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Abstract—We study an online reservation system that allows
electric vehicles (EVs) to park and charge at parking facilities
equipped with electric vehicle supply equipment (EVSEs). We
consider the case where EVs arrive in an online fashion and
the facility coordinator must immediately make an admission
or rejection decision as well as assign a specific irrevocable
parking spot to each admitted EV. By means of strategic
user admittance and smart charging, the objective of the
facility coordinator is to maximize total user utility minus the
operational costs of the facilities. We discuss an online pricing
mechanism based on primal-dual methods for combinatorial
auctions that functions as both an admission controller and
a distributor of the facilities’ limited charging resources. We
analyze the online pricing mechanism’s performance compared
to the optimal offline solution and provide numerical results that
validate the mechanism’s performance for various test cases.

NOTATION

N Set of arriving EVs indexed by n

L Set of charging facilities indexed by ℓ

Ml Set of EVSEs at facility ℓ indexed by m

T Set of time intervals indexed by t = 1, . . . , T

Θ Set of all possible user types

On Set of schedule options that satisfy user n

Ml Number of EVSEs at facility ℓ

Cl Number of cables per EVSE at facility ℓ

El EVSE max energy output at facility ℓ

sl(t) Available solar at facility ℓ at time t

Sl Max solar generation at facility ℓ

πl(t) Grid energy price per unit at facility ℓ at time t

Gl(t) Max energy from grid at facility ℓ at time t

θn Arrival n’s user type

t−n Arrival n’s reservation start time

t+n Arrival n’s reservation end time

hn Arrival n’s energy request

{ℓn} User n’s preferred facilities

{vnℓ} User n’s valuations for each facility ℓ

cml
no (t) Cable reservation for user n in option o at

EVSE m at facility ℓ at time t

eml
no (t) Charge reservation for user n in option o at

EVSE m at facility ℓ at time t

xml
no Binary assignment variable for user n for

option o at EVSE m at facility ℓ

p̂ml
no Payment from user n for option o at EVSE m

at facility ℓ

yml
c (t) Cables allocated at EVSE m at facility ℓ at time t

yml
e (t) Energy allocated at EVSE m at facility ℓ at time t

ylg(t) Total energy needed at facility ℓ at time t

f l
g(·) Facility ℓ’s electricity procurement cost function

un User n’s utility from the EVSE reservation system

pml
c (t) Cable price at EVSE m at facility ℓ at time t

pml
e (t) Charging price at EVSE m at facility ℓ at time t

plg(t) Energy procurement price at facility ℓ at time t

f∗(·) Fenchel conjugate of a cost function/constraint

Lc,e,g Lower bound on valuations per resource

Uc,e,g Upper bound on valuations per resource

R Number of resources available across all facilities

α Online mechanism’s competitive ratio

sl(·) Lower bound on available solar energy

sl(·) Upper bound on available solar energy

IC EVSE investment cost per cable

IM EVSE installation cost

Im,n Infrastructure maintenance and networking cost

I. INTRODUCTION

As of October 2018, one million plug-in electric vehicles

(PEVs) have been sold in the United States [1]. Furthermore,

sales have exceeded 20,000 units per month since May

2018 and these numbers are expected to continue trending

upward beyond 2020 [1]. As such, coordinated charging

strategies and charging infrastructure planning are paramount

for ensuring the growing charging demand is satisfied in an

environmentally responsible manner.

There has been a growing number of related papers that

study EV smart charging methods as well as infrastructure

planning and investment analysis to encourage renewable

energy usage in vehicle fleets, aggregate groupings, and

parking facilities. For an overview, [2]–[4] provide in-depth

reviews of smart charging technologies as well as societal and

grid impacts. Investigations on the interactions between EV

aggregations and the grid can be found in [5], [6]. Because

smart charging has proven to benefit society, infrastructure

investments must be made to support future charging imple-

mentations [7]–[12]. Papers [9], [11], [12] study where to

locate charging stations as well as how to effectively size the
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facilities. In [7], the authors study a planning framework for

charging stations from the perspective of a social planner.

Likewise, the authors in [8] study the design criteria for Fast

Charging Stations (FCSs) based on mobility behaviors and

paper [10] studies a planning scheme to maximize FCS usage

and minimize infrastructure costs.

A critical but less studied problem is that coordinated

charging at infrastructures can be heavily stunted if usage

of the EVSEs is left uncontrolled [13]. Without EV routing

within parking facilities, EVSEs at preferred locations (e.g.,

near an elevator) can become congested while other EVSEs

are left empty. This limits the smart charging benefits as

congested EVSEs are forced to charge one EV after another

to satisfy charging demand. Similarly, without admission

control the limited charging resources at facilities could

be allocated to low priority users, (e.g., users with small

charging demands, users with long sojourn times, or users

who are willing to park elsewhere) therefore, occluding

high priority users that arrive later in the day. As such,

the focus of this paper is to jointly perform admission

control and smart charging, complementing previous work

on coordinated charging and infrastructure planning.

Prior work in this area includes [14] where the authors

investigate both First-Come-First-Serve (FCFS) and State-

of-Charge (SoC) threshold policies for discerning which

EVs are granted permission to use the EV charging in-

frastructure. Paper [15] studies an online mechanism for

the allocation of electricity to a population of EVs that

have non-increasing marginal value for energy. Their setting

allows for cancellation of reservations, which in our case

is not allowed. In [16], an online algorithm for scheduling

deferrable charging requests to balance the total value of

vehicle owners and the total cost for providing charging

service is studied, but they also allow for revocation of

previously allocated resources. Paper [17] investigates an

online auction that allows EV users to submit bids on

their charging demand to the charging station and then the

mechanism makes corresponding electricity allocation and

pricing decisions. In this approach, users are expected to

update their bids while parked at the charging station instead

of only submitting one initial bid. Additionally, [18] studied

a consensus approach for an online setting where selfish

EVs compete for a limited amount of energy. An intelligent

parking lot energy management system is studied in [19]

to manage the scheduling of EVs to maximize charging for

all EVs. Moreover, paper [20] formulates and analyzes a

market model for deadline-differentiated pricing of deferrable

electric power services; however, it does not focus on high

levels of congestion or adversarial user valuations. Paper [21]

presents a menu-based pricing scheme for allocating charge

time within a facility and can lead to an efficient alternative

approach to the EVSE reservation problem. The mechanism

we present in this manuscript focuses more on the congestion

within facilities due to limited number of EVSEs and high

demand with the objective of admitting highest priority users.

In most previous work, charging facilities are assumed to

have traditional Single-Output-Single-Cable (SOSC) EVSEs.

Recently, a more versatile charger has been gaining popular-

ity: the Single-Output-Multiple-Cable (SOMC) EVSE which

allows multiple EVs to be connected to the same charger,

but only one EV receives charge at a time [22]. SOMC

EVSEs can improve facility operations by allowing more

flexibility in charge scheduling and decreasing idle plug-in

time from traditional SOSC chargers. Furthermore, SOMC

chargers eliminate the need for users to remove their vehicles

once their charging session is complete. In any SOMC facility

charging strategy, these idle EVs need to be accounted for; if

not, the revenue of the facility will be reduced (our solution

accounts for the times when EVs are charging and when

they are idle). Utilizing SOMC EVSES, the authors of [22]

study infrastructure investments, the authors of [13] study

centralized online assignment methods such as Next-Fit and

Worst-Fit for arriving EVs at a parking facility, and the

authors of [23] study multiple online pricing heuristics for EV

to EVSE allocation to increase smart charging capabilities.

In this manuscript, we present an online pricing mech-

anism that functions as both an admission controller for

parking facility access and a resource manager that optimizes

smart charging strategies for vehicles admitted to the facility.

The work presented in this manuscript complements existing

literature in the area and the main contributions are as

follows:

1) The online mechanism readily accommodates multiple

locations, multiple limited resources, operational costs,

and renewable generation integration.

2) The online mechanism does not rely on fractional

allocations or rounding methods to produce integer

allocations in a computationally feasible manner and

it never revokes previously made reservations.

3) The online mechanism readily handles the inherent

stochasticity of the EVSE reservation problem includ-

ing unknown sojourn times, unknown energy requests,

and unknown user valuation functions.

4) The online mechanism is robust to adversarially chosen

arrival sequences and always yields social welfare

within a factor of 1
α

of the offline optimal.

Preliminary results from this paper were previously submitted

as a conference paper [24]. In this paper, we present new

theoretical results on the pricing functions by accounting for

time varying behind-the-meter solar generation and provide

more extensive numerical results showing the performance

of the mechanism.

The remainder of the paper is organized as follows. Sec-

tion II presents the system model and describes the offline

EVSE reservation problem. Section III presents the online

auction mechanism used to provide an approximate solution

to the EVSE reservation problem and discusses the online

mechanism’s properties and performance guarantees. Section

IV presents simulation results that showcase the performance

of the online mechanism for different test cases.





available solar, energy is purchased from the grid. Once the

demand exceeds the sum of available behind-the-meter solar

energy and the transformer limit, no more energy can be

procured.

With the system variables and equations defined, we can

write the offline social welfare maximization problem (as-

suming all users’ information is known beforehand):

max
x

∑

N ,On,L,Ml

vnlx
ml
no −

∑

T ,L

f l
g(y

l
g(t)) (7a)

subject to:
∑

On,L,Ml

xml
no ≤ 1, ∀ n (7b)

xml
no ∈ {0, 1}, ∀ n, o, l,m (7c)

yml
c (t) ≤ Cl, ∀ l,m, t (7d)

yml
e (t) ≤ El, ∀ l,m, t (7e)

and (3), (4), (5).

Moreover, the objective (7a) is to maximize the total social

welfare of the system. This includes the utility gained by

arrivals using the system minus the operational costs of the

facilities (we note that users who are not admitted receive

utility equal to zero). Constraints (7b)-(7e) respectively en-

sure at most one option is selected per user, the assignment

variable is an integer, the cable demand does not exceed

capacity, and the energy demand does not exceed capacity.

Equations (3)-(5) sum the resource demands.

Temporarily relaxing the integrality constraint (7c) on xml
no

allows us to find the Fenchel dual problem with dual variables

un, pml
c (t), pml

e (t), and plg(t) [25]. In the following, the

Fenchel conjugate of a function is given as:

f∗(p(t)) = sup
y(t)≥0

{

p(t)y(t)− f(y(t))
}

. (8)

Accordingly, the Fenchel dual of (7a)-(7e) can be written:

min
u,p

∑

N

un +
∑

T ,L

f l
g
∗(plg(t)) (9a)

+
∑

T ,L,Ml

(

fml
c

∗(pml
c (t)) + fml

e
∗(pml

e (t))
)

subject to:

un ≥ vnl −
∑

T

(

cml
no (t)p

ml
c (t) (9b)

+ eml
no (t)

(

pml
e (t) + plg(t)

)

)

∀ n, o, l,m

un ≥ 0, ∀ n (9c)

pml
c (t), pml

e (t), plg(t) ≥ 0, ∀ l,m, t, (9d)

where f∗(p(t)) is the Fenchel conjugate for the limited

resources’ dual variables. The Fenchel conjugates for the

capacity constraints can be written as:

fml∗
c (pml

c (t)) = pml
c (t)Cl, pml

c (t) ≥ 0 (10)

fml∗
e (pml

e (t)) = pml
e (t)El, pml

e (t) ≥ 0. (11)

Additionally, the Fenchel conjugate for the energy procure-

ment operational cost function can be written as:

f l∗
g (plg(t)) = (12)
{

sl(t)p
l
g(t), plg(t) < πl(t)

(sl(t) +Gl(t))p
l
g(t)−Gl(t)πl(t) plg(t) ≥ πl(t).

C. Admittance, Rejection, and Allocation Decisions

To determine how the EVSE reservation system decides

whether or not to admit a user as well as which option to

select if admitted, we make use of the Fenchel dual (9a)-(9d).

Specifically, we examine the KKT conditions for constraint

(9b). If a user is denied in the offline problem, un will be 0;

otherwise, if a user is admitted, un will be positive. As such,

the EVSE reservation system solves the following equation

to determine user n’s acceptance and her resource allocation:

un = max
{

0, max
On,L,Ml

{

vnl (13)

−
∑

t∈[t−n ,t
+
n ]

(

cml
no (t)p

ml
c (t) + eml

no (t)(p
ml
e (t) + plg(t))

)}

}

.

We note that un corresponds to user n’s utility from the

EVSE reservation system. If admitted, the cable reservation

and charge schedule chosen for user n correspond to the

option o, EVSE m, and facility l that maximize the second

term in equation (13). Furthermore, the dual variables pml
c (t),

pml
e (t), and plg(t) correspond to prices that users must pay

for cables, energy, and energy procurement. As such, the

total payments corresponding to user n’s different options

are calculated as:

p̂ml
no =

∑

T

(

cml
no (t)p

ml
c (t) + eml

no (t)(p
ml
e (t) + plg(t))

)

. (14)

The EVSE reservation system is allocating options that

maximize each user’s utility with respect to the current

marginal prices. Additionally, users receive non-negative

utility for participating in the EVSE reservation system;

therefore, we satisfy individual rationality constraints.

We would like to note that our proposed mechanism can

also be used without any actual payments if users do not

have the option of choosing their type (i.e., their types are

preassigned). In a company, if users are assigned valuations

(e.g., CEO has a high value and regular employee has lower

value, or someone with high charge level has lower value),

then the prices do not have to be economic incentives.

Rather they are used as dual variables that guide each users

allocation without any monetary transfer (i.e., each employee

does not actually have to pay to use the infrastructure,

but different employees have different valuations and the

“shadow prices” allow for quick allocations).

The optimization problems presented in (7a)-(7e) and (9a)-

(9d) assume complete knowledge of the arrivals beforehand.

In practice, this is not the case; rather, users arrive and

depart throughout the day. As such, the solution needs to

be an online mechanism that can immediately allocate an

arrival without knowledge of the future sequence of arrivals.

Additionally, once a user has parked her car within a charging

facility, she should not be asked to prematurely move her EV





via multiplication and addition. Then, any sorting method

can be used to find the highest utility option. The algorithm

updates the primal variables xml
no after each acceptance and

rejection. The total resource demands are updated in line 12

if user n is accepted into the system. Similarly, the marginal

resource prices are updated accordingly in line 13.

Algorithm 1 ONLINEPARKNCHARGE

Input: L,Ml, Cl, El, Gl, Sl, πl, Lc,e,g, Uc,e,g

Output: x, p

1: Define f l
g(y

l
g(t)) according to (6).

2: Define the pricing functions p(y(t)) according to (15) and (17)
for cables, energy, and generation.

3: Initialize xml
no = 0, yml(t) = 0, un = 0.

4: Initialize prices p(0) according to (15) and (17).
5: Repeat for all N users:
6: User n submits θn, generate feasible charging options.
7: Update dual variable un according to (13).
8: if un > 0 then
9: (o⋆,m⋆, l⋆) = argmaxL,Ml,On

{

vnl

−
∑

t∈[t−n ,t
+
n ]

(

cml
no (t)p

ml
c (t)

+eml
no (t)(p

ml
e (t) + plg(t))

)}

10: p̂m
⋆l⋆

no⋆ =
∑

t∈[t−n ,t
+
n ]

(

cm
⋆l⋆

no⋆ (t)pm
⋆l⋆

c (t)

+em
⋆l⋆

no⋆ (t)(pm
⋆l⋆

e (t) + pl
⋆

g (t))
)

11: xm⋆l⋆

no⋆ = 1 and xml
no = 0 for all (o, l,m) 6= (o⋆, l⋆,m⋆)

12: Update total demand y(t) for cables, energy, and generation
according to (3)-(5).

13: Update marginal prices p(t) for cables, energy, and genera-
tion according to (15) and (17).

14: else
15: xml

no = 0, ∀ L, Ml and On.
16: end if
17: if ∃o⋆,m⋆, l⋆ and xm⋆l⋆

no⋆ = 1 then
18: Accept user n and allocate cables and energy in parking

location l⋆ at EVSE m⋆.
19: Charge user n at p̂m

⋆l⋆

no⋆ .
20: else
21: Send user n to auxiliary parking.
22: end if

Next, we compare the total social welfare resulting from

the online solution to the optimal offline solution. Specifi-

cally, an online mechanism is said to be α-competitive when

the ratio of social welfare from the optimal offline solution

to the social welfare from the mechanism is bounded by

α ≥ 1. We extend a competitive ratio performance guarantee

from [30] in Proposition 1. In the following, to ensure no

user purchases too large of a fraction of the total available

resource, we assume each user’s resource demands are much

smaller than the capacity limits.

Proposition 1. The marginal pricing function (17) is α1-

competitive in social welfare when selling limited resources

with the piecewise linear operational cost in (6) where

α1 = 2max
L,T

{

ln
(2

∑

L Ml(Cl + El +
1
Ml

)(Ug − πl(t))

Lg − πl(t)

)}

with the assumption
∑

L Ml(Cl + El + 1
Ml

) ≥

⌈ eLg

2maxL,T πl(t)
⌉.

Proof. The proof is omitted for brevity. The proof can be

found in the online version of this paper [31].

Corollary 1.1. If the final demand for energy procurement

ylg(t) for a given day is less than the available solar sl(t),
the marginal pricing function (17) is α2-competitive (α2 <

α1) in social welfare when selling limited resources with the

piecewise linear operational cost in (6) where

α2 = 2max
L,T

{

ln
(2

∑

L Ml(Cl + El +
1
Ml

)(πl(t))

Lg

)}

.

In the previous proposition, the pricing function (17) relies

on complete knowledge of the solar generation sl(t). If the

system has inaccurate solar irradiation forecasts, the solar

generation could be overestimated and resources are over-

allocated resulting in infeasible solutions, which our online

solution should avoid at all costs; or solar generation is

underestimated and prices are set too high and the system

rejects users that should otherwise be accepted. We analyze

the case where we have a forecast of the solar generation each

day in terms of a confidence interval. We do not assume a

specific solar irradiance forecasting method; rather, we make

use of a confidence interval for the potential solar each day

as yearly solar irradiance recordings can provide minimum

and maximum bounds for any given day. Additionally, out

method assumes that these confidence regions are tightening

as the day progresses. In this paper, we assume that the

solar forecast for a future time t increases in accuracy as

the current time tcurrent approaches t. Specifically, the solar

forecast takes the following form:

sl(t) ∈ [sl(t, tcurrent), sl(t, tcurrent)], (18)

for t = 1, . . . , T and 1 ≤ tcurrent ≤ t. Here, sl(t) is the

actual solar generation at time t and the terms sl(t, tcurrent)
and sl(t, tcurrent) are lower and upper bounds given by the

forecast, respectively, at an earlier time tcurrent. We assume

that the forecast is improving, specifically sl(t, tcurrent)
is non-increasing and sl(t, tcurrent) is non-decreasing as

tcurrent approaches t.

To account for the dependence of the solar forecast on

the current time, the marginal pricing function (17) is now

written as plg(y
l
g(t), tcurrent). To avoid possible infeasible

allocations associated with overestimation of solar availabil-

ity, we analyze the performance of pricing function (17) that

conservatively uses the underestimate of the solar generation,

sl(t, tcurrent), in Proposition 2. Fig. 3 shows how the pricing

function (17) changes as the solar forecast improves.

Proposition 2. The marginal pricing function (17) with an

underestimate of solar generation, sl(t, tcurrent), is α3 =
2maxL,T

{

αl
g(t)

}

competitive in social welfare when selling

limited resources with the operational cost in (6) where

αl
g(t) = (19)


















max

{

sl(t,1)
sl(t,1)

ln( 2Rπl(t)
Lg

), sl(t,1)+Gl(t)
sl(t,1)+Gl(t)

ln(
2R(Ug−πl(t))

Lg−πl(t)
)

}

,

sl(t, 1) 6= 0,
sl(t,1)+Gl(t)

Gl(t)
ln(

2R(Ug−πl(t))
Lg−πl(t)

), sl(t, 1) = 0,










