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Abstract—We consider a Charging Network Operator (CNO)
that owns a network of Electric Vehicle (EV) public charging
stations and wishes to offer a menu of differentiated service
options for access to its stations. This involves designing optimal
pricing and routing schemes for the setting where users cannot
directly choose which station they use. Instead, they choose their
priority level and energy request amount from the differentiated
service menu, and then the CNO directly assigns them to
a station on their path. This allows higher priority users to
experience lower wait times at stations, and allows the CNO to
directly manage demand, exerting a higher level of control that
can be used to manage the effect of EV on the grid and control
station wait times. We consider the scenarios where the CNO is
a social welfare-maximizing or a profit-maximizing entity, and
in both cases, design pricing-routing policies that ensure users
reveal their true parameters to the CNO.

NOTATION

For each customer of type (i, j, £):

1% Set of value of times indexed by v;
& Set of charging demands indexed by e;
B Set of all traveling preferences indexed by /¢
Ge Set of traveling preferences
Aije Potential expected arrival rate
Rf Reward for receiving full battery charge
q Charging station ¢ =1,...,Q
r:{ Iy Routing probabilities to each charging station ¢
P Price of service option (i, 7, ¢)
Wi j.e Expected wait time of service option (4, 7, £)
dg Travel time from the main corridor
to reach station ¢
0q Average queuing time at station g
Nije Effective expected arrival rate ¢
0 Vector of locational marginal electricity prices
C, Capacity of charging station ¢
D Power transfer distribution factor
E, Charging station ¢ to load bus mapping matrix
ft Line loading limits at each time
h; ;. Temporary allocation of admitted customers
x Lagrange multiplier of capacity constraint
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I. INTRODUCTION

It is well-known that without appropriate demand man-
agement schemes in place, Electric Vehicle (EV) charging
patterns could create problems for power transmission and
distribution networks, and reduce the environmental benefits
of transportation electrification. Hence, the past decade has
seen significant research advances in the design of EV
demand management algorithms. Broadly speaking, most
available smart charging approaches focus on optimizing
residential and commercial charging profiles when the du-
ration of charge events allows for temporal load shifting.
However, our focus in this paper is on public charging station
networks, which are fundamentally different from residential
and commercial charging in two ways: 1) Temporal load
shifting after a plug-in event is not feasible, unless battery
swapping methods are employed. Most drivers would want
to leave the station as soon as possible, quite similar to a
gas station stop; 2) Access to EV supply equipment (EVSE)
is open to the public, which creates congestion effects and
results in wait times at popular stations.

Prior art: We categorize the rich literature on mobility-
aware charge management of EVs in three categories. The
first category considers using the mobility pattern of EVs
in order to optimize EV charging load in an economic
dispatch problem and manage EVs’ effects on transmission
systems (see, e.g., [1]-[5]) or distribution systems (see, e.g.,
[6], [7]). In [8], the authors study the dynamic impact of
EV movements on integrated power and traffic systems.
They propose Nodal Time-of-Use (NTOU) and Road Traffic
Congestion (RTC) prices to control the driving pattern of EV
loads. In [9], the authors study the extended Pickup Delivery
Problems (PDPs) for an EV fleet containing EV customers
with different service requests. They propose a mixed-integer
quadratic constraints optimization for solving the offline pre-
trip scheduling problem. This line of work is not focused on
public charging stations and mostly adopts traffic assignment
models. The second category of related work focuses on the
problem of routing EV users to stations (see, e.g., [10]-[15]).
Naturally, given the stochastic nature of EV arrivals and
limited number of EVSEs at each station, one can consider
the problem of managing access to public charging stations
as a queuing network, where previous works have considered
various objectives such as revenue maximization or waiting
time minimization (see, e.g. [16]-[18] and the references
therein). The main focus of these papers is the design of
optimal routing policies to directly send users to stations
given heterogeneous user needs and not on designing pricing



strategies. The advantage of using our proposed mechanism
compared to these papers is that we jointly design incentive
compatible pricing and routing policies. This means that our
work does not assume that customers will have to follow our
routing orders without considering customers incentives to
deviate from the posted assignment. The downside is that our
algorithm is more complex than one that is solely focused
on optimal routing without any incentive issues. The third
category of work, which is most intimately connected to
this paper, considers the design of pricing strategies to man-
age users’ access to charging networks, where individuals
decide which station to use based on prices (self routing)
[19]. In [20], the authors study waiting times of charging
station queues and the profit of the CNO under flat rate
charging prices as well as a threshold-based pricing policy
that penalizes higher demand. In [21], the authors propose a
Stackelberg framework to design prices for charging stations
that incentives more uniform station utilization. In [22], the
authors study the joint charging and navigation problem of
EVs. They formulate en-route charging navigation problem
using Dynamic Programming (DP). They propose a so-called
Simplified Charge Control (SCC) algorithm for deterministic
traffic networks. Moreover, for the stochastic case, they
propose an online state recursion algorithm.

Our objective is to guide EV drivers to drive into the right
station in a mobility-aware fashion, in order to 1) manage
the effect of EVs on the grid (e.g., on capacity constrained
feeders or integration of behind-the-meter solar) and 2) en-
sure fair service to customers with proper capacity allocation
and short station wait times (admission control), considering
heterogeneous user preferences and needs. This is not an easy
task to achieve merely through pricing algorithms, mainly
due to the complexity of the price response structure of
users and its dependence on the users’ mobility needs and
preferences, information which is not readily available and
is very hard to obtain. Hence, we take a different path
here, which allows us to somewhat separate the pricing and
admission control aspects of the problem. We assume that
customers cannot directly choose which charging station they
will charge at. Instead, a Charging Network Operator (CNO)
is in charge of directly assigning users to charging stations
given their respective value of time (VoT), charging demand
and travel preferences. We believe that this is reasonable
given that, even today, access to public charging stations is
only allowed for specific vehicle types or with users with
prepaid charging plans/subscriptions. A customer’s travel
preferences specify which charging stations they are willing
to visit. The CNQO’s goal is to design a menu of differentiated
service options with service qualities that are tailored to the
characteristics of heterogeneous users. Each service option is
tailored to users with given VoT, charging demand, and travel
preferences, and is associated with a routing policy (i.e., the
probability of that customer type being assigned to each of
the stations on their path), as well as an appropriate price. The
CNO wishes to optimize these differentiated routing policies

and prices in order to optimally use capacity-limited charging
stations and minimize electricity costs. Furthermore, the
CNO’s goal is to design incentive-compatible pricing-routing
policies, which ensures that individual users reveal their
true needs and preferences to the CNO. Such differentiated
pricing mechanisms have been studied before in the context
of residential demand response in recent years (see, e.g.,
[23], [24]) in order to incentivize the participation of loads
in direct load control programs, analogous to what we are
trying to achieve here for fast charging networks. In the
context of electric transportation systems, in [25], the authors
propose differentiated incentive compatible pricing schemes
to manage a single charging station in order to increase smart
charging opportunities by incentivizing users to have later
deadlines for their charging needs (i.e., offer more laxity).
Another line of work which inspires the models we adopt
in this paper is that of service differentiation techniques in
queuing networks, see, e.g., [26]-[29].

The contributions of this paper are as follows: 1) Modeling
the decision problem faced by a CNO for managing EVs
in a public charging station network through differentiated
services (Section II); 2) Proposing incentive compatible pric-
ing and routing policies for maximizing the social welfare
(Section III) or the profit of the CNO (Section IV) consider-
ing users’ mobility patterns, distribution network constraints
or behind-the-meter solar generation; 3) Proposing an algo-
rithm that finds the globally optimal solution for the CNO’s
non-convex objective in the special case of hard capacity
constraints in both social welfare and profit maximization
scenarios; 4) Numerical study of the benefits of differentiated
services for operation of fast charging networks (Section V).
A preliminary version of this work is presented in [30]. In
this work, we add heterogeneous traveling preferences for EV
users, we extend our results for a profit maximizing CNO,
and we account for the usage of time-varying behind-the-
meter solar energy.

II. SYSTEM MODEL
A. Individual User Model

We first describe the individual EV users’ parameters and
decision making model.

1) User types: We assume that users belong to one of
V x E x B types. A type (i,j,¢) customer has a value of
time (VoT) v; with ¢ € V = {1,...,V}, an energy demand
e; with j € &€ = {1,...,E}, and a traveling preference
Gp, with £ € B = {1,...,B}. The value of time is often
used to model the heterogeneity of users’ utility and choice
when optimizing their response in the presence of travel time
variations. The set of traveling preferences G, declares the
set of stations to which customers with preference ¢ have
access on their path. More specifically, for each traveling
preferences ¢, we define the vector y, with length ) (number
of charging stations) such that y,(q) = 1 if station ¢ € Gy
and 0 otherwise. For convenience, we order the customer
types such that both VoT and energy demand are in ascending



order, ie.,, v1 < vy < ... <wy,and e; < ey < ... < eg.
In this paper, we assume that users do not act strategically
in choosing the amount of energy they need, i.e., they fully
charge their EV if they enter a charging station.

We assume that type (i, j, £) customers arrive in the system
with a given 3-dimensional expected (average) arrival rate
matrix A = [A; jsliev jeseen, Which we consider as an
inelastic and known parameter. In each potential arrival, the
customers can choose to either purchase a service option
from the differentiated service options offered by CNO, or
choose to not buy any charging services. Note that we are
in a static setting, i.e., the expected rate of arrival of users
of different types is assumed as a constant variable when
designing pricing/routing policies. While the arrival rate can
vary across time, we will assume that the dynamics of the
charging process at fast charging stations is faster than the
dynamics of average traffic conditions.

2) Service options: We assume that the number of dif-
ferentiated service options that are available matches the
three-dimensional user types (i,j,¢) € V x & x B. The
CNO will sell each service option (i, j,¢) with price P; ;.
Moreover, service options are differentiated in terms of a
routing policy r; ;¢ = [r]; J4=1,..@, which is a column
vector of routing probabilities of customers that purchase
service option (4, j,¢) to each charging station ¢ € Gy.

The joint choice of these pricing-routing policies
(P j.e,r; 5,¢) would affect the proportion of users that choose
to purchase each service option, which would in turn affect
the arrival rate and average charging demand per EV at each
charging station. As a result, the average total electricity
demand and waiting times at the station are determined
through the design of these pricing-routing policies. Hence,
the design of the pricing-routing policy to be employed
directly affects the social welfare (or the CNO’s profit). To
concretely model this connection, we first model how users
choose which service type to purchase (if any).

3) User decision model: In general, users have no obli-
gation to buy the services option corresponding to their own
true type (why would I tell a CNO that I have low value
of time and be assigned a longer wait?). The total utility
of a user from purchasing charging services is the reward
they receive from charging minus the expected waiting cost
(which is the product of VoT with the expected waiting time)
and the price paid for charging services. Let us assume that
customers with value of time v; and traveling preference
¢ will get a reward R! for receiving full battery charge.
Furthermore, we assume that information about the expected
wait time W, ; , of each service option (i, 7,¢) in the menu
is available to users. Throughout this paper, we assume that
the time it takes to drive to a station from the main corridor
(denoted by dg) is included in the “wait time” corresponding
to that station (on top of the queuing time p,), i.e., we have

Q
Wi,j,@ = Z (dq + Qq) 7‘53)74

g=1

(IL1)

We will assume that the users do not observe the current
exact realization of wait times, i.e., the expected wait time
Wi ;¢ is not conditioned on the realization of the random
arrival rate of user and will be constant at the equilibrium.
Therefore, customers of type (i, j, £) will choose their service
option (m, k,t) by solving:

R — 0;Wo ket — Pkt (I1.2)

max
meV,j<k<E,tcB,

According to our assumption on the inelasticity of user’s
charging needs, customer of type (i,7,¢) can only choose
a service option (m, k, ) if e; < e,. Moreover, we assume
users of type (4,7,¢) may only choose a travel preference
t € By, where By is defined as the set of all preferences
t € B such that G; C G, (otherwise the user would have
to change their travel origin-destination pair). If the total
utility defined in (IL.2) is not positive for any available
service option (m, k, t), then that customer will not purchase
charging services. We would like to note that our scheme is
not forcing any user to accept the CNO’s routing to different
stations. It only provides lower prices for more flexibility
in regard to waiting time and station choice. If a user is
not willing to provide this flexibility, they may choose to
select the service option that only includes the specific station
they would like to visit and naturally pay a higher price for
receiving service.

The aggregate effect of each individual customer’s decision
of whether to buy service or not and their choice of service
option will lead to a Nash Equilibrium (NE) of effective
expected arrival rates in the charging station network, de-
noted by A = [\; j ¢]iev, jee en. It is shown in [31], [32]
that the Nash equilibrium always exists in the non-atomic
game where each user’s set of strategies is continuous and
measurable. Our goal in this paper is to design a pricing
routing policy such that 1) the resulting NE is optimal for
maximizing social welfare or CNO profit; 2) we belong to
the family of incentive-compatible (IC) pricing policies, i.e.,
policies where every user can achieve the best outcome for
themselves by acting according to their true preferences.

Next, we characterize conditions that should hold at equi-
librium for such policies.

B. Incentive Compatible (IC) Pricing-Routing Policies

In this paper, we would like to focus on Incentive Com-
patible (IC) pricing-routing policies. A pricing-routing policy
is IC if, for each user type (i,7j,¢), it is always optimal
to choose the service option that matches their user type,
i.e., service option (4, j,¢). Hence, no users will have any
incentive to lie about their user type to the CNO, which
can be desirable for system design purposes. Mathematically,
given the user’s decision problem in (II.2), this condition
will be satisfied for a pricing routing policy if the following



conditions are satisfied at equilibrium:

Vk,teV,t £k NVjeENLEB

Py o +veWeje < Prje+veWe o, (IL.3)

Pyje+vWeje < Prje+viWi o, (IL.4)
Vie V,Vt,ke & t>kVleB

Pigo+oiWipe < Piro+vW; o, (IL5)
VieV,Vje &Vl e BVte B

Pijo+voWiie <P +vW s, (IL.6)

These conditions ensure that no user receives a higher utility
by joining the system under any type other than their own.
For convenience, we refer to (II.3)-(I.4) as vertical IC
constraints, and (II.5) as the horizontal IC constraint. Note
that while the service options’ prices P; ;, play a direct
role in these conditions, the routing probabilities r; ; ¢ only
indirectly affect these conditions by determining the wait
times W; ; .. We will explore this connection more later.
Furthermore, Individual Rationality (IR) is satisfied if the
following constraints are satisfied at equilibrium:
YA .
Pije=Ri —viWije, if 0 < Xije < Aije
Pije < Ri = viWije, if Mije = Aije
YA .
Pijo> Ry —viW; e, if Xjje=0. I1.7)

That is, for if any user of type (i, j,¢) joins the system, their
utility from joining the system must be non-negative. Next,
we study the structure of NE under any IC policies under
two assumptions about rewards Y.

Assumption 1. For customers with different traveling pref-
erence, the rewards R! satisfy the following:

Vie V.V, meB:
if |Ge| > |G| then RY < R™,

if 1Ge| = |G| then RS = R™. (IL.8)

This means that users with a more limited set of charging
options get a higher reward from receiving service.

Assumption 2. For customers with the same traveling pref-

. R . .
erence {, the ratios o satisfy the following:

R! RS R!
H 2o <X
V1 (%) vy

(IL9)

A similar structure was assumed in [26] and other past
work for service differentiation through pricing-routing poli-
cies in a single server service facility with Poisson arrivals
and exponential service time M/M/1.

The next lemma shows that under an IC pricing-routing
policy, waiting time is a non-increasing function of VoT for
users with the same traveling preference and energy demand.

Lemma II.1. Under an incentive-compatible pricing-routing
policy, for any users of types (i + 1,7,¢) and (i,7,£) who
have purchased charging services, we must have:

Wivt,j.e < Wijie. (I1.10)
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Fig. 1. The solution structure for an IC policy.

Proof. From vertical IC constraints (I.3) and (I.4) for
customers of type (¢,7,¢) and (i + 1, j,¢), we can write:

(Vi1 — Vi) Wiga e < (Vig1 — 0i) Wi s,
and the fact that v;;; —v; > 0, would lead to the result. [

The next lemma shows that it suffices to only check IC
conditions for neighboring service options, e.g., the options
with one level higher value in VoT or energy.

Lemma IL.2. (Local IC) The IC constraints (11.3)-(I1.6) are
satisfied if and only if:

Vie{l,...,.V—-1},Vje &,V eB:
Piiije+vipiWiv1 e < Pijo+vipaWi e,
Pijo+vWiie < Pig1je+oWirije,

VieV,Vje{l,...,E—-1},WLeB:
Pije+viWije < Pijrie+viWijit1e,

VieV,Vje&E,VeBVteTy:

Pk +0iWijn < Pije+viWije, (IL11)

where Ty denotes the set of all travel preferences t € By such
that |G| = |Ge| — 1.

Proof. The proof is trivial by combining consecutive con-
straints and is omitted for brevity. O

In the following lemma, we highlight a special structure
of users’ arrival pattern A at equilibrium under an IC policy.

Lemma IL3. If customers of type (i,j,¢) have partially
entered the system (i.e., 0 < A;j¢ < A; ;) under an IC
policy, the effective arrival rates satisfy:

1) (Vertical solution structure) M\ j¢ = Apje,Vk > 1,
and M j¢ = 0,Vk < i, i.e., customers with higher
VoTs and similar energy demand and similar traveling
preference enter the system in full, and customers with
lower VoTs do not enter the system.

2) (Horizontal solution structure) A; ¢ = N k0, Yk < j,
and Xipe = 0,Yk > j, ie., customers with lower
energy demand and same VoT and same traveling
preference enter in full, and customers with higher
energy demand and same VoT and same traveling
preference do not enter at all.



The proof follows from combining, IR and IC conditions,
as well as Assumption 1. We omit it due to brevity.

Therefore, at the Nash equilibrium, due to IC constraints,
the solution structure of the effective arrival rates is similar
to Fig. 1. The red borderline shows which user types should
partially enter the system, i.e., where 0 < A; j ¢ < A; j ¢. This
means that not all users of type (i, j, ¢) will join the system.
Hence, from Lemma I1.3, we know that customers to the left
of the line will enter the system in full, and customers to the
right will not enter the system. Next, we study the design of
a socially-optimal IC pricing-routing policy.

III. SOCIALLY-OPTIMAL POLICY

Our charging stations are located at heterogeneous dis-
tances from the users’ path and have different locational
marginal prices and capacities. In the socially optimal policy,
the CNO’s goal is to choose a routing policy that maximizes
the social welfare of all EV users with access to the network,
which we can write as:

B V E

m?};o Z Z Z |:Rf/\i,j7g - Ui/\@j’gWi,j’g()\, R)
0< A ; ¢ <A;.. i=1j=1

- aTri,j,gej/\i,M} (IIL1)
st. 17diag(y,)r;je=1, YieV,j€& L€ B, (12

B V E
SN Nigeer?, <0 Vg e {1,...,Q),(IL3)

I=1 i=1 j=1
where 8 = [0,],=1.....¢ denotes the vector of locational

marginal prices of electricity at each charging station ¢,
rije = [1{;e=1,....q is a column vector of routing proba-
bilities for service option (i, j, ) to each charging station g,
R = [r; j ¢]vi j¢ is the matrix of routing probabilities for all
service types, with the [({ — 1) x E x v+ E(i — 1) + j]-
th column dedicated to type (4,7,¢), C, is the capacity of
charging station ¢, and X = [X\; j¢]vi ¢ is the vector of
effective arrival rates. The objective function is the sum of
the reward received by admitted users to the system minus
waiting and electricity costs, (III.2) ensures that the routing
probabilities sum up to one over all charging stations allowed
for traveling preference ¢, and (II.3) is the capacity con-
straint for each charging station. The waiting time function
W; j.e(XA, R) maps the effective expected arrival rate in each
station into an expected waiting time (e.g., queueing models
can be appropriate here).

Can the CNO design an IC pricing policy which enforces
the socially optimal routing solution (III.1) as an equilibrium?
Next, we propose such a price. The first order necessary
condition for for the problem (III.1) is as follows:

é)W ,h,z(>‘a R)
Ri—v;Wi jo(A\ R) — Z <)\t’h’zvtta/\m

t,h,z

—0"r; joe; — x"vi e + Vi — pige =0, (IL4)

with ;50 > 0,550 > 0, YijeXige = 0, pije(Nije —
Aije) =0, and X = [x4]q=1,... ¢ as the Lagrange multiplier
of the capacity constraint (III.3). We can observe that the
following prices will satisfy the IR constraints (IL.7):

vV E B
Pijo= ZZZ (8Wtah/\z i: . R) /\t,h,zvt>
t=1 h=12=1 05

+ (0 + X) r; je€j. (HIS)

Next, we show that the prices in (IIL.5) also satisfy IC
constraints (I1.3)-(11.6).

Proposition II1.1. With the prices defined in (111.5), the so-
lution of socially optimal problem (I11.1) defines an incentive
compatible routing and pricing policy.

Proof. The proof is inspired by that of Theorem 1 in [29]. To
prove incentive compatibility, we need to choose two arbi-
trary service options and show that with the prices given by
(IIL.5), customers from the first type are better off choosing
their own option over the other. We first consider vertical
IC constraints (I1.3)-(IL.4). Suppose, we have the globally
optimal solution of (IIL.1). Assume customers of class (i, j, ¢)
enter the system and pretend to be of type (m, j,¢). We will
increase the effective arrival rate of customers of type (i, j, £)
by an infinitesimal amount § and treat them as customers
of type (m,7,¢). Hence, because we were at the globally
optimal solution of (III.1), we can write:
0
5 2
(t,h,2)7(4,5,0)
= VN j Wi j oA+ 0 jo, R) —

{Reé— Vi1 Weh (A + O, R)

6vin7j’g()\ + 6m,j,[a R)

T T
— 00 1y, jee; — 0% I‘m7j)g€j:| <0,
§=0

Hence, we can write:

OWin (AR
Rf - Z (/\t,h,,zyt]w’()>

O
t,h,z m,j,¢

T T
= 0iWm j (A R) — 071y, jeej — 60X Ty jiej < 0.

(I11.6)
Using the price in (IIL.5), this leads to:

R < 0;Wo it N R) + Prjis

and from IR constraints (I.7), we know that if A; ;, > 0,
we need to have Rf > v;W; ; /(A\, R) + P, j ;. Therefore,

'UiWi’jyz(A, R) + -Pz',j,é < 'Uin,j,Z()‘v R) + Pmaj»£7

which proves that vertical IC constraints hold. The proof for
(I1.5)-(I1.6) is similar and we remove it due to brevity. [

Our results up to this point are in their most general
form. The expected waiting time W, ¢(X, R) associated
with each type (i, 7, ¢) can be defined using queueing theory
as a weighted sum of wait times for the different charging
stations, or can have any other general form that arises in
reality. However, we would like to note that the problem



(II.1) is not convex in general, and hence finding the
solution is not straightforward in all cases. While this is
not devastating as this problem only has to be solved for
planning, we will study the problem in the special case of
hard capacity constraints next. This allows us to exploit the
special structure highlighted in Lemma II.3 to characterize
the optimal routing policy through solving linear programs.
This is especially useful for our numerical experiments.

A. Additional modeling factors: distribution network con-
straints and behind-the-meter solar

We would like to note that as opposed to residential
and workplace charging, where temporal load shifting is
possible for grid support, fast charging stations do not
provide such opportunities (unless battery swapping methods
are employed). Our proposed method allows the CNO to
consider the following elements when optimization pricing-
routing decisions for charging stations: 1) the locational
electricity prices for each charging station (already included
in (ITII.1)); 2) behind the meter RES supply availability (such
as solar generation) at each station; 3) distribution network
information and constraints. We will elaborate on the latter
two additions in this section.

In order to additionally consider network constraints such
as line loading limits (defined below as the the total line
capacities excluding the loadings induced by conventional
demands) the CNO can consider adding the following con-
straint to the CNO’s optimization problem (III.1):

B V E

ZDE (ZZZ/\”@% ”Z) < f, Vt. (L7)

(=1 i=1 j=1

The constraint is similar to those that adopted in [33], [34] for
temporal load shifting of EV load in distribution networks.
The reader should note that if this constraint is added to
(III.1), the Lagrange multiplier of this constraint should be
added to the prices we defined in (IIL.5).

Second, we would like to note that behind-the-meter solar
energy available at stations can be easily accommodated by
our model by adding in virtual stations with electricity price
0, traveling time equal to the station which is equipped by
solar generation, and capacity equal to the currently available
solar generation. In this case, the CNO is able to observe the
available behind-the-meter solar integration in real-time, and
design pricing-routing schemes in order to efficiently use the
real-time solar generation. This addition will help us better
highlight the differences between the routing solutions of
the social-welfare maximizing and profit maximizing policies
that we will discuss in our numerical results in Section V.

B. The Special Case of Hard Capacity Constraints

In this special case, we assume that station queuing time
(i.e., o4 = 0, Vg = 1,...,Q) will be equal to zero as long
as the station is operated below capacity. Furthermore, we
assume that the travel time from a main corridor to reach each

charging station k is a known and constant parameter dy, ¢ =
1,..., Q. Therefore, the expected wait time for customers of

type (4,7, £) is

ZJZ_ZdTJl’

Without loss of generality, we assume that stations are
ordered such that dy < dy < ... < dg. We can now rewrite
the socially-optimal problem (II1.2) as:

(IIL.8)

B V E
max

Wi j6
Jmax > D > wige

0< A e <Ay 5,0 =1 =1 7=1

(IIL.9)

where

Q-1
Wije = Aije {Rf - ( Z(’Uz(d —dq) +ej(0q — 0q))r (,q])7 )
q=1

— (vidg + ejGQ):| . (111.10)

We assume that the furthest charging station () is acces-
sible to all customers with each traveling preference and
that 0 < 0;,Vi = 1,...,Q — 1. This could represent
an inconvenient outside option available to all customers.
Additionally, for each charging station £ = 1,...,Q, we
calculate o, = (vi(ds — dg) + ep(fs — 6g)). Then, we
label the charging stations with the set s = [s;];=1,...,¢ such
that 05, < 05, < ... < 05,. The next lemma characterizes
the specific order in which customers are assigned to these
stations.

Lemma IIL.2. The optimal solution of (I11.9) satisfies the
following two properties:

1) If customers of type (i,7,¢) are assigned to station
Sk, customers of type (n,j,{) with v, < v; are only
assigned to stations Sp,,m > k.

2) If customers of type (i,7,¢) are assigned to station
sk, customers of type (i,n, L) with e, > e; are only
assigned to stations S.,, m > k.

Proof. We prove both statements by contradiction. Consider
the first statement. Suppose there is another optimal solu-
tion in which for the customers of type (n,j,£) there is
a positive probability r( )e of assignment to station s,
while customers with type (i,4,¢) have been assigned to
a less desirable station s; with k& > m. However, we can

have another set of routing probabilities such that rfL ])/ =

(e = & * Migie/Ange)s 75y = € % Nigie/An e, and
(,]E)Z = () %) — &% Nijo/An i), which lead to another

feasible solutlon that increases the objective function of
(II1.9). Therefore, it is contradictory to the assumption of
optimality of the first solution. The proof of the second
statement is similar, and we remove it for brevity. O



Lemma IIL3. In the optimal solution of problem (111.9),
if charging stations s, is not used in full capacity, then
charging stations s,, with m > n will be empty.

The proof is provided in the [35].

The takeaway is that in this special case, 1) customers
with higher value of time and lower energy demand receive
higher priority in joining stations with lower value of os; 2)
stations are filled in order. This special structure allows us
to find the globally optimal solution of non-convex quadratic
problem (III.9) by admitting customers with higher priority
to charging stations with lower value of og until they are full.
Each station is then associated with a borderline similar to
that of Fig. 1. User types that fall between the border lines
of charging stations s;_; and s; will be routed to charging
station s, whereas user types that fall on the borderline of
station s; will be partially routed to station si. User types
that fall on the right side of border line of charging station
s will not be routed to station sy.

We consider the non-trivial case where all the customers
receive positive utility from joining all the charging stations
in their traveling preference (otherwise that station will be
removed from the preference set). Hence, the CNO will
assign customers to charging stations until either the stations
are full or all customers have been admitted. This means that
we can assume that the set of available charging stations is:

X ={s; vy(di —dg)+ei(6; —bg) <0}, (IL11)
and the set of potential admittable customers is:
Y={(i,5,0) : R — (vidg +€j0g) >0}.  (IL12)

Exploiting the special solution structure highlighted in Lem-
mas III.2 and II.3, Algorithm 1 determines the optimal
solution of problem (III.9). This is done by adding an
extra virtual charging station, sg41, without any capacity
constraint such that:

5Q+1 € Gp, VL € B, (IIL.13)

III.14
teB ( )

<max R{,) <vidg+1 +e1fgta-
Therefore, assigning customers to the charging station sg1
has negative effect on the social welfare. In step 2, it admits
all types of customers in full, i.e., X; j o = A; ¢, Y(3,7,¢).
After fixing the variable \; ; , = A; j¢, the resulting linear
program (LP) of problem (III.9) is referred to as the Border-
based Decision Problem (BDP), and its solution determines
the temporary allocation (routing probabilities), denoted by
h; .= [hz(-flj)’é]qzl,___7Q+1, of admitted customers. It removes
the partition of customers that join the virtual charging station
as it is shown in step 3.

Theorem IIL.4. Algorithm 1 will find the globally optimal
solution (i.e., the globally optimal effective arrival rates and
routing probabilities) for problem (111.9).

The proof is provided in the [35].
Next, we consider the case of designing IC pricing-routing
policies for a profit-maximizing CNO.

Algorithm 1: Optimal Admission and Routing

1 Add virtual station s without capacity constraint
2 Set Aijo = Aije rije=0 (Vi,j,0)
3 Solve BDP (temporary routing probabilities), and set:

rl(flj)l = h’gflj),f forg=1,...,Q

+1
Aige =Nije(1— hz(',?',z )
4 Report the optimal solution :
(0) _ (@)
[Ti,qj,é]q:17---;Q = [Ti,qj,z]q:17---,Q
Pa0 = Nije

(R, A7) = {

5,0

IV. PROFIT-MAXIMIZING POLICY

In the section, we study the design of incentive-compatible
pricing-routing policies with the goal of maximizing the
profit earned by the CNO. Consider the following problem:

max

B VvV
T
§ § {Pz‘,j,Mi,j,e =071 j0eiNi 0] -

ri >0, ‘ °
0< iy 0 <A 5,0 =1 1=1 =1
P; je
st. YieVVje& leBYmeDB,: av.1)
B V FE
SINTS Njeent®, < Coy Vo e {1,...,Q), (V)
=1 i=1 j=1
17r, 50 =1, (IV.3)
Ry
Wyje <Wy_150< ... <Wije < P (Iv4)
1
> (i1 —v)) (Wi = Wejm) <RI = R{,  (V5)

t=1
IC and IR Constraints (II.3)-(I1.6) and (I1.7).

The CNO’s profit is not affected by the average wait times
users experience. Instead, the objective function simply con-
siders the revenue from services sold minus the electricity
costs. The first and second constraints ensure that station
capacity constraints are not violated and routing probabilities
sum up to 1. The third (e.g., IV.4) and fourth (e.g., IV.5)
constraints ensure that the wait times that result from the
choice of A; ;¢ and r;;, do not violate the requirements
imposed on wait times in an IC pricing-routing policy.
Note that the connection between the prices P; j, and the
admission rate and routing probabilities A and R are only
through the IR and IC constraints. Accordingly, for a given
set of feasible values of A and R, and hence W, ; o(X, R),
one may maximize the prices independently to maximize
revenue, as long as IR and IC constraints are not violated.



Consider the following prices:

vie{l,...,E—1}LVie{l,...,V-1},We{l,...,B}:
Piy1je=Pije+vipiWije — vitiWiga je, (Iv.6)
Pijr10="Pije+viW;j0—vWi i1, Iv.7n
Piio=R{—v;Wyi,. (IV.8)

The reader can verify that these prices are as high at
horizontal IC constraints allow them to be, and hence, if they
are valid, they will be revenue-maximizing. Next, we show
that this is indeed the case, i.e., the prices are IC.

Proposition IV.1. The prices defined in (IV.6)-(IV.8) are
Incentive Compatible and Individually Rational.

The proof is provided in the [35].

Accordingly, to find the optimal pricing-routing policy,
we can simply substitute the prices from (IV.6)-(IV.8) in
(IV.1), allowing us to rewrite the problem with fewer decision
variables and constraints:

DS

max
ri e
Oé)\id"géAi’j’g =1 ]:1 i=1
0Tri1ngej)\i_,j74) —

V-1
Z < _UL+1 Z Am_/ Lll}\ R)>:|
=1 m=i+1

s.t. Constraints (IV.2) - (IV.5). (Iv.9)

The profit maximization problem (IV.9) has a similar
structure to that of (III.2), which we know it is non-convex
in general. However, we can still uniquely characterize the
globally optimal solution in the special case of hard capacity
constraints on charging stations, which is especially helpful
in our numerical experiments.

A. The Special Case of Hard Capacity Constraints

In the special case of hard capacity constraints, where
(IV.9) can be rewritten as:

[Rf)\i,j,e - </\i,j,€ [vi(dg — d@)

+ei(0g — 0Q)]r Y, + vidg + ejeQ>

<(7)Z viy1)(dg — dg) <Z A Jg) )]
m=i+1

(1V.10)

We can show that (IV.10) can be similarly solved through
BDP linear programs. We remove the details for brevity.

(R{Am‘,e — Wi j oA, R)N jo—

TABLE I: Line loading limit
Line L31 L43
limit (kWh) 7000 1400

TABLE II: Charging stations’ values

Time travel distance (hour) | Capacity (MWh)
dl =0.03 C1 = 0.6
dg = 0.06 Cy = 0.7
dg =0.09 C3 = 0.8
d4 =0.12 Cqy = 0.6
ds = 0.15 c; = 0.8
dg = 0.18 cg =1

V. NUMERICAL RESULTS
A. Grid Structure

To study the effect of distribution system constraints on the
pricing/routing solutions, we use bus 4 of the Roy Billinton
Test System (RBTS) [36]. Fig. 2 shows the single line
diagram of Bus 4 distribution networks. Line limit details are
shown in Table I. In the case study, we include 6 charging
stations with parameters shown in Table II. The first three
stations are load points LP6, LP7 and LP15 in bus 2 of
RBTS, and the rest of charging stations are in bus 4 of
RBTS as shown in Fig. 2. We assume that each load point
with a charging station also has a commercial conventional
loading with an average of 415 kW and a peak of 671.4 KW.
Furthermore, for each bus, we use the locational marginal
electricity prices data from [37].

Grid

33kV

*Charging station

LP13

9
@ LP14

LP17
| p|LP15
é §LP16 i LP25
LP35-a0—] LP9 143
P36 % é LP38 po3t-ao— LP2aYk
LP37 T LP20
LP33}-ao— LP32
LP22}-a- : @ LP19

LP18
1 r ool 131 i
— [
’/ LP26 I—I

Lip3o SP2
Fig. 2. Single line diagram of bus 4 distribution system of RBTS

SP3

B. EV Arrivals

In our case study, we assume each customer belongs to one
of 125 user types considering 5 different value of times, and 5
different energy demand and 5 different traveling preferences
as it is shown in Table III. We note that the dimension of the
type grid is not a major issue and it can be further expanded
if needed. We consider 24 time slots with varying potential
arrival rates for each day (note that at each time slot, we solve



a static problem as we have assumed that the dynamics of
charging, which takes around 20 minutes, is faster than the
dynamics of the variations of arrival rates). We use the Danish
driving pattern in [38] to model EVs arrival rates (see Fig.
3).

TABLE III: Customers’ types

Value of Time ($/h) | Energy Demand (kWh) | Traveling Preferences
v = 20 €1 = 30 b1 = {81, 82}
Vg = 30 €y = 40 bg = {53, 84}
vz = 40 €3 = 50 b3 = {85786}
’U4:50 84:60 b4:{82,83}
Vs = 60 €5 = 70 b5 = {547 85}
EV Arrival

Number of EVs

o _. 15 20
Time slot

Fig. 3. EVs arrival to the system at each time step.

We focus specifically on the special case of stations with
hard capacity constraints, where our proposed Algorithm 1
can determine the globally optimal pricing-routing policy.
Then we study both socially optimal and profit maximizing
scenarios. We highlight the results of our algorithm by
considering both charging stations equipped with behind-the-
meter solar generation and without any solar generation.

C. Experiment Results

In a socially optimal scenario, it can be seen from Fig. 4
that line loadings reach but not exceed the limit at hours 14,
23 and 24, which means the distribution network constraints
are active for station 6. Hence, the CNO can design an incen-
tive compatible pricing and routing scheme while considering
the impact of EV charging in the power distribution system
(in Fig. 4, it is shown that in the absence of distribution
system constraints, the optimal pricing/routing strategy would
violate network constraints).

Now, let us assume that charging station 6, which is the
farthest charging station from customers routes (i.e., the least
desirable assignment for them in terms of traveling distance),
can potentially be equipped with a behind-the-meter large-
scale (500kW) solar system (this will require 1500m? of roof
space to install). For the random generation profiles, we use
solar data from [39] for June 2019 (one realization shown in
Fig. 5).

The first result we highlight is the energy consumption
profile of station 6 under the social-welfare maximizing sce-
nario with available solar capacity. Essentially, by comparing
energy demand with no solar generation, i.e., Fig. 4 and with

Station 6 with line limit constraint

-
[=}
o
(=]

o

5 10 15 20 [Econv load
MEV load
Station 6 without line limit constraint limit

Average energy (kWh)

_
o
o
(=]

20

0 _. 15
Time slot

Fig. 4. Line loading of the socially optimal problem for station 6.
Average energy consumption at station 6 with solar generation
1500 ‘ ‘ ‘ ‘
1000
500

ESolar generation

Average energy (kWh
o

400 b
200 b
o ‘ HH ‘ Hm
° 1% Time siot '° 20
Fig. 5. Energy demand for charging station 6 with behind-the-meter solar

generation capacity.

solar generation, i.e., Fig. 5, we see that the availability of
free solar energy makes the farthest charging station have
higher levels of demand in order to maximize welfare, and so
customers have to drive further on average. We will highlight
this trade-off more thoroughly next.

Specifically, Table IV shows the cost of traveling from
the main corridor to reach charging stations over all types of
customers with vehicle arrivals shown in Fig. 3. We calculate
Zfil Zyzl Zle viAi ;Wi je as the cost of traveling in
both socially optimal and profit maximizing scenarios over a
day. Without solar generation, for both the cases in which the
objective is to maximize social welfare and to maximize prof-
its, customers with a higher VoT and lower energy demand
have priority in joining the closer charging stations. With
solar generation, in the socially optimal case, customers with
higher energy demand are assigned to the furthest charging
station even to get cheaper electricity, and the traveling cost
is larger. However, for the profit maximizing case, customers
with a higher value of time (and hence higher willingness to
pay) are still assigned to the closer charging stations (and are
charged more), and the overall cost of traveling is less than
when the objective is to maximize social welfare, and larger
than not having solar generation.

TABLE IV: Cost of traveling of all customers over a day
Socially optimal | Profit maximizing
9460 ($) 9320 ($)
8280 ($) 8440 ($)

With solar generation
Without solar generation

We would like to note that the concept of incentive-



compatibility as highlighted in our paper only applies to
each individual’s incentive for incorrectly reporting their
type to the CNO under the differentiated service program.
The algorithm provides no guarantee that every individual
is better off under the differentiated SO policy than they
would be under a Nash Equilibrium with no centralized
routing, hence incentivizing them to request the existence of
the differentiated service program. This is considered normal
since any type of congestion pricing mechanism (including
locational marginal pricing) to maximize welfare could lead
to cost increases for some individuals but overall improve
welfare for the society.

D. Bench-marking with status-quo

The goal of this experiment is to highlight the benefits of a
mobility-aware differentiated service mechanism as opposed
to self-routing by customers to stations, which can be consid-
ered the status-quo. We have compared the performance of
our proposed solution to the equilibrium load and wait time
pattern at the stations in the scenario where users self-route.
We assume that in the self-routing scenario, customers will
be charged at locational marginal prices for energy (which
can vary across stations). For the experiment, we assume 3
different user types, and 3 charging stations (this is clearly
not a realistic choice of the parameters, but computing all
the equilibria is computationally challenging in bigger cases).
The values we used for the numerical experiment are shown
in Table V:

TABLE V: Parameters

Energy demand (kWh) 50 | 60 | 40
Value of time ($/h) 20 | 30 | 40
Reward (%) 440 | 635 | 845

Locational marginal price ($/kWh) | 0.5 | 04 | 0.3
Time travel distance (h) 03] 06 | 09

Then, we let the customers to selfishly choose the charg-
ing station they want to charge at in order to maximize
their utility. We need to note that multiple Nash equilib-
ria may exist for this game. In our setup, there exist 4
different equilibria, and the values of social welfare are
7290.9%, 7302.18, 7312.1$, 7328.18$. Observe that they are all
less than the value of social welfare achieved using our
proposed solution based on differentiated services, which
is 7398.9%. We can argue that this is a natural observation
given the lack of appropriate congestion pricing schemes that
can deter users from the most popular choice of stations.
We note that congestion pricing to guide users towards a
socially-optimal charge footprint while considering station
capacities is not straightforward to apply in this case for
reasons explained in the Introduction.

VI. CONCLUSIONS AND FUTURE WORK

We studied the decision problem of a CNO for managing
EVs in a public charging station network through differenti-
ated services. In this case, EV users cannot directly choose

which charging station they will charge at. Instead, they
choose their energy demand and their priority level, as well as
their traveling preferences (which stations they are willing to
visit) from among a menu of service options that is offered to
them, and the CNO then assigns them to the charging stations
directly to control station wait times and electricity costs.
This is reminiscent of incentive-based direct load control
algorithms that are very popular in demand response. We
propose incentive compatible pricing and routing policies for
maximizing the social welfare or the profit of the CNO. We
proposed an algorithm that finds the globally optimal solution
for the non-convex optimizations that appear in our paper in
the special case of hard capacity constraints in both social
welfare and profit maximization scenarios and highlighted
the benefits of our algorithms towards behind-the-meter solar
integration at the station level. For future work, we can
consider the heterogeneity of customers in assigning different
values to different charging stations that have to do with more
than just the travel distance to the station and the waiting
time in the queue. For example, users might be interesting in
accessing some of available shopping options and amenities
at particular stations while their vehicle is being charged.
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