(t+1)—1' Indeed, otherwise
this would imply that the set of neighbors of n infected
prior to the specified times are the same for both models,
and since F'(t + 1) = F(y~1(t + 1)) for t € I, and thus
n would be infected in both or neither models. From the
above, since t < t+1 one must have v~ 1(¢) < vy~ 1(t+1),

and thus

) <yt +1) — 1.
Moreover, since n’ ¢ Agfl(t+1)—1’ then n' ¢ A,f,l(t).
However, we assumed n’ € A" and since Ay C Al
we have a /contradictiom so it must be true that the sets
satisfy Af;l - Af,l(tﬂ). Thus we have proven that for
any initially infected set Ay and t € I, one has that (7)
is satisfied for all t € I.

Through (7) we can further understand when an F'(t)-
percolation process finishes in the following manner.
Given a percolation function F'(t) and a fixed time ¢ € N,
let t,, < t be such that F(t,) < F(t), and suppose there
does not exist another time ¢; € N where ¢, < t; < ¢

11

such that F'(t;) < F(t). Suppose further that we use this
percolation function on a graph with ¢ vertices. Then, if

{t: | F(ti) = F(t)} > ¢,

then there are no nodes that becomes infected at time .
To see this, suppose some node n is infected at time t.
Then, this would imply that all nodes are infected before
time . We can show this using contradiction: suppose
there exists m nodes m; that there are not infected by
time ¢. Then we know that there exists at least m of
t; € N such that ¢, < t; < ¢, for which F(t;) = F(t)
and such that there is no node infected at ¢;. Matching
each n; with some t; and letting ¢, € N be such that
t; <t <t, one can see that there is some node infected
at t, and F(tx) = F(t). Moreover, this implies that
there is no t, € N such that ¢; < ¢, < t; and such that
there is some node infected at ¢, and F(t;) = a. We
know such a t; exists because there is a node infected at
time .

From the above, for each n; there are two cases: either
the set of nodes infected by ¢; is the same as the set of
nodes infected by tj, or there exists node p in the set of
nodes infected by ¢ but not in the set of nodes infected
by its t;. We have a contradiction for the first case:
there must be a node infected at time ¢; is this is the
case, as the set of infected nodes are the same as time
tr, so the first case is not possible. So the second case
must hold for all m of n;’s. But then, the second case
implies that there is a node infected between t; and ¢.
This means that at least m additional nodes are infected,
adding to the at least £ —m nodes infected at ¢; such that
F(t;) = a and there is a node infected at ¢;, we have at
least £ — m + m = £ nodes infected before ¢. But if all
¢ nodes are infected before t, this would mean there are
no nodes to infect at time ¢, so n does not exist.

Appendix B: On equivalent functions

In order to show (8), note that intuitively the function
~ constructed above is mapping the index associated to
F(t) to the index associated to F'(t). If omitted, then
it is mapped to —1 by . To prove the statements, we
will prove that Pp(;)(A) = Ppr4)(A). Suppose we have a
node n in Pp(;)(A), and it is infected at time to. Suppose
F(tp) = a for some a € Z*, and let t,.¢, be the largest
integer t,pe, < asuch that F(tprey) < a. Suppose further
that to is the mth instance such that F'(t) = a for some .
Moreover, if m > v, there cannot be any node infected at
time to under F(¢), and thus it follows that m < v. But
if m < v, then ~v(t9) # —1 and therefore all nodes that
are infected under F(t) became infected at some time ¢
where v(to) # —1.

Recall that AY = AF /, and suppose for some n such

that y(n) # —1, one has that AL = Af('n). We know that

for any n < t < v~ !(y(n) + 1),7(t) = —1, so nothing
would be infected under F(t) after time m but before
v~ Y(y(n) + 1). This means that the set of previously
infected nodes at time y~!(y(n) + 1) — 1 is the same as

the set of nodes infected before time n leading to

AF — AT

n Y Hy(n)+1)—1"

Then, since F(y~1(y(n)+1)) = F'(y(n) + 1) and the set
of previously infected nodes for both are Af', we know

no

12
that Ay, = AL, ..
main of F(t), there exist a corresponding time n for per-
colation under F'(¢) such that the infected set at time n
under F'(¢) and the infected set at time n' under F’(t)
are the same, and thus AX = AF | leading to (8).

Thus, for any time n’ in the do-

[1] D. Bernoulli, Histoire de ’Acad., Roy. Sci.(Paris) avec
Mem , 1 (1760).

[2] R. Ross, (1911).

[3] W. O. Kermack and A. G. McKendrick, Proceedings of
the royal society of london. Series A, Containing papers of
a mathematical and physical character 115, 700 (1927).

[4] F. Brauer, Infectious Disease Modelling 2, 113 (2017).

[5] T. E. Harris, The Annals of Probability , 969 (1974).

[6] C. Imai, B. Armstrong, Z. Chalabi, P. Mangtani, and
M. Hashizume, Environmental research 142, 319 (2015).

[7] G. Chowell and R. Rothenberg, Spatial infectious disease
epidemiology: on the cusp, 2018.

[8] R. E. Watkins, S. Eagleson, B. Veenendaal, G. Wright,
and A. J. Plant, BMC medical informatics and decision
making 9, 39 (2009).

[9] S. Greenhalgh, A. P. Galvani, and J. Medlock, Journal
of theoretical biology 387, 174 (2015).

[10] N. Pipatsart, W. Triampo, and C. Modchang, Compu-
tational and mathematical methods in medicine 2017
(2017).

[11] N. M. Ahmad et al., Complexity 2018 (2018).

[12] E. Hunter, B. Mac Namee, and J. Kelleher, PloS one 14,
€0211245 (2019).

[13] S. Funk et al., Epidemics 10, 21 (2015).

[14] D. De Angelis, A. M. Presanis, P. J. Birrell, G. S. Tomba,
and T. House, Epidemics 10, 83 (2015).

[15] E. Riedl, the electronic journal of combinatorics 19, 64
(2012).

[16] J. Chalupa, P. L. Leath, and G. R. Reich, Journal of
Physics C: Solid State Physics 12, 131 (1979).

[17] J. Adler and U. Lev, Brazilian Journal of Physics 33,
641 (2003).

[18] J. Balogh, Y. Peres, and G. Pete, Combinatorics, Prob-
ability and Computing 15, 715 (2006).

[19] B. Bollobds, K. Gunderson, C. Holmgren, S. Janson, and
M. Przykucki, Electron. J. Probab. 19, no. 13, 27 (2014).

[20] S. H. White, A. M. Del Rey, and G. R. Sanchez, Applied
Mathematics and Computation 186, 193 (2007).

[21] S. Side and M. S. M. Noorani, World Journal of Mod-
elling and Simulation 9, 96 (2013).

[22] R. Bhansali and L. P. Schaposnik,
arXiv:1905.11204 (2019).

[23] N. K. Vaidya, R. M. Ribeiro, C. J. Miller, and A. S.
Perelson, Journal of virology 84, 4302 (2010).

[24] R. Morris, the electronic journal of combinatorics 16, R2
(2009).

[25] M. Dairyko et al., Journal of Graph Theory (2019).

arXiv preprint

	Introduction
	Bootstrap percolation

	Time-dependent Percolation
	Percolation Time
	Equivalent functions
	Removal process

	Minimal Percolating Sets
	Algorithms for Finding Smallest Minimal Percolating Set
	Smallest and largest times
	Isolated nodes
	Variation of initial sets
	Smallest minimal percolating set algorithm
	Smallest minimal percolating sets on trees

	Further properties of F(t)-Bootstrap percolation and our algorithm
	 Complexity.
	Comparison on perfect trees.
	Comparison on random trees.
	Comparison with percset.

	Concluding remarks
	On nice functions
	On equivalent functions
	References

