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Abstract—We study an online reservation system that allows
electric vehicles (EVs) to park and charge at parking facilities
equipped with electric vehicle supply equipment (EVSEs). We
consider the case where EVs arrive in an online fashion and
the facility coordinator must immediately make an admission
or rejection decision as well as assign a specific irrevocable
parking spot to each admitted EV. By means of strategic
user admittance and smart charging, the objective of the
facility coordinator is to maximize total user utility minus the
operational costs of the facilities. We discuss an online pricing
mechanism based on primal-dual methods for combinatorial
auctions that functions as both an admission controller and
a distributor of the facilities’ limited charging resources. We
analyze the online pricing mechanism’s performance compared
to the optimal offline solution and provide numerical results that
validate the mechanism’s performance for various test cases.

NOTATION
N Set of arriving EVs indexed by n
L Set of charging facilities indexed by ¢
M, Set of EVSEs at facility ¢ indexed by m
T Set of time intervals indexed by t =1,...,T
(C] Set of all possible user types
O, Set of schedule options that satisfy user n
M, Number of EVSEs at facility ¢
C Number of cables per EVSE at facility ¢
E; EVSE max energy output at facility ¢
si(t)  Available solar at facility ¢ at time ¢
S Max solar generation at facility ¢
m(t)  Grid energy price per unit at facility ¢ at time ¢
G(t)  Max energy from grid at facility ¢ at time ¢
0 Arrival n’s user type
t, Arrival n’s reservation start time
th Arrival n’s reservation end time
hn, Arrival n’s energy request

User n’s preferred facilities
User n’s valuations for each facility ¢

¢™(t)  Cable reservation for user n in option o at
EVSE m at facility ¢ at time ¢

em!(t) Charge reservation for user n in option o at
EVSE m at facility ¢ at time ¢

zm Binary assignment variable for user n for
option o at EVSE m at facility ¢

~ml

Payment from user n for option o at EVSE m
at facility ¢

Mahnoosh Alizadeh

y™(t) Cables allocated at EVSE m at facility £ at time ¢
y™(t) Energy allocated at EVSE m at facility ¢ at time ¢
yé(t) Total energy needed at facility £ at time ¢

fé(~) Facility ¢’s electricity procurement cost function
Up, User n’s utility from the EVSE reservation system
p™(t) Cable price at EVSE m at facility ¢ at time ¢
p™(t) Charging price at EVSE m at facility £ at time ¢
pé (t)  Energy procurement price at facility ¢ at time ¢
f*(-)  Fenchel conjugate of a cost function/constraint
Lccgy Lower bound on valuations per resource

Uce,y Upper bound on valuations per resource

R Number of resources available across all facilities
o} Online mechanism’s competitive ratio

8;(7) Lower bound on available solar energy

5(1) Upper bound on available solar energy

Ic EVSE investment cost per cable

Iy EVSE installation cost

Lo Infrastructure maintenance and networking cost

I. INTRODUCTION

As of October 2018, one million plug-in electric vehicles
(PEVs) have been sold in the United States [1]. Furthermore,
sales have exceeded 20,000 units per month since May
2018 and these numbers are expected to continue trending
upward beyond 2020 [1]. As such, coordinated charging
strategies and charging infrastructure planning are paramount
for ensuring the growing charging demand is satisfied in an
environmentally responsible manner.

There has been a growing number of related papers that
study EV smart charging methods as well as infrastructure
planning and investment analysis to encourage renewable
energy usage in vehicle fleets, aggregate groupings, and
parking facilities. For an overview, [2]-[4] provide in-depth
reviews of smart charging technologies as well as societal and
grid impacts. Investigations on the interactions between EV
aggregations and the grid can be found in [5], [6]. Because
smart charging has proven to benefit society, infrastructure
investments must be made to support future charging imple-
mentations [7]-[12]. Papers [9], [11], [12] study where to
locate charging stations as well as how to effectively size the
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facilities. In [7], the authors study a planning framework for
charging stations from the perspective of a social planner.
Likewise, the authors in [8] study the design criteria for Fast
Charging Stations (FCSs) based on mobility behaviors and
paper [10] studies a planning scheme to maximize FCS usage
and minimize infrastructure costs.

A critical but less studied problem is that coordinated
charging at infrastructures can be heavily stunted if usage
of the EVSE:s is left uncontrolled [13]. Without EV routing
within parking facilities, EVSEs at preferred locations (e.g.,
near an elevator) can become congested while other EVSEs
are left empty. This limits the smart charging benefits as
congested EVSEs are forced to charge one EV after another
to satisfy charging demand. Similarly, without admission
control the limited charging resources at facilities could
be allocated to low priority users, (e.g., users with small
charging demands, users with long sojourn times, or users
who are willing to park elsewhere) therefore, occluding
high priority users that arrive later in the day. As such,
the focus of this paper is to jointly perform admission
control and smart charging, complementing previous work
on coordinated charging and infrastructure planning.

Prior work in this area includes [14] where the authors
investigate both First-Come-First-Serve (FCFS) and State-
of-Charge (SoC) threshold policies for discerning which
EVs are granted permission to use the EV charging in-
frastructure. Paper [15] studies an online mechanism for
the allocation of electricity to a population of EVs that
have non-increasing marginal value for energy. Their setting
allows for cancellation of reservations, which in our case
is not allowed. In [16], an online algorithm for scheduling
deferrable charging requests to balance the total value of
vehicle owners and the total cost for providing charging
service is studied, but they also allow for revocation of
previously allocated resources. Paper [17] investigates an
online auction that allows EV users to submit bids on
their charging demand to the charging station and then the
mechanism makes corresponding electricity allocation and
pricing decisions. In this approach, users are expected to
update their bids while parked at the charging station instead
of only submitting one initial bid. Additionally, [18] studied
a consensus approach for an online setting where selfish
EVs compete for a limited amount of energy. An intelligent
parking lot energy management system is studied in [19]
to manage the scheduling of EVs to maximize charging for
all EVs. Moreover, paper [20] formulates and analyzes a
market model for deadline-differentiated pricing of deferrable
electric power services; however, it does not focus on high
levels of congestion or adversarial user valuations. Paper [21]
presents a menu-based pricing scheme for allocating charge
time within a facility and can lead to an efficient alternative
approach to the EVSE reservation problem. The mechanism
we present in this manuscript focuses more on the congestion
within facilities due to limited number of EVSEs and high
demand with the objective of admitting highest priority users.

In most previous work, charging facilities are assumed to
have traditional Single-Output-Single-Cable (SOSC) EVSEs.
Recently, a more versatile charger has been gaining popular-
ity: the Single-Output-Multiple-Cable (SOMC) EVSE which
allows multiple EVs to be connected to the same charger,
but only one EV receives charge at a time [22]. SOMC
EVSEs can improve facility operations by allowing more
flexibility in charge scheduling and decreasing idle plug-in
time from traditional SOSC chargers. Furthermore, SOMC
chargers eliminate the need for users to remove their vehicles
once their charging session is complete. In any SOMC facility
charging strategy, these idle EVs need to be accounted for; if
not, the revenue of the facility will be reduced (our solution
accounts for the times when EVs are charging and when
they are idle). Utilizing SOMC EVSES, the authors of [22]
study infrastructure investments, the authors of [13] study
centralized online assignment methods such as Next-Fit and
Worst-Fit for arriving EVs at a parking facility, and the
authors of [23] study multiple online pricing heuristics for EV
to EVSE allocation to increase smart charging capabilities.

In this manuscript, we present an online pricing mech-
anism that functions as both an admission controller for
parking facility access and a resource manager that optimizes
smart charging strategies for vehicles admitted to the facility.
The work presented in this manuscript complements existing
literature in the area and the main contributions are as
follows:

1) The online mechanism readily accommodates multiple
locations, multiple limited resources, operational costs,
and renewable generation integration.

2) The online mechanism does not rely on fractional
allocations or rounding methods to produce integer
allocations in a computationally feasible manner and
it never revokes previously made reservations.

3) The online mechanism readily handles the inherent
stochasticity of the EVSE reservation problem includ-
ing unknown sojourn times, unknown energy requests,
and unknown user valuation functions.

4) The online mechanism is robust to adversarially chosen
arrival sequences and always yields social welfare
within a factor of é of the offline optimal.

Preliminary results from this paper were previously submitted
as a conference paper [24]. In this paper, we present new
theoretical results on the pricing functions by accounting for
time varying behind-the-meter solar generation and provide
more extensive numerical results showing the performance
of the mechanism.

The remainder of the paper is organized as follows. Sec-
tion II presents the system model and describes the offline
EVSE reservation problem. Section III presents the online
auction mechanism used to provide an approximate solution
to the EVSE reservation problem and discusses the online
mechanism’s properties and performance guarantees. Section
IV presents simulation results that showcase the performance
of the online mechanism for different test cases.



II. SYSTEM MODEL
A. System Structure and User Characteristics

In this section, we describe our model for the EVSE
reservation problem and user characteristics. We consider an
EVSE reservation system that controls L dispersed parking
facilities. Each parking facility [ € L is equipped with M
SOMC EVSEs each with () cables (i.e., each facility can
park M;C; EVs at any given time ¢ = 1,...,7 but only
charge M;). In addition to the cable constraints, each EVSE
has a maximum power output constraint denoted by Ej that
limits the amount of energy the EVSE can deliver in one
time slot. To supply the EVSEs with electricity, each parking
facility can procure energy from two sources: a rooftop solar
generation system or the local distribution grid. We denote
the available solar energy at facility [ at time ¢ with the
variable s;(t) € [0, S;] where S; is the maximum rating for
facility I’s rooftop system. Additionally, we denote m;(t) as
the per unit price of electricity from the grid. Due to physical
limits of the local transformer, we constrain facility [ to
procure no more than G(t) units of energy from the grid
at each time slot.

Each day, N EV owners submit requests to park and charge
at various facilities. Each EV owner (user) is characterized by
a set of attributes. Suppose user n wants to park and charge
her EV. When she submits her reservation request at time ¢,
she commits to arrive at one of her desired parking facilities
{l,} at time t;, and to depart at ¢,". Furthermore, user n
receives value {v,,;} if her EV receives h,, units of energy
from facility [, meaning users have preferences for different
facilities. With the aforementioned nomenclature, each arrival
can be characterized by user ‘type’:

On = {t, t.5 b, {ln}, {vni}} € O, (1
where O is the type space of all possible users. Fig. 1 presents
an example allocation sequence with 4 arrivals and 2 EVSEs.
Specifically, Fig. 1 showcases the fact that there are limited
charging resources within the parking facility that need to be
allocated to the arrivals. Each arriving EV needs an EVSE
cable, an EVSE energy schedule, and the facility needs an
energy procurement schedule from i) behind-the-meter solar,
ii) the local distribution grid, or iii) a combination of solar
and grid energy. The arriving vehicles enter the facility one-
by-one and utilize the limited resources during their stay,
affecting how future arrivals are allocated as seen in Fig. 1.

B. Offline Problem Formulation

To request a reservation, user n submits her user type
0,, to the EVSE reservation system. The EVSE reservation
system creates a set of possible schedules that will fulfill user
n’s requirements. Namely, each possible schedule, or option,
contains a cable reservation for the entire parking duration
and the charge schedules that sum up to her desired charge
amount. The reservation system generates these options for
each facility within user n’s desired facility set and then the
option that yields the highest utility to the user is selected.

We denote the set of options (potential schedules) as O,,.

EVSE Reservations Energy Procurement for

Entire Parking Area

=1 =2 =3 t=4 =T

Cable C =1 =2 =3 =4 t=T

Solar Energy
Energy Demand

=1 t=2 =3 t=4 =T

Energy
From DE”G'QVG
Grid eman

Cable 1

somc
EVSE1 t=1 t=2 =3 t=4 - =T

K =1 t2 3 t=4 . t=T \ -
I | [ Cable C Arrival Sequence:
Arrival 1
Cable 1
soMc - Arrival 2
EVSE2 =1 =2 t=3  t=4 t=T
Arrival 3
Energy
Demand
K Arrival 4

Fig. 1: Example reservation schedule.

Each option o € O,, corresponds to a facility /,,, a cable
reservation ¢ (t), and a charge schedule (). The cable
reservation ¢/ (t) takes values O or 1 depending if user n
is assigned a cable from EVSE m at facility | at time ¢
in option o. Similarly, e (t) takes values from a discrete
set corresponding to the energy delivered to user n’s EV.
Through e (t), the EVSE reservation system is able to
customize when each EV will receive charge and when it
will be idle as well as the rate of charge. The set of feasible

options for user n can be written as:

{tu.th Acna @} ey (O}, {ln}, {va}}- 2)

When deciding whether or not to admit user n and which
option to allocate, the reservation system sets the binary
variable 2™ to 1 if option o is chosen at EVSE m at facility
l. Additionally, the reservation system computes payments
P! for each option that the user pays if accepted. If a user
is not admitted into any parking facilities, she receives zero
value and parks in an auxiliary lot without EVSEs.

The EVSE reservation system keeps track of the allo-
cated resources throughout the day. The variables y™(t)
and yg”l(t) correspond to the allocated cables and energy,
respectively, at EVSE m, facility [, at time ¢. Each facility
also has to procure the energy needed by all the EVSEs
within; therefore, the total energy needed by facility [ at
time ¢ is denoted as yf] (t). Equations (3)-(5) detail how each
resource demand is calculated:

gt = > eplt)any, 3)
N,0,

() = Y en(t)ay, “
N,0,

gty = > em(t)an. (5)
N, 0, ,M;

The energy procurement, ylg (t), determines the operational
cost of facility :

Folyg(1) = (©)
0 yy(t) € 0, 5(t))
M) (e () — s1(1))  yy(t) € [si(t), s1(t) + Gi(t)]
400 yh(t) > si(t) + Gi(t).
The operational cost of the facility is zero while solar
energy is available. Once the demand, yé(t), exceeds the



available solar, energy is purchased from the grid. Once the
demand exceeds the sum of available behind-the-meter solar
energy and the transformer limit, no more energy can be
procured.

With the system variables and equations defined, we can
write the offline social welfare maximization problem (as-
suming all users’ information is known beforehand):

max Z UniZoy Z f yg (7a)
N,0,,,L,M,
subject to:
d>ooapi<i, Van (7b)
On, LM,
™ e{0,1}, Vn,o,l,m (7¢)
yz’”( t)<Ci,  Vimt (7d)
ye (t) < Ela v lvmat (76)

and (3), (4), (5).

Moreover, the objective (7a) is to maximize the total social
welfare of the system. This includes the utility gained by
arrivals using the system minus the operational costs of the
facilities (we note that users who are not admitted receive
utility equal to zero). Constraints (7b)-(7¢) respectively en-
sure at most one option is selected per user, the assignment
variable is an integer, the cable demand does not exceed
capacity, and the energy demand does not exceed capacity.
Equations (3)-(5) sum the resource demands.

Temporarily relaxing the integrality constraint (7c) on z7
allows us to find the Fenchel dual problem with dual variables
U, pIH(t), p(t), and pl(t) [25]. In the following, the
Fenchel conjugate of a function is given as:

o) = sup {pt)y(t) — f(y(t)}. ®)
y(t)=0
Accordingly, the Fenchel dual of (7a)-(7e) can be written:

min Z Un + Z FAAG)) (%a)
+ Z (fml* ml )) + féml*(pénl(t)))
T,L,M,
subject to:
Up > Upl — Z (c?ol(t)pznl(t) (9b)
T
e (P (1) +p,(1)) VYnolm

Uy > 0, vVn (9¢)
P (), (L), pl(t) = 0, Vim,t, (9d)

where f*(p(t)) is the Fenchel conjugate for the limited
resources’ dual variables. The Fenchel conjugates for the
capacity constraints can be written as:

ey =M oe, et =0 10
rer o) =pM e, e =0. A
Additionally, the Fenchel conjugate for the energy procure-

ment operational cost function can be written as:
Lxg,
fq Py (1)) =

s1()p}(t), Py(t) < m(t)
(s1(t) + Gi(1))py (1) — Gi(t)m(t)  py(t) > m(t).

12)

C. Admittance, Rejection, and Allocation Decisions

To determine how the EVSE reservation system decides
whether or not to admit a user as well as which option to
select if admitted, we make use of the Fenchel dual (9a)-(9d).
Specifically, we examine the KKT conditions for constraint
(9b). If a user is denied in the offline problem, u,, will be 0;
otherwise, if a user is admitted, wu,, will be positive. As such,
the EVSE reservation system solves the following equation
to determine user n’s acceptance and her resource allocation:

Up —maX{O max {vnl (13)

nyks

— Y (P + e ) + ph 1)} -
teltn ti]

We note that u,, corresponds to user n’s utility from the
EVSE reservation system. If admitted, the cable reservation
and charge schedule chosen for user n correspond to the
option o, EVSE m, and facility [ that maximize the second
term in equation (13). Furthermore, the dual variables p™ (t),
p™(t), and pé(t) correspond to prices that users must pay
for cables, energy, and energy procurement. As such, the
total payments corresponding to user n’s different options
are calculated as:

~ml ml ml l

B = 3 (e pi () + e et + ph(0). (14)

T
The EVSE reservation system is allocating options that

maximize each user’s utility with respect to the current
marginal prices. Additionally, users receive non-negative
utility for participating in the EVSE reservation system;
therefore, we satisfy individual rationality constraints.

We would like to note that our proposed mechanism can
also be used without any actual payments if users do not
have the option of choosing their type (i.e., their types are
preassigned). In a company, if users are assigned valuations
(e.g., CEO has a high value and regular employee has lower
value, or someone with high charge level has lower value),
then the prices do not have to be economic incentives.
Rather they are used as dual variables that guide each users
allocation without any monetary transfer (i.e., each employee
does not actually have to pay to use the infrastructure,
but different employees have different valuations and the
“shadow prices” allow for quick allocations).

The optimization problems presented in (7a)-(7e) and (9a)-
(9d) assume complete knowledge of the arrivals beforehand.
In practice, this is not the case; rather, users arrive and
depart throughout the day. As such, the solution needs to
be an online mechanism that can immediately allocate an
arrival without knowledge of the future sequence of arrivals.
Additionally, once a user has parked her car within a charging
facility, she should not be asked to prematurely move her EV



before her departure time. As such, the online mechanism
should never revoke previous allocations. In the following,
we discuss an online allocation mechanism that solves the
EVSE reservation problem and meets the aforementioned
design goals.

III. ONLINE ALLOCATION MECHANISM
A. Online Marginal Prices

It is evident that the EVSE reservation problem requires an
online solution. In many online problems, approximate dy-
namic programming (ADP) heuristics have good performance
given accurate statistics even with large state-spaces [26]—
[29]. However, performance guarantees can be very hard to
obtain for multi-stage decision making problems with com-
plex action spaces over long time periods, and in our case,
nonstationary arrival patterns and variable forecasts prohibit
many traditional ADP techniques. As such, we present an
online pricing mechanism that calculates the marginal prices
on EVSE cables, energy, and generation based on a pricing
heuristic, for which we provide performance guarantees.
Specifically, our EVSE reservation system updates the prices
p(t) heuristically as the amounts of allocated resources y(t)
evolve, but only based on past observations. The pricing
scheme has two major goals: (1) to make sure that the
marginal gain in welfare from an allocation is greater than the
operational cost incurred to serve the allocation, and (2) to
filter out low value users early to ensure there are adequate
resources for higher value users later on. The structure of
the marginal price functions we use is similar to that of
[30], where the authors present a pricing framework for
cloud-computing systems utilizing data centers with limited
computation resources and server costs under an adversarial
setting. For the limited number of cables at each EVSE, the
proposed marginal payment function is given by:

ml ¢, ml _ Lc
) (G R T )

y (2Z£Mz(cl + By + ML)U)M

L. ’
where y™(t) is the current demand for the cables at EVSE
m at location [ at time ¢. Additionally, L. and U, are the
lower and upper bounds on users’ valuation per cable per
unit of time, respectively:

15)

: Unl
c = min ,
N.Ow LMY My(Cr+ By + 1%1,) Zte[t;,m cml(t)
(16a)
Ue T () # 0. (16b)

= max
T N0 LM T A (t)
The pricing function for the EVSE energy units is the same
as (15) with the exponent changed to FE; instead of Cj.
Likewise, calculate L. and U, using e’ (t) in (16a) and
(16b). Additionally, for the energy procurement resource, L,
and Uy are the same as L. and U,, respectively.

To explain this pricing function, set y”!(t) = 0 and (15)
outputs a price low enough that any user will be accepted
(subject to L.). Moreover, the pricing function (15) yields

low initial values to allow reservations early on. As more
arrivals are admitted into the reservation system, congestion
begins to affect the shared resources. To combat congestion
and filter our low value arrivals, as y™!(¢) increases, the
prices from (15) increase exponentially. When 3™ (¢) is equal
to the capacity of the limited resource, the marginal price is
set high enough to reject all future arrivals to ensure that no
resource will ever be overallocated (we assume L. and U,
are known).

Designing a pricing function for energy procurement at
each facility is more complicated than the cable pricing. Here,
the cost to procure energy is piecewise linear and depends
on the current solar generation and the transformer capacity.
As such, we propose the pricing function:

Pyl () =
vl (t)

g
Ly 2Rm () ) s1(®)
2R T, )
yfj(f)

L,—m(t)\ [ 2R(U,—m(¢)) ) 51(OFG1(5)
( 2RI )( Lg—m(lt) )l U

a7

Yy(t) < si(t),

1

where R ng(Cl +E + Ml).

Equation (17) is similar to the pricing function for the EVSE
cables and energy; however, because procuring energy from
the grid has non-zero cost, we need to ensure each user’s
payment is greater than the electricity cost needed to charge
their vehicle. Additionally, when a facility’s energy demand is
less than the available solar, the marginal energy procurement
price is reduced below the cost of electricity m;(¢) to promote
solar consumption.

vy €[0.51) vl € [ssi

Marginal Price

)

s1+Gy

Resource Demand

Fig. 2: Pricing function for energy procurement. Shaded area:
increase in users’ utilities from updated pricing function.

B. Proposed Algorithm and Performance Guarantees

The admittance, allocation, and price update procedure for
the EVSE reservation system is presented in Algorithm ON-
LINEPARKNCHARGE. When arrival n submits her request,
the system generates the feasible options O,, that fulfill her
demands. Then, the system accepts or rejects user n depend-
ing on her potential utility gain due to her valuation and the
current resource prices (line 7). We note that line 9 requires
solving an integer constrained maximization problem. This is
not computationally burdensome as the optimization is solved
for each individual vehicle at the time of arrival, with the
potential utilities for each option can be calculated quickly



via multiplication and addition. Then, any sorting method
can be used to find the highest utility option. The algorithm
updates the primal variables ™ after each acceptance and
rejection. The total resource demands are updated in line 12
if user n is accepted into the system. Similarly, the marginal
resource prices are updated accordingly in line 13.

Algorithm 1 ONLINEPARKNCHARGE

Input: £, M;,Cy, By, Gy, Si,m, L

Output: z,p

: Define fg(yg( )) according to (6).

: Define the pricing functions p(y(t)) according to (15) and (17)
for cables, energy, and generation.

- Initialize 7% = 0, y™(t) = 0, up = 0.

: Initialize pnces p(0) according to (15) and (17).

Repeat for all N users:

User n submits 6,,, generate feasible charging options.

: Update dual variable w,, according to (13).

. if up, > 0 then

(0", m*, 1) = argmax, v, o, {vni

Zte[t ﬁ] (Cno( )P (t)
e ()P () +ph(1)
100 B = N it (cnof*(t)p;” ")
+erd (@ (1) + ph (t)))

1 2™ =1 and 27 = 0 for all (0,1, m) # (o*,1*,m")

12:  Update total demand y(¢) for cables, energy, and generation
according to (3)-(5).

13:  Update marginal prices p(t) for cables, energy, and genera-
tion according to (15) and (17).

14: else

15 2™ =0, VL M;and O,.

16: end if s

17: if J0*,m*,1* and ™. =1 then

18:  Accept user n and allocate cables and energy in parking
location [* at EVSE m

19:  Charge user n at pno* .

20: else

21:  Send user n to auxiliary parking.

22: end if

c,e,9> Uc,e,g

N =

© XN LA W

Next, we compare the total social welfare resulting from
the online solution to the optimal offline solution. Specifi-
cally, an online mechanism is said to be a-competitive when
the ratio of social welfare from the optimal offline solution
to the social welfare from the mechanism is bounded by
a > 1. We extend a competitive ratio performance guarantee
from [30] in Proposition 1. In the following, to ensure no
user purchases too large of a fraction of the total available
resource, we assume each user’s resource demands are much
smaller than the capacity limits.

Proposition 1. The marginal pricing function (17) is ;-
competitive in social welfare when selling limited resources
with the piecewise linear operational cost in (6) where
230 Mi(Ci+ B + 3)(Ug — mi(t))
a1:2max{ln( )}
L,T L, —m(t)
SeM(C+ B+ o§2) >

with the assumption

el
|—2 IIlanﬂi wz(t)]'

Proof. The proof is omitted for brevity. The proof can be
found in the online version of this paper [31].

Corollary 1.1. If the final demand for energy procurement
y.(t) for a given day is less than the available solar s(t),
the marginal pricing function (17) is ag-competitive (ag <
a1 ) in social welfare when selling limited resources with the
piecewise linear operational cost in (6) where

a2:212%2({1n(2Zch(Cl +sz )(Wl(t)))}_

In the previous proposition, the pricing function (17) relies
on complete knowledge of the solar generation s;(t). If the
system has inaccurate solar irradiation forecasts, the solar
generation could be overestimated and resources are over-
allocated resulting in infeasible solutions, which our online
solution should avoid at all costs; or solar generation is
underestimated and prices are set too high and the system
rejects users that should otherwise be accepted. We analyze
the case where we have a forecast of the solar generation each
day in terms of a confidence interval. We do not assume a
specific solar irradiance forecasting method; rather, we make
use of a confidence interval for the potential solar each day
as yearly solar irradiance recordings can provide minimum
and maximum bounds for any given day. Additionally, out
method assumes that these confidence regions are tightening
as the day progresses. In this paper, we assume that the
solar forecast for a future time ¢ increases in accuracy as
the current time %,y rent approaches t. Specifically, the solar
forecast takes the following form:

S (t) S [§l (t; tcurrent)v Sy (t7 tcurrent)]v (18)
for t =1,...,7 and 1 < teyrrent < t. Here, s;(t) is the
actual solar generation at time ¢ and the terms s; (¢, tcyrrent)
and S;(t, teurrent) are lower and upper bounds given by the
forecast, respectively, at an earlier time t.yrent. We assume
that the forecast is improving, specifically (¢, teyrrent)
is non-increasing and s;(t,tcurrent) is non-decreasing as
teurrent approaches t.

To account for the dependence of the solar forecast on
the current time, the marginal pricing function (17) is now
written as pl,(y} (t), teurrent). To avoid possible infeasible
allocations associated with overestimation of solar availabil-
ity, we analyze the performance of pricing function (17) that
conservatively uses the underestimate of the solar generation,
8;(t, teurrent ), in Proposition 2. Fig. 3 shows how the pricing
function (17) changes as the solar forecast improves.

Proposition 2. The marginal pricing function (17) with an
underestimate of solar generation, s;(t,tcurrent), is a3 =
2maxg T {aé (t)} competitive in social welfare when selling
limited resources with the operational cost in (6) where

ag(t) = (19)
5.(t,1) 2Rm(t)\ Si(t,1)+Gi(¢) R(Ug—m (1))
max{si(m) In( L; ) 5i(t 1)+Gi(t) In ( L —m(lt) )}7
§l<ta 1) 7& 07
5t D)+Gi(t) 2R(Ug—mi (1)) _
am - MCLEmE ) 5(t,1) =0,
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Fig. 3: Pricing function with solar forecast s;(t, tcurrent)-

with the assumption R > [#;m(tﬂ

Proof. The proof is omitted for brevity. The proof follows the
same structure as Proposition 1 using the lower bound solar
generation estimates instead of the actual solar generation
amounts as well as the non-increasing and non-decreasing
properties of the upper and lower estimates, respectively.

We would like to note the significance of Proposition 1
and Proposition 2 in the following. Namely, our competitive
ratio results ensure the social welfare generated by the
approximate online solution (that runs in real-time) cannot
deviate too far from the social welfare generated by the oracle
offline solution. The results in Proposition 1 and Proposition
2 ensure the online system, which acts without knowledge
of future arrivals, performs within a constant factor of the
offline/oracle system. Furthermore, the competitive ratios are
worst case bounds on performance. That is, if this pricing
scheme is used in a real scenario, even the social welfare
generated with respect to an adversarially chosen arrival
sequence is within the constant o of the optimal oracle
solution.

IV. EXPERIMENTAL EVALUATION
A. The Case of Variable Arrival Patterns

In this section, we present a comparison of our online
pricing mechanism against an online certainty equivalent
controller (CEC) for a downtown parking facility to show
the performance our mechanism under different arrival statis-
tics. CEC is an approximate dynamic programming (ADP)
technique that replaces all future uncertain quantities with
some typical values, more specifically, the expected values.
In this case, we assume that the facility has arrival patterns
following the distributions in Figure 4. In this example, there
is 1 parking facility with 5 EVSEs and 4 cables per EVSE
(i.e., there are 20 parking slots available in each time period).
The facility can purchase energy from the Los Angeles grid
at a cost of $0.127/kWh. Lastly, the facility has a 32 kW
rooftop solar generation system that follows a production
curve from an LA location in January 2018 [32]. We assume
standard crystalline silicon panels with 14% system loss due
to shading, wiring, connections, mismatch, and degradation.
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Fig. 4: Top Left: Energy requests. Top Right: User valuations.
Bottom Left: Arrival times (blue) and departure times (red).
Bottom Right: Length of stay.

We simulated the CEC and pricing mechanism for 2 different
arrival count distributions (as shown in Fig. 5). To demon-
strate the value of adverserial solutions like ours in situations
when the future is hard to predict, the distribution exhibits a
larger variance under the second scenario.
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Fig. 5: Top: Social welfare for facility with unimodal arrival
count distribution. Bottom: Social welfare for facility with
bimodal arrival count distribution.

From our results in Figure 5, it is evident that in the case of
higher variance arrival patterns, our pricing mechanism out-
performs a controller that is dependant on expected statistics.
If a parking facility does not have consistent arrival statistics
each day, our pricing mechanism performs better because
it accounts for worst-case arrival patterns. Additionally, in
the unimodal and bimodal arrival count cases, the minimum
daily social welfare achieved by our pricing mechanism is
significantly higher than the minimum of the CEC ADP.

B. Comparison with First-Come-First-Serve Strategy

In this section, we present a comparison of our online
pricing mechanism against the first-come-first-serve (FCFS)
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strategy that is commonplace in many EVSE equipped
charging facilities. Specifically, we highlight the performance
of our mechanism over varying demand levels to show
the effectiveness of our mechanism when the infrastructure
becomes congested. In the FCFS strategy, an arriving EV
selects the closest available parking spot and begins charging
immediately (without any controller directing them). In this
test case, we assume the arrivals’ energy requests, valuations,
and durations follow the same statistics as in Fig. 4; however,
in this simulation, we directly control the number of arrivals
each day (to highlight different demand levels) and we limit
the arrival times to 8:00am-10:00am and limit the departure
times to after 10:00am (thus showcasing the performance of
FCFS and our mechanism when large quantities of vehicles
arrive in a short time period each morning). We assume the
parking infrastructure has 15 EVSEs with 4 cables each,
yielding 60 parking spots total.

We compare the total user utility yielded from the FCFS
strategy to our online heuristic with demand increasing from
1 to 120 arrivals each day. As shown in Fig. 6, the total
user utility increases steadily as the number of EVs entering
the system increases. However, when the demand for the
EVSE:s is high, our online mechanism is able to filter out low
value arrivals to admit higher value arrivals instead, and yield
higher total utility. It is worth noting that the FCFS strategy
yields similar total utility if the demand for charging is low;
this is because FCFS admits all arrivals as long as there are
open parking spots.

Additionally, in Fig. 7, we show the fraction of behind-
the-meter solar used by our mechanism and FCFS for a day
when there are 100 arriving EVs. From the plot, it is evident
that our online mechanism is able to utilize significantly more
solar energy, thus eliminating the need to send large amounts
of excess energy back to the distribution grid. Specifically,

o

o
©

o
>

o
s

First-Come-First-Serve (FCFS)
Online EVSE Heuristic
Available solar (nomalized)

o
N}

Fraction of available solar used

=)

2 4 6 8 10 12 14 16 18 20 22 24
Hour

Fig. 7: Comparison of behind-the-meter solar energy usage
for a day with 100 arrivals.

our mechanism is able to schedule charging to time slots
when there is available solar, while FCFS is not able to
schedule charging times. The results in this section show that
our mechanism outperforms the commonplace FCFS strategy
in congested facilities in addition to better utilizing behind-
the-meter solar.

C. Multi-Facility Test Case

In this section, we present a multi-facility example located
in downtown Los Angeles. Specifically, we look at 6 park-
ing facilities with varying rooftop generation amounts. We
assume standard crystalline silicon panels with 14% system
loss. Facility 6 has a 75kW solar generation system, facility 5
has 60kW, facility 4 has 45kW, facility 3 has 30kW, facility 2
has 15kW, and facility 1 does not have any solar generation.
We examined a 20 day period with 600 arrivals each day.
Each arrival has valuation in [$1, $10], energy request in [1,
20] kWh, and stay length in [1, 8] hours. Each of the 6
facilities has 8 SOMC EVSEs each equipped with 4 cables.
Furthermore, each facility purchases electricity from the Los
Angeles grid at $0.127/kWh. We examine the performance
of the system with transformer capacity limits of 75kVA.

Figure 8 shows the total user utility, social welfare, and
electricity cost for 20 days. An observation worth noting is
the total user utility from our updated pricing function is
always larger than that of a solar agnostic pricing frame-
work. This is due to setting lower prices on the electricity
generation resource when there is solar available as seen
in Figure 2 (our previous work was agnostic to the free
solar generation). Moreover, over the 20 day period, our
updated pricing mechanism admits 387 arrivals on average
while our previous work only admits 369 arrivals on average.
As such, our updated mechanism is favorable for users of
the system as prices are lower and more users are admitted.
Additionally, our improved mechanism is able to utilize more
solar, reducing reliance on the local grid.

D. Importance of Accurate Departure Times

In this section, we discuss the effect of inaccurate departure
time reporting. For example, consider the case when a user
reports that she will exit the system by 4:00pm; however,
she gets delayed and cannot remove her EV until 5:00pm or
later. This affects the reservation system because there might
be a reservation for the EVSE at that timeslot. To avoid these
reservation collisions due to delayed departures, we analyze
the performance of the system with extra hours added to
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each arrival’s stay length as a “buffer” to prevent double-
allocations. We examined the same test case as Section IV-C
with buffer sizes of 1 and 2 hours added to each arrival’s
stay length. Adding 1 and 2 hour departure buffers yielded
average social welfare losses of 16% and 29%, respectively.

E. Infrastructure Recommendation

In this section, we demonstrate the importance of infras-
tructure planning in order to maximize the smart charging
capabilities of a parking facility. A facility with too few
EVSEs will limit the users’ utilities as well as the smart
charging potential. Conversely, installing too many EVSEs
results in idle chargers. As such, we perform a cost-benefit
analysis to determine the number of cables at each SOMC
EVSE as well as the number of EVSEs that should be
installed at a facility in order to maximize social welfare
over an extended period. Specifically, we are simulating
the same system as described in Sections IV-C and IV-D;
however, we have increased the duration to 2 years (730
days). Furthermore, we are including initial and recurring
costs relating to a parking structure equipped with SOMC
EVSEs. These costs include EVSE unit costs, installation
costs, electricity consumption, maintenance, and networking
costs. In the following, we are looking to choose the con-
straint variables C; and M; (number of cables per EVSE
and number of EVSEs, respectively) that maximize users’
utilities minus the aforementioned investment and operational
costs. We use Io to denote the EVSE unit investment per
cable and Ij; to denote the installation cost per SOMC
EVSE. Additionally, I,, , represents a recurring infrastruc-
ture maintenance and networking cost per EVSE. As such,
the infrastructure investment cost can be written as:

Y (IcCit In)My+ T L M.
L L
In (20), the first term is the initial investment cost for the

SOMC EVSE hardware and installation and the second term
represents the recurring maintenance and networking cost.
In the following, we assumed each EVSE was a pedestal
mounted unit with an installation cost of $3,308 [33].
Additionally, each extra cable for each SOMC increased
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Fig. 9: Cost-benefit analysis over 2 years.

the cost of the EVSE by $3,343 [33]. Last, the recurring
networking and maintenance fee was assumed to be $75 per
month [33]. Figure 9 shows the comparison of total social
welfare generated across the entire time period for various
levels of infrastructure investments. For this test case, the best
result occurred when each location had 7 SOMC EVSEs each
equipped with 6 cables. With this level of infrastructure, the
system did not yield positive social welfare until the second
year of operation. As seen in Fig. 9, it is clear that sizing
a facility for the given use case is critical. Smart charging
strategies require a sufficient number of EVSEs to yield
maximal benefits; however, welfare decreases if extra EVSEs
are purchased and underutilized.

V. CONCLUSION

In this paper, we presented an online pricing mechanism
as a solution to the EVSE reservation problem. The online
mechanism functions as both an admission controller and
a distributor of the facilities’ limited charging resources.
The work presented in this manuscript complements existing
literature in the area and the important characteristics are as
follows. First, the mechanism readily accommodates multiple
locations, multiple limited resources, operational costs, and
variable arrival patterns. The mechanism does not rely on
fractional allocations or rounding methods to produce inte-
ger allocations in a computationally feasible manner and it
never revokes previously made reservations. Moreover, our
online mechanism readily handles the inherent stochasticity
of the EVSE reservation problem including unknown sojourn
times, unknown energy requests, and unknown user valuation
functions. The online mechanism can handle adversarially
chosen arrival sequences and still generate social welfare
within a factor of % of the offline optimal. We discussed
a competitive ratio as a performance guarantee for the
online mechanism compared to the oracle offline solution
and provided numerical results showing the efficacy of the
mechanism.
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