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Abstract—Many wearable devices employ sensors for physio-
logical signals (e.g. electrocardiogram or ECG) to continuously
monitor personal health (e.g. cardiac monitoring). Considering
private medical data storage, secure access to such wearable
devices becomes a crucial necessity. Exploiting the ECG sensors
present on wearable devices, we investigate the possibility of using
ECG as the individually unique source for device authentica-
tion. In particular, we propose to use ECG features towards
both cardiac monitoring and neural-network-based biometric
authentication. For such complex functionalities to be seamlessly
integrated in wearable devices, an accurate algorithm must be
implemented with ultra-low power and a small form factor.

In this paper, a smart ECG processor is presented for ECG-
based authentication as well as cardiac monitoring. Data-driven
Lasso regression and low-precision techniques are developed
to compress neural networks for feature extraction by 24.4×.
The 65nm testchip consumes 1.06 µW at 0.55 V for real-time
ECG authentication. For authentication, equal error rates of
1.70%/2.18%/2.48% (best/average/worst) are achieved on the in-
house 645-subject database. For cardiac monitoring, 93.13% ar-
rhythmia detection sensitivity and 89.78% specificity are achieved
for 42 subjects in MIT-BIH arrhythmia database.

Index Terms—Biometric authentication, ECG, cardiac moni-
toring, arrhythmia detection, Lasso regression, weight compres-
sion, sparse neural network.

I. INTRODUCTION

WEARABLE devices are becoming ubiquitous in our
daily lives, many of which featuring ability to sense

and process our physiological signals including photoplethys-
mogram (PPG), electrocardiogram (ECG), bio-impedance, etc.
Smart watches such as Apple Watch Series 3 [1] and Samsung
Gear S3 [2] can measure our heart rate by analyzing PPG
signals. However, to obtain further cardiac health informa-
tion beyond heart rate, ECG signals can be analyzed. By
inspecting the rhythm/shape of ECG beats, initial assessment
of cardiovascular diseases can be performed. Due to privacy
concerns, instead of processing ECG signals on cloud servers,
performing ECG-based cardiac monitoring on local wearable
devices has gained a lot of attention.

Several custom ECG processors [3]–[5] have demonstrated
arrhythmia detection by continuously monitoring heart rate
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variability or frequency spectrum of ECG signals. In addition,
detection of abnormal ECG pulse shapes has been presented
in [6]. In the commercial market, several wearable ECG
recording devices are available for ambulatory monitoring such
as Zio patch [7], KardiaBand [8], and Simband [9].

On the other hand, privacy concerns on personal health data
necessitate enhanced security to access such wearable devices.
Authentication based on biometrics such as fingerprint [10],
iris [11], gesture [12], etc., is becoming increasingly popu-
lar for wearables. ECG signal has emerged as an attractive
biometric modality, due to two key advantages compared to
other existing methods: (1) ECG originates from the electrical
activity of the heart, thus providing intrinsic liveness proof,
and (2) ECG authentication is difficult to spoof, since the ECG
signal cannot be easily replicated. In recent years, many prior
works proposed ECG-based authentication methods using var-
ious machine learning algorithms [13]–[17].

A few ECG-based authentication works have been reported
in hardware. The authors of [15] implemented an ECG authen-
tication deep neural network on FPGA, consuming ∼1 MB
memory and 256 mW power. In [16], a cross-correlation based
ECG authentication algorithm was implemented on the ARM
microcontroller unit (MCU) in a wearable watch. However,
both works evaluated authentication only on relatively small
databases (90 subjects for [15] and 28 subjects for [16]).
Furthermore, considering severe power constraints of wearable
devices, compared to FPGAs/MCUs, energy-efficient ASIC
processors are desired. Since both ECG authentication and
cardiac monitoring share certain computation modules, it is
natural to integrate both functionalities in a single chip.

In this paper, we present an ultra-low-power smart ECG pro-
cessor that performs both ECG-based authentication and car-
diac monitoring including arrhythmia detection and anomaly
detection [18]. Fig. 1(a) shows the high-level illustration of the
proposed ECG processor. The ECG processor was designed
for watch-type wearable devices such as smart watches or
wristbands. We evaluated the ECG-based authentication per-
formance on three ECG databases: MIT-BIH NSRDB [19] (18
subjects) and ECG-ID [20] (90 subjects) and an in-house ECG
database (645 subjects). The arrhythmia detection performance
was evaluated on MIT-BIH arrhythmia database [21], targeting
atrial premature contraction (APC) or premature ventricular
contraction (PVC). Our main contributions include:

1) This paper presents, to the best of our knowledge, the
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Fig. 1: (a) The proposed ECG processor integrates two func-
tionalities: cardiac health monitoring and biometric authenti-
cation. (b) Computation flow of the ECG processor.

first ECG processor that integrates both ECG-based
authentication and cardiac monitoring functionalities.

2) A novel neural network based ECG feature extrac-
tion method is implemented and optimized for on-chip
weight memory storage via data-driven Lasso regression.
Aided by this, the ECG processor only consumes 1.06
µW at 0.55 V for real-time ECG authentication.

3) ECG authentication accuracy is verified on a large
645-subject database considering temporal variability of
ECG signals, and achieves a low equal error rate (EER)
of <2.5%, demonstrating its practical feasibility.

4) For cardiac monitoring, we achieve 93.13% arrhythmia
detection sensitivity with a specificity of 89.78% for 42
subjects in the MIT-BIH arrhythmia database.

II. SMART ECG PROCESSOR OPERATIONS

The input to the ECG processor is single-lead raw digitized
ECG signal sampled at 250 Hz with 13-bit precision, which
goes through FIR filtering, R-peak detection, outlier detec-
tion/removal, normalization, neural network based feature ex-
traction and cosine similarity evaluation. Fig. 1(b) illustrates
the computation flow of these modules. The proposed ECG
processor supports two ECG functionalities with shared hard-
ware: (1) authentication and (2) cardiac health monitoring.

In the authentication mode, the ECG processor works in two
stages: registration and identification. In the registration stage,
30 continuous ECG beats of the user are acquired, among
which the outliers are detected and removed. The feature
vectors (FVs) of all remaining valid ECG beats are extracted
by neural networks (NNs), and the mean FV is registered. In
the identification stage, the ECG processor acquires 4 valid
(outlier-free) ECG beats, and the FVs of the 4 ECG beats are
extracted using the same NNs. If the mean of the 4 newly
extracted FVs is sufficiently similar to the registered mean

Fig. 2: Representative ECG waveforms. From top to bottom:
ECG raw signal, 256-tap FIR NRF output, 42-tap FIR BPF
output, differentiator output, and 11-tap FIR LPF output (green
line: dynamic threshold).

FV, then the user is accepted; otherwise, the user is rejected.
Acquiring 4 valid ECG beats for identification achieves a good
balance between the identification time and authentication ac-
curacy, where EER is 1.1% in software simulation using NNs
with floating-point precision and without Lasso compression.
If we use only 3 and 2 valid beats for authentication, we
observed that the EER noticeably degrades from 1.1% to 2.0%
and 3.9%, respectively.

In the cardiac monitoring mode, R-peak detection and out-
lier detection modules are used to detect arrhythmia (irregular
ECG rhythm) and anomaly (abnormal ECG shape), respec-
tively. Fig. 3 shows the overall architecture and operations,
which are described further in the following subsections. We
explored the design space with different choices of the FIR
filtering frequency bands, data segmentation, network topol-
ogy, activation function, similarity metric, etc., using a forward
greedy and backward greedy algorithm [22]. In the forward
greedy algorithm, we evaluated each candidate model (a neural
network and its preprocessing) on the first half of ECG records
of the in-house 645-subject ECG databases, and incrementally
augment the pool of models with a model that achieves the
highest accuracy when combined with other ones in the pool.
In the backward greedy algorithm, we incrementally remove a
model such that the remained models in the pool achieve the
best accuracy. Four final models remained in the pool were
selected as the final choice.

A. FIR filtering

A 256-tap FIR noise rejection filter (NRF) with cutoff
frequency of 1-40 Hz is designed to reject both high frequency
noise as well as DC wandering of the raw ECG signal. The
NRF output (“ECG NRF”) is further filtered by a 40-tap FIR
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Fig. 3: The overall architecture, dataflow, and computations of the proposed ECG processor.

high pass filter (HPF), as well as a cascade of 42-tap FIR
band pass filter (“ECG BPF”), differentiator (“ECG DIFF”)
and a 11-tap FIR low pass filter (“ECG LPF”). Simulated
waveforms of these filter outputs are shown in Fig. 2. In
parallel, we have three additional 256-tap FIR BPFs with
cutoff frequencies of 5-40 Hz, 1-40 Hz, and 5-50 Hz. These
filters extract ECG information in different frequency ranges,
which will be later used for 4 separate NNs. Let us denote
these three filters as BPF 5 40, BPF 1 40, and BPF 5 50,
respectively.

B. R-peak detection

The outputs of LPF, HPF and four 256-tap FIR BPFs will be
buffered in different but time-aligned consecutive 64-sample
windows. The HPF output is used to accurately determine the
maximum/minimum peaks in a 64-sample window. The LPF
output is compared with a dynamic threshold (“ECG THR”)
to detect the R-peak of ECG beats within a window [23], as
shown in Fig. 2 (bottom). When a valid R-peak is detected, we
extract a 160-sample segment from the buffer for the outputs
of NRF and BPF 5 40 aligned at R-peak, two 50-sample
segments from the buffer for the output of BPF 1 40 (one
aligned at R-peak, the other aligned at Q-point), and a 30-
sample segment from the buffer for the output of BPF 5 50
aligned at R-peak. The aligned 30 or 4 ECG beats after NRF
are stored in on-chip memory for outlier detection.

C. Arrhythmia detection

Among the various types of arrhythmia that concern cardiac
health, we focus on the detection of sudden change in the R-R
interval. This can be caused by premature contractions such as
atrial premature contraction (APC) and premature ventricular
contraction (PVC), for which example ECG waveforms from

(a)

(b)

Fig. 4: ECG waveforms of (a) atrial premature contraction
(APC) and (b) premature ventricular contraction (PVC) are
shown, from record 100 and 116 of [21], respectively.

the MIT-BIH arrhythmia database [21] are shown in Fig. 4. We
first estimate the instantaneous heart rate as the inverse of R-R
interval. Then, the instantaneous heart rate variability (HRV) is
estimated by computing the standard deviation of the past three
consecutive heart rates. If the instantaneous HRV is above a
threshold, we define that an arrhythmia is detected. If needed,
the stored ECG beats can be exported for further diagnosis by
cardiologists. Our arrhythmia detection algorithm is similar
to that in [5], where HRV in a non-overlapping 10-second
time window is estimated. In our ECG processor, HRV in a
overlapping window of four ECG beats is estimated, which can
more precisely locate the ECG beat when arrhythmia occurs.

D. Outlier detection/removal

Following the R-peak and arrhythmia detection module, the
outlier detection module is present. It is notable that we em-
ploy the same outlier detection hardware for both authentica-
tion and cardiac monitoring modes, but in an opposite manner.
For authentication, the objective is to detect the outliers and
remove them, to form a representative (outlier-free) set of
ECG beats for personal ECG feature extraction; for cardiac
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monitoring, we actually detect the outliers and save them, since
they are considered as potential anomalies for the individual’s
cardiac health. Further details of the outlier detection/removal
module for both operation modes are described below.

Authentication mode: In the authentication mode, after a
certain number of ECG beats are obtained, we find outliers
among the collected ECG beats and discard them, in order to
acquire an outlier-free, representative ECG beat set for each
individual. The outlier removal algorithm is adopted from the
techniques proposed in [24]. An ECG beat is defined as an
outlier when any of the following three conditions is satisfied:

1) Xmax > 1.5X̃max,
2) Xmin < 1.5X̃min,
3) dcos > d̄cos + γ · σ,

where Xmax/Xmin are the maximum/minimum value of the
ECG beat, respectively, and X̃max/X̃min are the median of
maximum/minimum values of all acquired ECG beats. dcos
is the cosine distance of the ECG beat to the mean ECG
beat, d̄cos is the mean of the cosine distances of all ECG
beats to the mean ECG beat, and σ is the standard deviation
of the cosine distances. γ is a configurable parameter in our
hardware design, whose value can be 0.25, 0.5, 1 or 2. Smaller
γ represents more stringent outlier removal. Depending on the
scale and noise level of the target ECG data, different γ values
might be desired. In our experiments, 0.5 is found to be the
optimal γ value for all three ECG databases we investigated.
The cosine distance between two ECG beats is defined as:

dcos(X1,X2) = 1− XT
1 X2

‖X1‖2‖X2‖2
, (1)

where X1 and X2 are two 160-sample ECG beats.
To ensure that sufficient ECG beats are used in the identifi-

cation stage, in case an outlier is detected and discarded, new
ECG beats are continuously read in until four ECG beats are
collected. With outlier removal, EER improves from 2.60% to
1.70% for the in-house 645-subject ECG database.

Cardiac monitoring mode: In the cardiac monitoring
mode, in addition to detecting abnormal heart rate, we can also
detect abnormal ECG pulse shape. As aforementioned, outliers
among acquired ECG beats will be detected and removed in
the authentication mode for better feature extraction quality.
By reusing this identical outlier detection module, outliers
in every 30 ECG beats will be continuously detected and
reported in the cardiac monitoring mode. The ECG beats
detected with abnormal ECG pulse shapes might be classified
as an anomaly for cardiac health, as shown in Fig. 4(b). As
needed, all 30 ECG beats can be exported for further analysis
by cardiologists. Similar to the authentication mode, cosine
distance threshold parameter γ can be varied to adjust the
criteria for anomaly detection in the cardiac monitoring mode.

E. Normalization

Before the four ECG streams are sent to four corresponding
NNs, we normalize the data such that NN input values are
bounded within a certain range. Normalization is performed
in two steps. First, the aligned ECG beats are normalized to
zero-mean and unit-variance across different beats. Second, we

Fig. 5: Four parallel neural networks for ECG feature extrac-
tion. Four 100×1 FVs are concatenated to form a 400×1 FV.

Fig. 6: Identification and verification loss function used for
training the neural networks.

normalize the ECG beats by the mean and standard deviation
of ECG beats used for NN training. Then, ECG beats become
normalized in both inter-beat and intra-beat dimensions.

F. Neural network based feature extraction

As shown in Fig. 5, four parallel NNs with input layer,
one hidden layer, and output layer are designed to extract
features from different frequencies and alignment (e.g. aligned
at Q versus R). For each NN, there are 100 hidden layer
neurons and 1,146 output layer neurons. The number of input
neurons varies from 30 to 160, depending on the number
of samples. The activation function of the hidden layer is
tanh(x). The NNs were trained on the first half of ECG
records of the in-house 645-subject ECG database with 10-
fold cross-validation. Each subject has a different number of
ECG records acquired over different time, and the total number
of ECG records is 1,146. We could map different ECG records
from the same subject to the same output neuron or to different
output neurons. We tried both mapping schemes and found that
the latter one leads to better EER, as it could extract ECG
features in the hidden layer more effectively when we spread
out each ECG record’s data to different neurons. Therefore,
we employed 1,146 output neurons in the NNs.

Training: We first pre-train a two-layer deep belief network
as the initial weights values of NN [25]. Then, we use the
identity labels of samples as the supervision information for
fine tuning. After training is done, the intention is to use the
hidden layer output as the feature descriptor.

As illustrated in Fig. 6, two loss functions are collectively
employed to improve the accuracy: identification loss function
and verification loss function [22]. The identification loss
function maximizes the difference of ECG features from
different users. The cross entropy value after a softmax layer
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is evaluated for the identification loss. On the other hand, the
verification loss function minimizes the ECG feature variation
from the same user, considering the temporal variation in ECG
signals from the same user. Pairs of ECG data xi,xj are fed
to the NNs. If they are from the same subject, the Euclidean
distance between their network outputs is minimized; other-
wise, the Euclidean distance is maximized to be greater than
a specified threshold m.

Classification: Classification is performed with feedforward
propagation using the trained NNs. Four 100×1 FVs are
extracted from the hidden layer of four NNs and concatenated
to form a 400×1 FV. The average 400×1 FV over all valid
beats is considered as the final FV. Since the hidden layer
is directly used for FVs, weights between hidden and output
layers are not required for classification (only used in training).

G. Cosine similarity evaluation

In identification stage, cosine similarity is computed be-
tween the current (identification) FV and the registered FV:

cossim =
FV T

newFVreg
‖FVnew‖2‖FVreg‖2

. (2)

When cossim is above the pre-defined threshold, the user will
be accepted; otherwise, the user will be rejected.

III. LOW-POWER DESIGN OPTIMIZATION

Power consumption is critical for our ECG processor due
to the limited power budget of wearable devices. The ECG
processor employs extensive clock gating based on module-
level activity, and is optimized from software and hardware
perspectives to substantially reduce the power consumption.

A. Selective precision in hardware design

To reduce the power and area of the ECG processor,
we adopted fixed-point precision representation. The input
raw digitized ECG exhibits 13-bit precision. However, there
is no need in keeping this precision throughout the entire
signal processing flow. To optimally reduce the power without
hampering accuracy, we selectively reduced the precision for
different modules to the lowest before accuracy degradation
occurs. The final precision values optimized for FIR filter
coefficients, FIR filter signals, R-peak detection, normaliza-
tion, NN based feature extraction, and similarity evaluation
modules are 8-bit, 13-bit, 13-bit, 11-bit, 12-bit, 6-bit and 9-bit,
respectively. Note that the 32-bit floating-point NN weights are
quantized to only 6-bit, reducing the weight storage by 5.3×.

B. FIR filter design

We adopted the systolic architecture [26] for our direct form
FIR filters design to improve the throughput. Since our FIR
filters are linear-phase, the coefficients are always symmetrical
around the center coefficient. Exploiting this, we used pre-
adder to sum the samples associated with two symmetric
coefficients, halving the number of necessary multipliers. In
addition, we reduced the precision of the FIR coefficients
to 8-bit. Consequently, a portion of the heading and ending
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coefficients were quantized to zeros, which effectively reduced
the orders of the FIR filters. Nonetheless, no significant
impact was found on the filtering effect by discarding these
coefficients. Therefore, we implemented reduced-order FIR
filters to reduce area and power. For example, the 256-tap NRF,
BPF 5 40, BPF 1 40 and BPF 5 50 were simplified to 148-
tap, 178-tap, 178-tap and 178-tap, respectively. Delay lines
were added to synchronize signals across different channels.

C. Normalization module design

As mentioned in Section II.E, the normalization of ECG
beats consists of two steps. First, we compute the mean and
standard deviation of an ECG beat. Then, we subtract the ECG
beat by the mean and divide by the standard deviation. After
this first step normalization, each ECG beat becomes zero-
mean and unit-variance. Finally, we subtract the normalized
ECG beat by a global mean vector and divide by a global
standard deviation vector. We could have processed all sam-
ples in an ECG beat in parallel to reduce the normalization
latency to a few clock cycles. However, since normalization is
performed while reading in new ECG beats and the ECG beat
rate is relatively low (60-100 bpm), the normalization module
can tolerate higher latency (e.g. a few hundred clock cycles).

We designed a rotation-based normalization module (Fig. 7),
which is time-multiplexed for three rounds of computation.
The ECG beat is fed into a shift register from QRS alignment
module. In the first round of rotation, the mean of the ECG
beat is computed, and in the second round, the standard
deviation of the ECG beat is computed. In the third round
of rotation, the second-step normalization is completed. By
reusing the data path for all samples in an ECG beat, only three
multipliers are required for the normalization of one channel.
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Fig. 9: Summary of NN compression. 1: software model; 2:
output layer removal; 3: quantization; 4: Lasso regression.

D. Inverse of square root module design

When we compute the cosine distance in outlier detec-
tion module, the standard deviations in normalization and
arrhythmia detection module or the cosine similarity, we need
to evaluate the inverse of square root (INVSQRT) function
(1/
√
x), which is a nonlinear function. We approximated

this nonlinear function with a piecewise linear function. In
particular, we pre-computed the values (offset and slope) for
48 uniform-length segments between [1, 4) as shown in Fig. 8.
The input of the INVSQRT function has 14-bit precision.
The six most significant bits (MSBs) of the input are used
for segment index. The INVSQRT value for the input range
beyond [1, 4) is obtained by bit-shifting. For example, if
the input is 0.2, we first left-shift the input by 4 bits (i.e.
0.2 ∗ 24 = 3.2), to make the input fall within the valid range
of [1, 4), then we need to left-shift the INVSQRT output by 2
(= 4/2) bits. In general, the amount of shifting at the output
is half of the amount of shifting at the input, due to the fact
that:

1/
√
x = 1/

√
x× 22k × 2k. (3)

E. Lasso regression based sparsification of neural networks

As mentioned in Section II.F, the output layers of four
parallel NNs are discarded as we extract the ECG features
from the hidden layers, which reduces the number of weights
by 16×. The input dimension of each NN is 160, 50, 50
and 30, respectively. The hidden layer dimension is 100 for
all four NNs. The remaining fully-connected weight matrices
have (160+50+50+30)×100 = 29, 000 weights, which could
still exceed on-chip storage capacity of wearable devices.

To reduce the power/area of NNs, we propose to sparsify
weight matrices by Lasso regression. Denote the original
trained dense NN weight matrix between the input layer (m
neurons) and the hidden layer (n neurons) as Wori (m× n).

Fig. 10: (a) Chip micrograph and (b) power breakdown.

Given a sufficient number (p) of representative input samples
X (p×m) to the NNs, the weighted sum for the hidden layer
will be:

Y = X×Wori. (4)

We seek a sparse weight matrix W∗ such that

X×W∗ ≈ Y. (5)

Lasso regression is a well-known algorithm [27] to find
a sparse solution to (5). To sparsify the NN weights, we
formulate n Lasso regression problems as follows:

min
w∗

i

‖X×w∗
i −X×wori,i‖2 + λi‖w∗

i ‖1, i = 1, . . . , n,

(6)
where w∗

i and wori,i are the i-th column of W∗ and Wori,
respectively, and λi is the regularization parameter in each
Lasso regression problem. For the convenience of hardware
implementation and efficient storage of sparse weight matrices,
each w∗

i is preferred to have the same number of non-zero
weights. Typically, the larger λi is, the sparser w∗

i will be.
For each Lasso regression problem, we conduct a binary

search to find the smallest λi for each w∗
i column, so that

the same target sparsity is achieved for all columns. For 10×
weight compression, Lasso regression results in better EER
of 1.70%, compared to the EER of 3.31% that is obtained
when magnitude-based pruning is performed to reach the
same sparsity. With 10× weight reduction, we achieved 4.6×
memory compression (including overhead for weight indices)
with only 0.2% EER degradation. Starting from the software
NN model, Fig. 9 summarizes the overall NN weight reduction
of 390×, collectively achieved by output layer removal, low-
precision quantization, and Lasso-based compression.

The extracted features from four NNs are evaluated in
parallel. The weighted sum of one hidden neuron is computed
in one cycle. 160-to-16, 50-to-5, 50-to-5 and 30-3 multiplexers
are used in the four NNs, to select corresponding partial inputs
according to the sparse weight indices for each hidden neuron.
In total, only 29 multipliers are required for the four NNs.
After the bias is added, the weighted sum goes through a 128-
entry look-up table based tanh(x) module that only stores the
positive parts, exploiting the rotational symmetry of tanh(x).

IV. MEASUREMENT RESULTS

The prototype chip is implemented in 65 nm LP CMOS
(Fig. 10(a)). Total on-chip memory is 19.5 kB, out of which 4.6
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Vdd=0.55V
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Temp.=25C

Real-time 
constraint

Fmax

0.55

Fig. 11: Measurement results of power, frequency and latency
for authentication.

Fig. 12: Measurement results of registration/identification FVs
(features 201-300 are shown) from same and different users.

kB is used for the NN weights. Measured power consumption
of the ECG processor is 1.06 µW at 0.55 V supply and 2
kHz clock frequency, when it performs continuous real-time
authentication. For cardiac monitoring, the ECG processor
consumes 0.83 µW (at 1 kHz) for arrhythmia detection and
0.88 µW (at 3 kHz) for anomaly detection at 0.51 V sup-
ply. All measurements are performed at room temperature.
Fig. 10(b) shows the power breakdown, based on module-level
power percentages obtained from post-layout simulation.

A. Biometric authentication
The maximum clock frequency scales down with lower

supply voltages as shown in Fig. 11 (left). Fig. 11 (right)
shows the tradeoff between authentication latency and power
consumption at 0.55 V as we sweep the clock frequency.
The minimum clock frequency for real-time authentication is
2 kHz. The combined latency of outlier detection, NN, and
similarity evaluation modules dictates that the clock frequency
should not be too low; otherwise, user will need to wait for
more than one second from the moment when the last ECG
beat is acquired till the final authentication result comes out.

We tested the ECG processor with real-time ECG signals
from a few volunteers. Fig. 12 shows the registration and
identification FVs for one volunteer (user A), and the iden-
tification FV for another volunteer (user B). It can seen that
there is a very small difference between the registration and
identification FVs of user A, while there is sufficient difference
between the registration FV of user A and identification FV
of user B. As a result, only user A is authenticated during
identification when user A’s ECG data is registered.
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Fig. 13: Measurement results of FAR and FRR of ECG au-
thentication for three databases and different starting points are
shown: (a) MIT-BIH NSRDB with 18 subjects (EER=0.10%),
(b) ECG-ID database with 90 subjects (EER=0.74%), (c) in-
house ECG database with 645 subjects with authentication
starting at 4 seconds (results in best EER of 1.70%), and (d)
in-house ECG database with 645 subjects with authentication
starting at 1 second (results in worst EER of 2.48%).

We evaluated the authentication performance on three ECG
databases. Note that clinical studies typically use 12-lead ECG
signals to obtain spatial information of the heart’s electrical
activity. However, since we focus on wearable applications,
which can practically integrate only single-lead ECG sensors,
only single-lead or single-channel ECG signals are used for all
three databases below. “Lead I” represents one of the 12-lead
ECG orientations, namely right arm (-) to left arm (+).

• MIT-BIH normal sinus rhythm database (MIT-BIH
NSRDB) [19], [28] includes 18 subjects (5 men, age 26-
45, and 13 women, age 20-50) and ECG data of two
channels. We used the first channel in our testing.

• ECG-ID database [20] includes 90 subjects (44 men and
46 women, age 13-75) and data of one channel (lead I).

• In-house ECG database includes 645 subjects half men
and half women. The ECG data has only one channel
(lead I, electrodes on the wristband sense ECG signals
from right index finger (-) to left wrist (+)), digitized by
analog front end (AFE) chip ADS1292R [29] on a custom
wristband. The subjects wearing the custom wristband sat
calmly during ECG acquisition, and each ECG record is
2-minute long. The first half of the ECG records were
used for NN training, and the second half of the ECG
records were used for ECG authentication evaluation.

To evaluate the authentication accuracy, false acceptance
rate (FAR), false rejection rate (FRR) and equal error rate
(EER) are measured. FAR is the rate at which a wrong user is
accepted; FRR is the rate at which a correct user is rejected;
EER is the error rate when FAR and FRR are identical.
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We perform registration once and identification three times
for every subject. If a database has n subjects, we perform
ECG authentication experiments for n×3n times, where there
are 3n same-user identification attempts and 3n × (n − 1)
different-user identification attempts. By comparing n × 3n
cosine similarity values with the threshold, we obtain FRR as
the ratio of the number of the same-user cosine similarities
that is less than the threshold, to the total number of the
same-user cosine similarities (3n). FAR is obtained as the ratio
of the number of the different-user cosine similarities that is
greater than or equal to the threshold, to the total number of the
different-user cosine similarities (3n× (n−1)). By increasing
the threshold, FAR decreases while FRR increases. Fig. 13
shows the FAR/FRR for a range of threshold values for MIT-
BIH NSRDB, ECG-ID, and 645-subject in-house databases.
The EER values are: 0.10% for MIT-BIH NSRDB, 0.74% for
ECG-ID, and 1.70%/2.18%/2.48% (best/average/worst) for in-
house ECG database. These measured EERs are comparable
to EERs of recent fingerprint (0.8% [30]) and iris (0.82% [31])
based authentication algorithms.

Temporal variability exists in ECG signals for any individ-
ual, which poses a critical challenge for ECG authentication
accuracy. To evaluate this, for the in-house ECG database,
we varied the starting point of registration and identification
among∼8 seconds in the ECG records for 645 individuals, and
measured EERs for these experiments. As shown in Fig. 14,
the best EER is 1.70%, the worst EER is 2.48%, and the
average EER for all 9 temporal experiments is 2.18%.

B. Arrhythmia detection

We tested arrhythmia detection with ECG recordings from
MIT-BIH arrhythmia database [21], which includes 48 half-
hour excerpts of two-channel ambulatory ECG recordings
from 25 men (age 32-89) and 22 women (age 23-89). We
used the ECG data from channel 1. Fig. 15(a) shows successful
arrhythmia detection for record 100 from [21]. When the PVC
beat occurs, the HRV rises above the threshold (7.5 bpm) for
a short period, which promptly turns on the detection signal.

In arrhythmia detection mode, the detection results are
reported every heart beat based on the R-R intervals for
the past 4 heart beats. Therefore, starting from the 4th ECG
beat, we can compare the arrhythmia detection results with
annotations made by experts in the database to evaluate our
arrhythmia detection accuracy. As mentioned in Section II.C,
we focus on detection of APC and PVC, which are the two
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Fig. 14: EER results on 645-subject in-house ECG database
with varying starting points for registration and identification.
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Fig. 16: Measurement results of arrhythmia detection (APC or
PVC) for subjects in MIT-BIH arrhythmia database [21].

most common premature contractions [32], [33], and can be
occasionally caused by heart diseases. The configurable HRV
threshold can be a value between 0 and 15.9375 bpm.

Fig. 16 shows arrhythmia detection sensitivity (true positive
rate) and specificity (true negative rate) measurement results
for 48/42 subjects in the MIT-BIH arrhythmia database [21].
For all 48 subjects in [21], when the HRV threshold is 5 bpm,
the sensitivity of APC or PVC detection is 80.65%, while the
specificity is 88.98%. We noticed that 6 subjects (record 207,
208, 209, 213, 223, 232) contain hundreds of consecutive pre-
mature contraction beats that cannot be detected by our ECG
processor, since HRV would be small in those cases. When
these 6 subjects are excluded, the sensitivity for 42 subjects
improve considerably, which shows that our ECG processor
can well detect sudden HRV changes. At the HRV threshold of
6 bpm, the sensitivity is 93.13% and the specificity is 89.78%.

C. Anomaly detection

Anomaly detection is aimed at detecting abnormal ECG
pulse shapes among normal ones, even if the heart rate is
normal. We tested the ECG processor with ECG recordings
with such abnormal pulse shapes. Fig. 15(b) shows the mea-
surement results for an ECG recording (record 300) from MIT-
BIH ST change database [34]. It can be seen that, although
the heart rate is regular, the 24th ECG beat appears to be very
different in the ECG pulse shape, and its cosine distance (from
simulation) to the mean ECG beat among the 30 beats is much
higher than others and is higher than the threshold. Also, the
minimum value of this 24th is much lower than the 1.5 times
the median minimum value. Therefore, this beat is detected as
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TABLE I: Comparison with Prior ECG Processor Works

[4] [5] [6] This Work [15] [16]

Technology 180nm 65nm 90nm 65nm Artix-7 FPGA Cortex-M MCU

Supply Voltage 0.7 V 0.4 V 0.5-1.0 V 0.55 V 1.0 V Unknown

Include AFE No Yes Yes No No No

Power (Digital) 1.26 µW (Arr.) 45 nW (Arr.) 7-32.8 µW (M.I.) 1.06 µW (Auth.) 256 mW (Auth.) Unknown

Clock Frequency 0.25-1 kHz 10 kHz 8-32 kHz 2 kHz 50 MHz 168 MHz

Memory Size 10.5 kB 3.7 kB 20.0 kB 19.5 kB 979.1 kB Unknown

Arrhythmia Detection Yes Yes Yes Yes No No

Anomaly Detection No No Yes Yes No No

Authentication No No No Yes Yes Yes

Auth. EER/FAR/FRR N/A N/A N/A
0.74% (ECG-ID)

1.70%-2.48%
(645 subjects)

0.06% (ECG-ID)
FAR = 5.2%
FRR = 1.9%
(28 subjects)

Arr.: Arrhythmia, Auth.: Authentication, M.I.: myocardial infarction

an outlier and reported by the ECG processor. The anomaly
detection result will be updated every 30 ECG beats.

D. Comparison with related works

Table I provides the comparison of our proposed ECG
processor against other related works. AFE is not included
in our processor, so only the digital power of prior works
are reported in Table I. While the cardiac monitoring part
compares similarly to prior works, note that anomaly detection
is much more complex than arrhythmia detection.

On the authentication side, our work is the first ASIC that
implements ECG-based biometric authentication. The authors
of [15] achieved a very low EER on the ECG-ID database.
However, they trained different NNs for different users, while
we used a fixed common NN for all users across different
ECG databases. In addition, our ECG processor is tested on
a much larger in-house database of 645 subjects, together
with temporal variability in the ECG records. Only our ECG
processor supports both cardiac monitoring and authentication
in a single chip with ∼1 µW power for real-time operation.

V. CONCLUSION

We presented an ultra-low-power ECG processor that per-
forms both biometric authentication and personal cardiac
monitoring. Aided by output layer removal, low precision,
and Lasso-based compression, a total of 390× NN memory
is reduced compared to software. We achieved <2.5% EER
for a 645-subject in-house ECG database, consuming 1.06
µW power for real-time ECG authentication. For arrhythmia
detection, we achieved 93.13%/89.78% sensitivity/specificity
for 42 subjects in MIT-BIH arrhythmia database. The proposed
ECG processor enables secure access and cardiac monitoring
in wearable devices with stringent power/area constraints.

REFERENCES

[1] Apple, “Watch Series 3,” https://www.apple.com/apple-watch-series-3/.
[2] Samsung, “Gear S3,” https://www.samsung.com/global/galaxy/gear-s3/.
[3] K. H. Lee and N. Verma, “A low-power processor with configurable

embedded machine-learning accelerators for high-order and adaptive
analysis of medical-sensor signals,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 7, pp. 1625–1637, July 2013.

[4] H. Kim, R. F. Yazicioglu, T. Torfs, P. Merken, H. J. Yoo, and C. V.
Hoof, “A low power ECG signal processor for ambulatory arrhythmia
monitoring system,” in IEEE Symposium on VLSI Circuits, June 2010,
pp. 19–20.

[5] Y. P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N. B. Langhals,
G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, and D. Sylvester,
“An Injectable 64 nW ECG Mixed-Signal SoC in 65 nm for Arrhythmia
Monitoring,” IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp.
375–390, Jan 2015.

[6] S. Y. Hsu, Y. Ho, P. Y. Chang, C. Su, and C. Y. Lee, “A 48.6-to-105.2
µW machine learning assisted cardiac sensor SoC for mobile healthcare
applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp.
801–811, April 2014.

[7] iRhythm, “Zio XT Patch,” http://irhythmtech.com/zio-services.php.
[8] AliveCor, “KardiaBand,” https://store.alivecor.com.
[9] Samsung, “Simband,” https://www.simband.io.

[10] Token, “The Ring,” https://tokenring.com/the-ring.
[11] J. Lee, S. Noh, K. R. Park, and J. Kim, “Iris recognition in wearable

computer,” Biometric Authentication, vol. 3072, pp. 475–483, 2004.
[12] J. Chauhan, H. J. Asghar, A. Mahanti, and M. A. Kaafar, “Gesture-based

continuous authentication for wearable devices: The smart glasses use
case,” in Applied Cryptography and Network Security, 2016, pp. 648–
665.

[13] A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee, “Wavelet
distance measure for person identification using electrocardiograms,”
IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2,
pp. 248–253, February 2008.

[14] I. Odinaka, P. H. Lai, A. D. Kaplan, J. A. O’Sullivan, E. J. Sirevaag, S. D.
Kristjansson, A. K. Sheffield, and J. W. Rohrbaugh, “ECG biometrics: A
robust short-time frequency analysis,” in IEEE International Workshop
on Information Forensics and Security, December 2010, pp. 1–6.

[15] A. Page, A. Kulkarni, and T. Mohsenin, “Utilizing deep neural nets
for an embedded ECG-based biometric authentication system,” in IEEE
Biomedical Circuits and Systems Conference (BioCAS), October 2015,
pp. 1–4.

[16] S. J. Kang, S. Y. Lee, H. I. Cho, and H. Park, “ECG Authentication
System Design Based on Signal Analysis in Mobile and Wearable
Devices,” IEEE Signal Processing Letters, vol. 23, no. 6, pp. 805–808,
June 2016.

[17] R. D. Labati, E. Munoz, V. Piuri, R. Sassi, and F. Scotti, “Deep-
ECG: Convolutional Neural Networks for ECG Biometric Recognition,”
Pattern Recognition Letters, March 2018.

[18] S. Yin, M. Kim, D. Kadetotad, Y. Liu, C. Bae, S. J. Kim, Y. Cao, and
J. sun Seo, “A 1.06 µW Smart ECG Processor in 65nm CMOS for
Real-Time Biometric Authentication and Personal Cardiac Monitoring,”
in IEEE Symposium on VLSI Circuits, 2017, pp. C102–C103.

[19] The MIT-BIH Normal Sinus Rhythm Database, doi: 10.13026/C2NK5R.
[20] T. S. Lugovaya, “Biometric human identification based on electrocardio-

gram,” Master’s thesis, Faculty of Computing Technologies and Infor-
matics, Electrotechnical University “LETI”, Saint-Petersburg, Russian
Federation, 2005.

[21] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhyth-
mia database,” IEEE Engineering in Medicine and Biology Magazine,
vol. 20, no. 3, pp. 45–50, 2001.



10

[22] Y. Liu, X. Feng, C. Zhang, C. Bae, and S.-J. Kim,
“Electrocardiogram (ECG) authentication method and apparatus,”
US Patent Application 20 170 188 971A1. [Online]. Available:
https://patents.google.com/patent/US20170188971A1/en

[23] C. Choi, Y. Kim, and K. Shin, “A PD control-based QRS detection
algorithm for wearable ECG applications,” in Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
August 2012, pp. 5638–5641.

[24] L. Wieclaw, Y. Khoma, P. Faat, D. Sabodashko, and V. Herasymenko,
“Biometric identification from raw ECG signal using deep learning
techniques,” in IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Appli-
cations (IDAACS), vol. 1, September 2017, pp. 129–133.

[25] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[26] J. Bombardieri, “Systolic pipeline architectures for symmetric convo-
lutions,” IEEE Transactions on Signal Processing, vol. 40, no. 5, pp.
1253–1258, May 1992.

[27] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society (Series B), vol. 58, pp. 267–
288, 1996.

[28] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark,
J. Mietus, G. Moody, C. Peng, and H. Stanley, “PhysioBank, Phys-
ioToolkit, and PhysioNet: Components of a new research resource for
complex physiologic signals,” Circulation, vol. 101, no. 23, pp. e215–
e220, June 2000.

[29] Texas Instruments, “ADS1292R,” http://www.ti.com/product/
ADS1292R.

[30] K. K. M. Shreyas, S. Rajeev, K. Panetta, and S. S. Agaian, “Fingerprint
authentication using geometric features,” in IEEE International Sympo-
sium on Technologies for Homeland Security (HST), April 2017, pp.
1–7.
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