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Abstract—In this paper, we study an online charge scheduling
strategy for fleets of autonomous-mobility-on-demand electric
vehicles (AMoD EVs). We consider the case where vehicles
complete trips and then enter a between-ride state throughout
the day, with their information becoming available to the fleet
operator in an online fashion. In the between-ride state, the
vehicles must be scheduled for charging and then routed to
their next passenger pick-up locations. Additionally, due to
the unknown daily sequences of ride requests, the problem
cannot be solved by any offline approach. As such, we study
an online welfare maximization heuristic based on primal-dual
methods that allocates limited fleet charging resources and
rebalances the vehicles while avoiding congestion at charging
facilities and pick-up locations. We discuss a competitive ratio
result comparing the performance of our online solution to
the clairvoyant offline solution and provide numerical results
highlighting the performance of our heuristic.

I. INTRODUCTION

Three developing technologies in the transportation sector

have the potential to revolutionize the paradigm of per-

sonal urban mobility: autonomous vehicles (self-driving or

driverless vehicles), mobility-on-demand (car-sharing or ride-

sharing), and plug-in electric vehicles [1]. These technologies

have independently garnered much research and experimen-

tation; however, literature addressing the potential synergies

is still emerging [2]. Consequently, we consider the welfare

maximization problem for a fleet dispatcher who operates a

large number of Autonomous-Mobility-on-Demand Electric

Vehicles (AMoD EVs). Because of the real-time requirements

of AMoD systems, we propose a novel online solution for

optimizing the charging and rebalancing processes of a fleet

of AMoD EVs.

Regarding AMoD fleets, much work has been done fo-

cusing on matching riders with vehicles, routing vehicles to

destinations, and rebalancing the vehicles throughout a set of

pick-up/drop-off locations [3]–[5]. There is also work in the

area of coordinated charging for fleets of AMoD EVs. Paper

[6] gives an overview of managing AMoD fleets and energy

services in future smart cities. The authors of [7] utilize a

model predictive approach to optimize charge scheduling and

routing in an AMoD system. Paper [8] presents a study of

the operations of a AMoD fleet including the implications of

vehicle and charging infrastructure decisions. Furthermore,

[9] studies the implications of pricing schemes on an AMoD

fleet. Work has also been done in congestion aware [10] and
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model predictive routing methods [11] for AMoD systems.

Additionally, [12], [13] study interactions between AMoD

systems with the power grid and public transit.

Regarding charging strategies for large populations of EVs,

papers [14], [15] provide in-depth reviews and studies of

smart charging technologies. An important but less studied

issue is that the benefits of smart charging can be severely

limited if usage of the shared Electric Vehicle Supply Equip-

ment (EVSEs) is uncontrolled [16]. Moreover, without access

control and allocation strategies within charging facilities,

EVSEs can become congested while other EVSEs are left

empty. This limits the smart charging benefits as congested

EVSEs are forced to charge one EV after another to satisfy

demand. To address this issue, papers including [17]–[19]

have studied smart charging, admission control, and resource

allocation for facilities equipped with EVSEs.

In this manuscript, we aim to complement both the recent

work in smart charging and AMoD fleet routing with the

objective of optimizing AMoD fleet charging and rebalanc-

ing processes in an online fashion. Specifically, we study

an online heuristic that schedules fleet charging, allocates

limited fleet resources, and rebalances the vehicles while

avoiding congestion at charging facilities and pick-up loca-

tions. Moreover, our methodology does not rely on statistics

of the daily sessions (unlike model predictive approaches).

The work presented in this manuscript complements existing

literature on smart charging and fleet management and the

main contributions are as follows:

• The online heuristic makes decisions for multiple charg-

ing facilities, multiple pick-up/drop-off regions, con-

strained fleet charging resources, operational costs, re-

newable generation integration, and rebalancing.

• The online heuristic does not rely on fractional alloca-

tions or rounding methods to produce integer assign-

ments in a computationally feasible manner.

• The online heuristic readily handles the inherent stochas-

ticity of the fleet scheduling problem without requiring

statistics on the future inputs of the system.

• The online heuristic accounts for worst case (i.e., ad-

versarially chosen between-ride sequences) and always

yields welfare within a factor of 1
α

of the optimal offline.

Organization: Section II describes the AMoD EV fleet charge

scheduling problem and system model. Section III presents

the online heuristic that updates the dual variables when solv-

ing the online problem and discusses the online heuristic’s

properties and performance guarantees. Section IV discusses

numerical results showing the performance of our heuristic.





of-service indicator that is set to 1 for t ∈ [t−j , t
+
js] and 0

otherwise; 6) vjs: value of schedule s to the fleet dispatcher

given by

vjs = Vd(SoC
+
js) + vdjs

. (1)

Here, SoC+
js represents the State of Charge of the EV when it

reaches its next pickup location. The function Vd(·) calculates

the fleet dispatcher’s valuation of the final energy level of the

EV in schedule s at location d (maintaining sufficient energy

levels in the EVs is critical to provide uninterrupted rides to

customers). We note that the fleet dispatcher is free to choose

Vd(·) for their desired operational objectives. The variable

vdjs
represents the profit that the fleet dispatcher receives for

picking up a customer at destination djs. The destinations

present different values to the fleet dispatcher due to exoge-

nous factors such as ride demand, location, weather, etc; 7)

c
mf
js (t): binary (0,1) cable reservation variable that is set to 1

if the EV in session j will use a charging cable from EVSE

m at facility f during time step t in schedule s; 8) e
mf
js (t):

energy delivered to EV at time t in session j at EVSE m at

facility f in schedule s. Through e
mf
js (t), the fleet dispatcher

is able to customize when the EV will receive charge, when

it will be idle, and the rate of charge (from a discrete set).

This effectively allows the fleet dispatcher to smart charge

the EVs (e.g., exploit cheaper time-of-use electricity rates or

behind-the-meter solar). The feasible schedules for between-

ride session j can be written as:

{t−j , {ojs(t)}, {c
mf
js (t)}, {emf

js (t)}, d−j , {d
+
js(t)}, t

+
js, {vjs}}.

(2)

Furthermore, the fleet dispatcher sets the variable xjs to 1

if schedule s is selected and 0 otherwise. If no schedule

is desirable, the dispatcher routes the vehicle to the central

depot where the vehicle will wait to be assigned later on.

F. Cost Model and Offline Scheduling Problem

In order to facilitate charge scheduling and vehicle routing,

the fleet dispatcher maintains a total count for each shared

resource across all assigned schedules. The variables ymf
c (t)

and ymf
e (t) correspond to the total allocated cables and

energy, respectively, at facility f at EVSE m at time t.

Additionally, each facility has to procure the energy needed

by all the EVSEs within. The total energy procurement at

facility f at time t is denoted as yfg (t). The resource demands

at charging facilities are calculated in equations (3)-(5):

ymf
c (t) =

∑

J ,Sj

c
mf
js (t)xjs, (3)

ymf
e (t) =

∑

J ,Sj

e
mf
js (t)xjs, (4)

yfg (t) =
∑

J ,Sj ,Mf

e
mf
js (t)xjs. (5)

Similarly, the fleet dispatcher counts the vehicles in the

between-ride state and the number of vehicles committed to

destinations in the variables yo(t) and yd(t), respectively:

yo(t) =
∑

J ,Sj

ojs(t)xjs, (6)

yd(t) =
∑

J ,Sj

d+js(t)xjs. (7)

Due to the number of vehicles allocated to each resource, the

fleet dispatcher incurs various costs to serve the between-

ride schedules. The energy procurement, yfg (t), determines

the generation cost of facility f :

Gf (y
f
g (t)) = (8)











0 yfg (t) ∈ [0, δf (t)]

πf (t)(y
f
g (t)− δf (t)) yfg (t) ∈

(

δf (t), δf (t) + µf (t)]

+∞ yfg (t) > δf (t) + µf (t).
Namely, electricity is free while solar is available, else the

facility purchases from the grid at a rate of πf (t) per unit.

Additionally, vehicles that are charging and traveling to

their next pickup destination are not able to serve customers.

As described in Section II-C, the fleet dispatcher incurs a

penalty proportional to the number of out-of-service vehicles:

O(yo(t)) =

{

φ(t)yo(t), yo(t) ≤ I(t)

+∞ yo(t) > I(t),
(9)

where I(t) is the maximum number of out-of-service vehicles

that the fleet dispatcher allows at time t. If the AMoD fleet

dispatcher has full knowledge of all between-ride sessions

j ∈ J over the entire time span t = 1, . . . , T , the primal

offline optimization is as follows:

max
x

∑

J ,Sj

vjsxjs −
∑

T ,F

Gf (y
f
g (t))−

∑

T

O(yo(t)) (10a)

subject to:
∑

Sj

xjs ≤ 1, ∀ j (10b)

xjs ∈ {0, 1}, ∀ j, s (10c)

ymf
c (t) ≤ Cf , ∀ f,m, t (10d)

ymf
e (t) ≤ Ef , ∀ f,m, t (10e)

yd(t) ≤ Ωd(t), ∀ d, t (10f)

and (3), (4), (5), (6), (7).

In (10a), the objective maximizes fleet dispatcher’s utility by

distributing the AMoD EVs throughout all regions d ∈ D
while minimizing the operational costs due to charging fa-

cilities and out-of-service vehicles. Specifically, the last term

of (10a) limits the duration of the between-ride sessions to

increase earnings and decrease the need to use extra vehicles.

Constraint (10b) ensures only one schedule is chosen per

between-ride session, (10c) is an integral constraint on the

decision variable, (10d) ensures the cable limit is not ex-

ceeded at each EVSE, (10e) ensures the EVSE energy limits

are not exceeded, and (10f) enforces the vehicle limit in each

region. By temporarily relaxing the integral constraint (10c),

the problem can be examined in the dual domain (however,

we note that our competitive ratio results are with respect

to integer allocations). Specifically, we make use of Fenchel

duality with dual variables uj , pmf
c (t), pmf

e (t), pfg (t), pd(t),
and po(t) [24]. In the following, the Fenchel conjugate of a

function f(y(t)) is given as:

f∗(p(t)) = sup
y(t)≥0

{

p(t)y(t)− f(y(t))
}

. (11)



As such, the offline Fenchel dual of (10a)-(10f) is as follows:

min
u,p

∑

J

uj +
∑

T ,D

R∗
d(pd(t)) (12a)

+
∑

T ,F

G∗
f (p

f
g (t)) +

∑

T

O∗(po(t))

+
∑

T ,F,Mf

(

Kmf
c

∗(pmf
c (t)) +Kmf

e
∗(pmf

e (t))
)

subject to:

uj ≥ vjs − d+js(t
+
js)pd(t

+
js)−

∑

T

(

c
mf
js (t)pmf

c (t) (12b)

+ e
mf
js (t)

[

pmf
e (t) + pfg (t)

]

+ ojs(t)po(t)
)

∀ j, s, f,m, d

uj ≥ 0, ∀ j (12c)

pmf
c (t), pmf

e (t), pfg (t), pd(t), po(t) ≥ 0, (12d)

∀ f,m, d, t,

where R∗
d(pd(t)), G∗

f (p
f
g (t)), O∗(po(t)), Kmf

c
∗(pmf

c (t)),

and Kmf
e

∗(pmf
e (t)) are the Fenchel conjugates for the re-

gional vehicle limit, the facility generation cost, the out-of-

service cost, the EVSE cable constraint, and the EVSE energy

constraint, respectively. The Fenchel conjugates for the cable

and energy constraints, respectively, are as follows:

Kmf∗
c (pmf

c (t)) = pmf
c (t)Cf , pmf

c (t) ≥ 0, (13)

Kmf∗
e (pmf

e (t)) = pmf
e (t)Ef , pmf

e (t) ≥ 0. (14)

The Fenchel conjugate for the energy procurement cost

function at each facility can be written as:

G∗
f (p

f
g (t)) = (15)

{

δf (t)p
f
g (t), pfg (t) < πf (t)

(δf (t) + µf (t))p
f
g (t)− µf (t)πf (t) pfg (t) ≥ πf (t).

The Fenchel conjugate for the regional vehicle limit is:

R∗
d(pd(t)) = pd(t)Ωd(t), pd(t) ≥ 0. (16)

Lastly, the Fenchel conjugate for the penalty for the out-of-

service vehicles is as follows:

O∗(po(t)) =

{

0, po(t) < φ(t)

(po(t)− φ(t))I(t), po(t) ≥ φ(t).
(17)

G. Scheduling Decisions

In the offline case, let us examine the Fenchel dual (12a)-

(12d) when choosing charging schedules for the between-

ride sessions. Specifically, examining the KKT conditions for

constraint (12b) reveals the optimal scheduling decisions. If

a between-ride session yields uj ≤ 0, then the AMoD EV

is not needed to serve customers at that time or electricity

prices are too high; therefore, uj is set to 0 and the vehicle

is routed to the central depot. Alternatively, when the fleet

dispatcher wants vehicles to charge and serve customers, uj

will be positive. If uj > 0, the optimal schedule for session

j can be found by finding the schedule s ∈ Sj that results in

the maximal uj :

uj =max
s∈Sj

{

vjs − pd(t
+
js)d

+
js(t

+
js)−

∑

t∈[t−j ,t
+
js]

(

ojs(t)po(t)

+ c
mf
js (t)pmf

c (t) + e
mf
js (t)

[

pmf
e (t) + pfg (t)

]

)}

. (18)

We note that uj corresponds to the utility gained from

between-ride session j for the fleet dispatcher. Furthermore,

the optimization problems in (10a)-(10f) and (12a)-(12d)

require full knowledge of the between-ride sessions before-

hand. As discussed in Section II-D, the fleet dispatcher must

utilize an online solution that can schedule vehicles without

any knowledge of the future (i.e., without knowledge of the

optimal dual variables). In the following, we discuss such

an online heuristic for the between-ride charge scheduling

problem.

III. ONLINE SCHEDULING HEURISTIC

A. Online Scheduling

We consider a heuristic that updates the dual variables in an

online fashion as between-ride sessions are revealed and then

solves equation (18) for each session. The online scheduling

heuristic updates the dual variables for each resource based

only on the amount of resource that has been allocated up

to the current time (i.e., only utilizing the resource allocation

counts). The online heuristic serves two main purposes: 1)

it ensures that each between-ride schedule yields more value

to the fleet dispatcher than the operational cost pertaining to

the schedule, and 2) if the demand for rides is low enough

or electricity prices are high enough such that no schedule

nets positive utility, vehicles are sent back to the central

depot. This eliminates further costs from vehicles circulating

without serving riders. The underlying framework for the

heuristic we use is akin to that of [25], where the authors

present an auction for allocating computing resource bundles

at data centers for the purpose of cloud computing and virtual

machine provisioning.

In our online scheduling heuristic, we make use of special-

ized functions proposed in [25] that approximate the optimal

dual variables throughout the time span. These dual variable

update functions increase slowly at first, but then increase

rapidly as the number of allocated resources approach the

capacity limits. Furthermore, when the amount of allocated

resource is at the capacity limit, the update functions output

dual variables high enough such that no schedule will yield

positive utility in (18), thus enforcing the hard capacity limits.

The updating function for the dual variable associated with

the SOMC EVSE cables at charging facilities is written as

follows:

pmf
c (ymf

c (t)) =
( Lc

2Ψ

)(2ΨUc

Lc

)

y
mf
c (t)
Cf

, (19)

where Ψ is the total number of shared resources within the

fleet system:

Ψ = 2
∑

F

Mf +D + F + 1. (20)

Furthermore, Lc and Uc correspond to the minimum and

maximum value per cable per time unit, respectively. The

online scheduling heuristic requires knowledge of Lc and Uc

beforehand to set the initial values and to ensure capacity

limits are not breached:

Lc = min
J ,Sj ,F,Mf

vjs

Ψ
∑

t∈[t−j ,t
+
js]

c
mf
js (t)

, (21a)



Uc = max
J ,Sj ,F,Mf ,T

vjs

c
mf
js (t)

, c
mf
js (t) 6= 0. (21b)

The EVSE charging power, facility generation, out-of-service

cost, and destination vehicle limit require similar lower and

upper bounds on valuations: Le, Ue, Lg , Ug , Lo, Uo, Ld, and

Ud, respectively. These are calculated as in equations (21a)

and (21b) with the corresponding variables to replace c
mf
js (t).

The dual variable update function for the dual variable as-

sociated with the SOMC EVSE energy limitations at charging

facilities is as follows:

pmf
e (ymf

e (t)) =
( Le

2Ψ

)(2ΨUe

Le

)

y
mf
e (t)
Ef

. (22)

The update function of the dual variable for the piecewise

linear generation cost at each charging facility is more

complex than (19) and (22). It has to account for the free

solar generation as well as the linear price to procure energy

from the local distribution grid. As such, we propose the

following dual variable update function:

pfg (y
f
g (t)) = (23)



























(

Lg

2Ψ

)(

2Ψπf (t)
Lg

)

y
f
g (t)

δf (t)

, yfg (t) < δf (t),

(

Lg−πf (t)
2Ψ

)(

2Ψ(Ug−πf (t))
Lg−πf (t)

)

y
f
g (t)

δf (t)+µf (t)

+ πf (t),

yfg (t) ≥ δf (t).
The heuristic dual variable update function for the vehicle

limits at region d can be written as follows:

pd(yd(t)) =
(Ld

2Ψ

)(2ΨUd

Ld

)

yd(t)

Ωd(t)

. (24)

Last, the penalty from vehicles in the out-of-service state

also requires a heuristic update function for the dual variable

po(yo(t)) which can be written as:

po(yo(t)) =
(Lo − φ(t)

2Ψ

)(2Ψ(Uo − φ(t))

Lo − φ(t)

)

yo(t)
I(t)

+ φ(t).

(25)
With the 5 aforementioned dual variable update functions

(19), (22), (23), (24), and (25), we now have surrogate

functions to use in place of the optimal dual variables in

order to solve equation (18) in an online fashion (i.e., at the

inception of each between-ride session).

B. Performance Guarantees

We can compare the total welfare generated from our

online solution to that of the clairvoyant offline solution

in the form of a competitive ratio. An online heuristic is

described as α-competitive when the ratio of welfare from

the clairvoyant offline solution to the welfare from the online

heuristic is bounded by α ≥ 1. For the between-ride charge

scheduling problem, we extend a previous competitive ratio

result from [25]. In this work, we assume that each between-

ride session utilizes only a small amount of the available

resources, thus ensuring that the allocation of one schedule

does not adversely affect too many future sessions.

Theorem 1. The online heuristic ONLINEAMODSCHEDUL-

ING in Algorithm 1 is α-competitive in welfare across all

fleet resources for the fleet dispatcher over J between-ride

sessions where α = max
{

α1, α2, α3, α4, α5

}

.

Algorithm 1 ONLINEAMODSCHEDULING

Input: I, J,F ,Mf , Cf , Ef , µf , δf , πf ,
D,Ωd, φ,Ψ, {L,U}c,e,g,d,o

Output: x, p

1: Define Gf (·) and O(·) according to (8) and (9).
2: Define and initialize the dual update functions (19), (22), (23),

(24), and (25).
3: Initialize xjs = 0, y(t) = 0, uj = 0.
4: At the inception of between-ride session j:
5: Generate feasible charging/pickup schedules Sj .
6: Update dual variable uj according to (18).
7: if uj > 0 then
8: s⋆ = argmaxSj

{

vjs − pd(t
+
js)d

+
js(t

+
js)

−
∑

t∈[t−
j
,t

+
js

]

[

ojs(t)po(t) + c
mf
js (t)pmf

c (t)

+e
mf
js (t)[pmf

e (t) + pfg (t)]
]}

9: xjs⋆ = 1 and xjs = 0 for all s 6= s⋆

10: Update demand y(t) for cables, energy, generation, destina-
tion, and out-of-service according to (3)-(7).

11: Update dual variables p(t) according to (19), (22), (23), (24),
and (25).

12: else
13: Send the AMoD EV to central depot to re-enter system later

and set xjs = 0, ∀ s ∈ Sj .
14: end if

Proof. (In online Appendix [26]), we have welfare guarantees

α1, . . . , α5 for each of the shared resources. To find the α ≥ 1
for the entire system, we take the maximum over α1, . . . , α5

to yield the bound that accounts for all resources.

IV. NUMERICAL RESULTS

In the following simulation, electricity prices and solar

generation data were sourced from actual California ISO data

in the Bay Area from 2018 [27], [28]. We simulated for a

fleet operating in San Jose, CA with D = 46 regions and

F = 8 charging facilities. Each charging facility is identical

with Mf = 10 and Cf = 4. Each of the 8 facilities has on-

site solar with a maximum generation of 256 kWh. Likewise,

each facility can purchase energy from the grid up to 256

kWh per time step. We set the penalty for out-of-service

vehicles equal to 2× the highest grid electricity price to

penalize lengthy between-ride durations. Valuations for each

of the regions were either $15, $10, or $5 (red, yellow, green,

in Fig. 2, respectively) based on daily ride demand [29].

The regions have AMoD vehicle limits set to 40 (separate

from facility capacity if there is a facility in the region).

Each vehicle entered the system with either 25%, 50%, or

75% battery level (50 kWh batteries) and were allowed make

charge requests in increments of 12.5 kWh. The EVSEs

at the charging facilities were limited to deliver either 0

kWh per time slot or 5 kWh per time slot. Furthermore,

V (100%) = $10, V (75%) = $7.5, V (50%) = $5, and

V (25%) = $2.5. We also included a linear penalty ($2 per

region traveled) to the schedule valuations to devalue long

between-ride routes.

In Figure 2 we show the most popular between-ride routes

for vehicles starting at 5 of the regions (randomly chosen).

In Figure 3, we compare the welfare generated by our online

heuristic to 3 conservative online methods and an upper




