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Abstract—We consider a Charging Network Operator (CNO)
that owns a network of Electric Vehicle (EV) public charging
stations and wishes to offer a menu of differentiated service
options for access to its stations. This involves designing optimal
pricing and routing schemes for the setting where users cannot
directly choose which station they use. Instead, they choose their
priority level and energy request amount from the differentiated
service menu, and then the CNO directly assigns them to
a station on their path. This allows higher priority users to
experience lower wait times at stations, and allows the CNO to
directly manage demand, exerting a higher level of control that
can be used to manage the effect of EV on the grid and control
station wait times. We consider the scenarios where the CNO is
a social welfare-maximizing or a profit-maximizing entity, and
in both cases, design pricing-routing policies that ensure users
reveal their true parameters to the CNO.

NOTATION

For each customer of type (i, j, ℓ):

V Set of value of times indexed by vi

E Set of charging demands indexed by ej

B Set of all traveling preferences indexed by ℓ

Gℓ Set of traveling preferences

Λi,j,ℓ Potential expected arrival rate

Rℓ
i Reward for receiving full battery charge

q Charging station q = 1, . . . , Q

rqi,j,ℓ Routing probabilities to each charging station q

Pi,j,ℓ Price of service option (i, j, ℓ)

Wi,j,ℓ Expected wait time of service option (i, j, ℓ)

dq Travel time from the main corridor

to reach station q

̺q Average queuing time at station q

λi,j,ℓ Effective expected arrival rate ℓ

θ Vector of locational marginal electricity prices

Cq Capacity of charging station q

D Power transfer distribution factor

Eq Charging station q to load bus mapping matrix

ft Line loading limits at each time

hi,j,ℓ Temporary allocation of admitted customers

x Lagrange multiplier of capacity constraint
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I. INTRODUCTION

It is well-known that without appropriate demand man-

agement schemes in place, Electric Vehicle (EV) charging

patterns could create problems for power transmission and

distribution networks, and reduce the environmental benefits

of transportation electrification. Hence, the past decade has

seen significant research advances in the design of EV

demand management algorithms. Broadly speaking, most

available smart charging approaches focus on optimizing

residential and commercial charging profiles when the du-

ration of charge events allows for temporal load shifting.

However, our focus in this paper is on public charging station

networks, which are fundamentally different from residential

and commercial charging in two ways: 1) Temporal load

shifting after a plug-in event is not feasible, unless battery

swapping methods are employed. Most drivers would want

to leave the station as soon as possible, quite similar to a

gas station stop; 2) Access to EV supply equipment (EVSE)

is open to the public, which creates congestion effects and

results in wait times at popular stations.

Prior art: We categorize the rich literature on mobility-

aware charge management of EVs in three categories. The

first category considers using the mobility pattern of EVs

in order to optimize EV charging load in an economic

dispatch problem and manage EVs’ effects on transmission

systems (see, e.g., [1]–[5]) or distribution systems (see, e.g.,

[6], [7]). In [8], the authors study the dynamic impact of

EV movements on integrated power and traffic systems.

They propose Nodal Time-of-Use (NTOU) and Road Traffic

Congestion (RTC) prices to control the driving pattern of EV

loads. In [9], the authors study the extended Pickup Delivery

Problems (PDPs) for an EV fleet containing EV customers

with different service requests. They propose a mixed-integer

quadratic constraints optimization for solving the offline pre-

trip scheduling problem. This line of work is not focused on

public charging stations and mostly adopts traffic assignment

models. The second category of related work focuses on the

problem of routing EV users to stations (see, e.g., [10]–[15]).

Naturally, given the stochastic nature of EV arrivals and

limited number of EVSEs at each station, one can consider

the problem of managing access to public charging stations

as a queuing network, where previous works have considered

various objectives such as revenue maximization or waiting

time minimization (see, e.g. [16]–[18] and the references

therein). The main focus of these papers is the design of

optimal routing policies to directly send users to stations

given heterogeneous user needs and not on designing pricing



strategies. The advantage of using our proposed mechanism

compared to these papers is that we jointly design incentive

compatible pricing and routing policies. This means that our

work does not assume that customers will have to follow our

routing orders without considering customers incentives to

deviate from the posted assignment. The downside is that our

algorithm is more complex than one that is solely focused

on optimal routing without any incentive issues. The third

category of work, which is most intimately connected to

this paper, considers the design of pricing strategies to man-

age users’ access to charging networks, where individuals

decide which station to use based on prices (self routing)

[19]. In [20], the authors study waiting times of charging

station queues and the profit of the CNO under flat rate

charging prices as well as a threshold-based pricing policy

that penalizes higher demand. In [21], the authors propose a

Stackelberg framework to design prices for charging stations

that incentives more uniform station utilization. In [22], the

authors study the joint charging and navigation problem of

EVs. They formulate en-route charging navigation problem

using Dynamic Programming (DP). They propose a so-called

Simplified Charge Control (SCC) algorithm for deterministic

traffic networks. Moreover, for the stochastic case, they

propose an online state recursion algorithm.

Our objective is to guide EV drivers to drive into the right

station in a mobility-aware fashion, in order to 1) manage

the effect of EVs on the grid (e.g., on capacity constrained

feeders or integration of behind-the-meter solar) and 2) en-

sure fair service to customers with proper capacity allocation

and short station wait times (admission control), considering

heterogeneous user preferences and needs. This is not an easy

task to achieve merely through pricing algorithms, mainly

due to the complexity of the price response structure of

users and its dependence on the users’ mobility needs and

preferences, information which is not readily available and

is very hard to obtain. Hence, we take a different path

here, which allows us to somewhat separate the pricing and

admission control aspects of the problem. We assume that

customers cannot directly choose which charging station they

will charge at. Instead, a Charging Network Operator (CNO)

is in charge of directly assigning users to charging stations

given their respective value of time (VoT), charging demand

and travel preferences. We believe that this is reasonable

given that, even today, access to public charging stations is

only allowed for specific vehicle types or with users with

prepaid charging plans/subscriptions. A customer’s travel

preferences specify which charging stations they are willing

to visit. The CNO’s goal is to design a menu of differentiated

service options with service qualities that are tailored to the

characteristics of heterogeneous users. Each service option is

tailored to users with given VoT, charging demand, and travel

preferences, and is associated with a routing policy (i.e., the

probability of that customer type being assigned to each of

the stations on their path), as well as an appropriate price. The

CNO wishes to optimize these differentiated routing policies

and prices in order to optimally use capacity-limited charging

stations and minimize electricity costs. Furthermore, the

CNO’s goal is to design incentive-compatible pricing-routing

policies, which ensures that individual users reveal their

true needs and preferences to the CNO. Such differentiated

pricing mechanisms have been studied before in the context

of residential demand response in recent years (see, e.g.,

[23], [24]) in order to incentivize the participation of loads

in direct load control programs, analogous to what we are

trying to achieve here for fast charging networks. In the

context of electric transportation systems, in [25], the authors

propose differentiated incentive compatible pricing schemes

to manage a single charging station in order to increase smart

charging opportunities by incentivizing users to have later

deadlines for their charging needs (i.e., offer more laxity).

Another line of work which inspires the models we adopt

in this paper is that of service differentiation techniques in

queuing networks, see, e.g., [26]–[29].

The contributions of this paper are as follows: 1) Modeling

the decision problem faced by a CNO for managing EVs

in a public charging station network through differentiated

services (Section II); 2) Proposing incentive compatible pric-

ing and routing policies for maximizing the social welfare

(Section III) or the profit of the CNO (Section IV) consider-

ing users’ mobility patterns, distribution network constraints

or behind-the-meter solar generation; 3) Proposing an algo-

rithm that finds the globally optimal solution for the CNO’s

non-convex objective in the special case of hard capacity

constraints in both social welfare and profit maximization

scenarios; 4) Numerical study of the benefits of differentiated

services for operation of fast charging networks (Section V).

A preliminary version of this work is presented in [30]. In

this work, we add heterogeneous traveling preferences for EV

users, we extend our results for a profit maximizing CNO,

and we account for the usage of time-varying behind-the-

meter solar energy.

II. SYSTEM MODEL

A. Individual User Model

We first describe the individual EV users’ parameters and

decision making model.

1) User types: We assume that users belong to one of

V × E × B types. A type (i, j, ℓ) customer has a value of

time (VoT) vi with i ∈ V = {1, . . . , V }, an energy demand

ej with j ∈ E = {1, . . . , E}, and a traveling preference

Gℓ, with ℓ ∈ B = {1, . . . , B}. The value of time is often

used to model the heterogeneity of users’ utility and choice

when optimizing their response in the presence of travel time

variations. The set of traveling preferences Gℓ declares the

set of stations to which customers with preference ℓ have

access on their path. More specifically, for each traveling

preferences ℓ, we define the vector yℓ with length Q (number

of charging stations) such that yℓ(q) = 1 if station q ∈ Gℓ

and 0 otherwise. For convenience, we order the customer

types such that both VoT and energy demand are in ascending



order, i.e., v1 < v2 < . . . < vV , and e1 < e2 < . . . < eE .

In this paper, we assume that users do not act strategically

in choosing the amount of energy they need, i.e., they fully

charge their EV if they enter a charging station.

We assume that type (i, j, ℓ) customers arrive in the system

with a given 3-dimensional expected (average) arrival rate

matrix Λ = [Λi,j,ℓ]i∈V,j∈E,ℓ∈B, which we consider as an

inelastic and known parameter. In each potential arrival, the

customers can choose to either purchase a service option

from the differentiated service options offered by CNO, or

choose to not buy any charging services. Note that we are

in a static setting, i.e., the expected rate of arrival of users

of different types is assumed as a constant variable when

designing pricing/routing policies. While the arrival rate can

vary across time, we will assume that the dynamics of the

charging process at fast charging stations is faster than the

dynamics of average traffic conditions.

2) Service options: We assume that the number of dif-

ferentiated service options that are available matches the

three-dimensional user types (i, j, ℓ) ∈ V × E × B. The

CNO will sell each service option (i, j, ℓ) with price Pi,j,ℓ.

Moreover, service options are differentiated in terms of a

routing policy ri,j,ℓ = [rqi,j,ℓ]q=1,...,Q, which is a column

vector of routing probabilities of customers that purchase

service option (i, j, ℓ) to each charging station q ∈ Gℓ.

The joint choice of these pricing-routing policies

(Pi,j,ℓ, ri,j,ℓ) would affect the proportion of users that choose

to purchase each service option, which would in turn affect

the arrival rate and average charging demand per EV at each

charging station. As a result, the average total electricity

demand and waiting times at the station are determined

through the design of these pricing-routing policies. Hence,

the design of the pricing-routing policy to be employed

directly affects the social welfare (or the CNO’s profit). To

concretely model this connection, we first model how users

choose which service type to purchase (if any).

3) User decision model: In general, users have no obli-

gation to buy the services option corresponding to their own

true type (why would I tell a CNO that I have low value

of time and be assigned a longer wait?). The total utility

of a user from purchasing charging services is the reward

they receive from charging minus the expected waiting cost

(which is the product of VoT with the expected waiting time)

and the price paid for charging services. Let us assume that

customers with value of time vi and traveling preference

ℓ will get a reward Rℓ
i for receiving full battery charge.

Furthermore, we assume that information about the expected

wait time Wi,j,ℓ of each service option (i, j, ℓ) in the menu

is available to users. Throughout this paper, we assume that

the time it takes to drive to a station from the main corridor

(denoted by dq) is included in the “wait time” corresponding

to that station (on top of the queuing time ̺q), i.e., we have

Wi,j,ℓ =

Q
∑

q=1

(

dq + ̺q

)

r
(q)
i,j,ℓ. (II.1)

We will assume that the users do not observe the current

exact realization of wait times, i.e., the expected wait time

Wi,j,ℓ is not conditioned on the realization of the random

arrival rate of user and will be constant at the equilibrium.

Therefore, customers of type (i, j, ℓ) will choose their service

option (m, k, t) by solving:

max
m∈V,j≤k≤E,t∈Bℓ

Rℓ
i − viWm,k,t − Pm,k,t. (II.2)

According to our assumption on the inelasticity of user’s

charging needs, customer of type (i, j, ℓ) can only choose

a service option (m, k, ℓ) if ej ≤ ek. Moreover, we assume

users of type (i, j, ℓ) may only choose a travel preference

t ∈ Bℓ, where Bℓ is defined as the set of all preferences

t ∈ B such that Gt ⊂ Gℓ (otherwise the user would have

to change their travel origin-destination pair). If the total

utility defined in (II.2) is not positive for any available

service option (m, k, t), then that customer will not purchase

charging services. We would like to note that our scheme is

not forcing any user to accept the CNO’s routing to different

stations. It only provides lower prices for more flexibility

in regard to waiting time and station choice. If a user is

not willing to provide this flexibility, they may choose to

select the service option that only includes the specific station

they would like to visit and naturally pay a higher price for

receiving service.

The aggregate effect of each individual customer’s decision

of whether to buy service or not and their choice of service

option will lead to a Nash Equilibrium (NE) of effective

expected arrival rates in the charging station network, de-

noted by λ = [λi,j,ℓ]i∈V,j∈E,ℓ∈B. It is shown in [31], [32]

that the Nash equilibrium always exists in the non-atomic

game where each user’s set of strategies is continuous and

measurable. Our goal in this paper is to design a pricing

routing policy such that 1) the resulting NE is optimal for

maximizing social welfare or CNO profit; 2) we belong to

the family of incentive-compatible (IC) pricing policies, i.e.,

policies where every user can achieve the best outcome for

themselves by acting according to their true preferences.

Next, we characterize conditions that should hold at equi-

librium for such policies.

B. Incentive Compatible (IC) Pricing-Routing Policies

In this paper, we would like to focus on Incentive Com-

patible (IC) pricing-routing policies. A pricing-routing policy

is IC if, for each user type (i, j, ℓ), it is always optimal

to choose the service option that matches their user type,

i.e., service option (i, j, ℓ). Hence, no users will have any

incentive to lie about their user type to the CNO, which

can be desirable for system design purposes. Mathematically,

given the user’s decision problem in (II.2), this condition

will be satisfied for a pricing routing policy if the following





The proof follows from combining, IR and IC conditions,

as well as Assumption 1. We omit it due to brevity.

Therefore, at the Nash equilibrium, due to IC constraints,

the solution structure of the effective arrival rates is similar

to Fig. 1. The red borderline shows which user types should

partially enter the system, i.e., where 0 < λi,j,ℓ < Λi,j,ℓ. This

means that not all users of type (i, j, ℓ) will join the system.

Hence, from Lemma II.3, we know that customers to the left

of the line will enter the system in full, and customers to the

right will not enter the system. Next, we study the design of

a socially-optimal IC pricing-routing policy.

III. SOCIALLY-OPTIMAL POLICY

Our charging stations are located at heterogeneous dis-

tances from the users’ path and have different locational

marginal prices and capacities. In the socially optimal policy,

the CNO’s goal is to choose a routing policy that maximizes

the social welfare of all EV users with access to the network,

which we can write as:

max
ri,j,ℓ≥0

0≤λi,j,ℓ≤Λi,j,ℓ

B
∑

l=1

V
∑

i=1

E
∑

j=1

[

Rℓ
iλi,j,ℓ − viλi,j,ℓWi,j,ℓ(λ,R)

− θ
T ri,j,ℓejλi,j,ℓ

]

(III.1)

s.t. 1T diag(yℓ)ri,j,ℓ = 1, ∀i ∈ V, j ∈ E , ℓ ∈ B, (III.2)

B
∑

l=1

V
∑

i=1

E
∑

j=1

λi,j,ℓejr
(q)
i,j,ℓ ≤ Cq, ∀q ∈ {1, . . . , Q}, (III.3)

where θ = [θq]q=1,...,Q denotes the vector of locational

marginal prices of electricity at each charging station q,

ri,j,ℓ = [rqi,j,ℓ]q=1,...,Q is a column vector of routing proba-

bilities for service option (i, j, ℓ) to each charging station q,

R = [ri,j,ℓ]∀i,j,ℓ is the matrix of routing probabilities for all

service types, with the
[

(ℓ − 1) × E × v + E(i − 1) + j
]

-

th column dedicated to type (i, j, ℓ), Cq is the capacity of

charging station q, and λ = [λi,j,ℓ]∀i,j,ℓ is the vector of

effective arrival rates. The objective function is the sum of

the reward received by admitted users to the system minus

waiting and electricity costs, (III.2) ensures that the routing

probabilities sum up to one over all charging stations allowed

for traveling preference ℓ, and (III.3) is the capacity con-

straint for each charging station. The waiting time function

Wi,j,ℓ(λ,R) maps the effective expected arrival rate in each

station into an expected waiting time (e.g., queueing models

can be appropriate here).

Can the CNO design an IC pricing policy which enforces

the socially optimal routing solution (III.1) as an equilibrium?

Next, we propose such a price. The first order necessary

condition for for the problem (III.1) is as follows:

Rℓ
i−viWi,j,ℓ(λ,R)−

∑

t,h,z

(

λt,h,zvt
∂Wt,h,z(λ,R)

∂λi,j,ℓ

)

− θ
T ri,j,ℓej − xT ri,j,ℓej + γi,j,ℓ − µi,j,ℓ = 0, (III.4)

with γi,j,ℓ ≥ 0, µi,j,ℓ ≥ 0, γi,j,ℓλi,j,ℓ = 0, µi,j,ℓ(λi,j,ℓ −
Λi,j,ℓ) = 0, and x = [xq]q=1,...,Q as the Lagrange multiplier

of the capacity constraint (III.3). We can observe that the

following prices will satisfy the IR constraints (II.7):

Pi,j,ℓ =

V
∑

t=1

E
∑

h=1

B
∑

z=1

(

∂Wt,h,z(λ,R)

∂λi,j,ℓ

λt,h,zvt

)

+ (θ + x)T ri,j,ℓej . (III.5)

Next, we show that the prices in (III.5) also satisfy IC

constraints (II.3)-(II.6).

Proposition III.1. With the prices defined in (III.5), the so-

lution of socially optimal problem (III.1) defines an incentive

compatible routing and pricing policy.

Proof. The proof is inspired by that of Theorem 1 in [29]. To

prove incentive compatibility, we need to choose two arbi-

trary service options and show that with the prices given by

(III.5), customers from the first type are better off choosing

their own option over the other. We first consider vertical

IC constraints (II.3)-(II.4). Suppose, we have the globally

optimal solution of (III.1). Assume customers of class (i, j, ℓ)
enter the system and pretend to be of type (m, j, ℓ). We will

increase the effective arrival rate of customers of type (i, j, ℓ)
by an infinitesimal amount δ and treat them as customers

of type (m, j, ℓ). Hence, because we were at the globally

optimal solution of (III.1), we can write:

∂

∂δ

[

Rℓ
iδ −

∑

(t,h,z) 6=(i,j,ℓ)

vtλt,h,zWt,h,z(λ+ δm,j,ℓ,R)

− viλi,j,ℓWi,j,ℓ(λ+ δm,j,ℓ,R)− δviWm,j,ℓ(λ+ δm,j,ℓ,R)

− δθT rm,j,ℓej − δxT rm,j,ℓej

]

δ=0

≤ 0,

Hence, we can write:

Rℓ
i −

∑

t,h,z

(

λt,h,zvt
∂Wt,h,z(λ,R)

∂λm,j,ℓ

)

− viWm,j,ℓ(λ,R)− θ
T rm,j,ℓej − δxT rm,j,ℓej ≤ 0.

(III.6)

Using the price in (III.5), this leads to:

Rℓ
i ≤ viWm,j,ℓ(λ,R) + Pm,j,ℓ

and from IR constraints (II.7), we know that if λi,j,ℓ > 0,

we need to have Rℓ
i ≥ viWi,j,ℓ(λ,R) + Pi,j,ℓ. Therefore,

viWi,j,ℓ(λ,R) + Pi,j,ℓ ≤ viWm,j,ℓ(λ,R) + Pm,j,ℓ,

which proves that vertical IC constraints hold. The proof for

(II.5)-(II.6) is similar and we remove it due to brevity.

Our results up to this point are in their most general

form. The expected waiting time Wi,j,ℓ(λ,R) associated

with each type (i, j, ℓ) can be defined using queueing theory

as a weighted sum of wait times for the different charging

stations, or can have any other general form that arises in

reality. However, we would like to note that the problem



(III.1) is not convex in general, and hence finding the

solution is not straightforward in all cases. While this is

not devastating as this problem only has to be solved for

planning, we will study the problem in the special case of

hard capacity constraints next. This allows us to exploit the

special structure highlighted in Lemma II.3 to characterize

the optimal routing policy through solving linear programs.

This is especially useful for our numerical experiments.

A. Additional modeling factors: distribution network con-

straints and behind-the-meter solar

We would like to note that as opposed to residential

and workplace charging, where temporal load shifting is

possible for grid support, fast charging stations do not

provide such opportunities (unless battery swapping methods

are employed). Our proposed method allows the CNO to

consider the following elements when optimization pricing-

routing decisions for charging stations: 1) the locational

electricity prices for each charging station (already included

in (III.1)); 2) behind the meter RES supply availability (such

as solar generation) at each station; 3) distribution network

information and constraints. We will elaborate on the latter

two additions in this section.

In order to additionally consider network constraints such

as line loading limits (defined below as the the total line

capacities excluding the loadings induced by conventional

demands) the CNO can consider adding the following con-

straint to the CNO’s optimization problem (III.1):

Q
∑

q=1

DEq

( B
∑

ℓ=1

V
∑

i=1

E
∑

j=1

λi,j,ℓejr
(q)
i,j,ℓ

)

≤ ft, ∀t. (III.7)

The constraint is similar to those that adopted in [33], [34] for

temporal load shifting of EV load in distribution networks.

The reader should note that if this constraint is added to

(III.1), the Lagrange multiplier of this constraint should be

added to the prices we defined in (III.5).

Second, we would like to note that behind-the-meter solar

energy available at stations can be easily accommodated by

our model by adding in virtual stations with electricity price

0, traveling time equal to the station which is equipped by

solar generation, and capacity equal to the currently available

solar generation. In this case, the CNO is able to observe the

available behind-the-meter solar integration in real-time, and

design pricing-routing schemes in order to efficiently use the

real-time solar generation. This addition will help us better

highlight the differences between the routing solutions of

the social-welfare maximizing and profit maximizing policies

that we will discuss in our numerical results in Section V.

B. The Special Case of Hard Capacity Constraints

In this special case, we assume that station queuing time

(i.e., ̺q = 0, ∀q = 1, . . . , Q) will be equal to zero as long

as the station is operated below capacity. Furthermore, we

assume that the travel time from a main corridor to reach each

charging station k is a known and constant parameter dq, q =
1, . . . , Q. Therefore, the expected wait time for customers of

type (i, j, ℓ) is:

Wi,j,ℓ =

Q
∑

q=1

dqr
(q)
i,j,ℓ. (III.8)

Without loss of generality, we assume that stations are

ordered such that d1 < d2 < . . . < dQ. We can now rewrite

the socially-optimal problem (III.2) as:

max
ri,j,ℓ≥0

0≤λi,j,ℓ≤Λi,j,ℓ

B
∑

l=1

V
∑

i=1

E
∑

j=1

ωi,j,ℓ, (III.9)

where

ωi,j,ℓ = λi,j,ℓ

[

Rℓ
i −

(Q−1
∑

q=1

(vi(dq − dQ) + ej(θq − θQ))r
(q)
i,j,ℓ

)

− (vidQ + ejθQ)

]

. (III.10)

We assume that the furthest charging station Q is acces-

sible to all customers with each traveling preference and

that θQ ≤ θi, ∀i = 1, . . . , Q − 1. This could represent

an inconvenient outside option available to all customers.

Additionally, for each charging station k = 1, . . . , Q, we

calculate os =
(

v1(ds − dQ) + eE(θs − θQ)
)

. Then, we

label the charging stations with the set s = [si]i=1,...,Q such

that os1 ≤ os2 ≤ ... ≤ osQ . The next lemma characterizes

the specific order in which customers are assigned to these

stations.

Lemma III.2. The optimal solution of (III.9) satisfies the

following two properties:

1) If customers of type (i, j, ℓ) are assigned to station

sk, customers of type (n, j, ℓ) with vn < vi are only

assigned to stations sm,m ≥ k.

2) If customers of type (i, j, ℓ) are assigned to station

sk, customers of type (i, n, ℓ) with en > ej are only

assigned to stations sm,m ≥ k.

Proof. We prove both statements by contradiction. Consider

the first statement. Suppose there is another optimal solu-

tion in which for the customers of type (n, j, ℓ) there is

a positive probability r
(m)
n,j,ℓ of assignment to station sm

while customers with type (i, j, ℓ) have been assigned to

a less desirable station sk with k > m. However, we can

have another set of routing probabilities such that r
(m)′

n,j,ℓ =
(

r
(m)
n,j,ℓ − ε ∗ λi,j,ℓ/λn,j,ℓ

)

, r
(m)′

i,j,ℓ = ε ∗ λi,j,ℓ/λn,j,ℓ, and

r
(k)′

i,j,ℓ =
(

r
(k)
i,j,ℓ − ε ∗ λi,j,ℓ/λn,j,ℓ

)

, which lead to another

feasible solution that increases the objective function of

(III.9). Therefore, it is contradictory to the assumption of

optimality of the first solution. The proof of the second

statement is similar, and we remove it for brevity.



Lemma III.3. In the optimal solution of problem (III.9),

if charging stations sn is not used in full capacity, then

charging stations sm with m > n will be empty.

The proof is provided in the [35].
The takeaway is that in this special case, 1) customers

with higher value of time and lower energy demand receive

higher priority in joining stations with lower value of os; 2)

stations are filled in order. This special structure allows us

to find the globally optimal solution of non-convex quadratic

problem (III.9) by admitting customers with higher priority

to charging stations with lower value of oS until they are full.

Each station is then associated with a borderline similar to

that of Fig. 1. User types that fall between the border lines

of charging stations sk−1 and sk will be routed to charging

station sk, whereas user types that fall on the borderline of

station sk will be partially routed to station sk. User types

that fall on the right side of border line of charging station

sk will not be routed to station sk.
We consider the non-trivial case where all the customers

receive positive utility from joining all the charging stations

in their traveling preference (otherwise that station will be

removed from the preference set). Hence, the CNO will

assign customers to charging stations until either the stations

are full or all customers have been admitted. This means that

we can assume that the set of available charging stations is:

X = {si : vV (di − dQ) + e1(θi − θQ) ≤ 0}, (III.11)

and the set of potential admittable customers is:

Y = {(i, j, ℓ) : Rℓ
i −

(

vidQ + ejθQ
)

≥ 0}. (III.12)

Exploiting the special solution structure highlighted in Lem-

mas III.2 and III.3, Algorithm 1 determines the optimal

solution of problem (III.9). This is done by adding an

extra virtual charging station, sQ+1, without any capacity

constraint such that:

sQ+1 ∈ Gℓ, ∀ℓ ∈ B, (III.13)
(

max
ℓ∈B

Rℓ
V

)

< v1dQ+1 + e1θQ+1. (III.14)

Therefore, assigning customers to the charging station sQ+1

has negative effect on the social welfare. In step 2, it admits

all types of customers in full, i.e., λi,j,ℓ = Λi,j,ℓ, ∀(i, j, ℓ).
After fixing the variable λi,j,ℓ = Λi,j,ℓ, the resulting linear

program (LP) of problem (III.9) is referred to as the Border-

based Decision Problem (BDP), and its solution determines

the temporary allocation (routing probabilities), denoted by

hi,j,ℓ = [h
(q)
i,j,ℓ]q=1,...,Q+1, of admitted customers. It removes

the partition of customers that join the virtual charging station

as it is shown in step 3.

Theorem III.4. Algorithm 1 will find the globally optimal

solution (i.e., the globally optimal effective arrival rates and

routing probabilities) for problem (III.9).

The proof is provided in the [35].
Next, we consider the case of designing IC pricing-routing

policies for a profit-maximizing CNO.

Algorithm 1: Optimal Admission and Routing

1 Add virtual station sQ+1 without capacity constraint

2 Set λi,j,ℓ = Λi,j,ℓ, ri,j,ℓ = 0 (∀i, j, ℓ)
3 Solve BDP (temporary routing probabilities), and set:

r
(q)
i,j,ℓ = h

(q)
i,j,ℓ for q = 1, . . . , Q

λi,j,ℓ = Λi,j,ℓ(1− h
(Q+1)
i,j,ℓ )

4 Report the optimal solution :

(R⋆,λ⋆) =

{

[r
(q)⋆

i,j,ℓ ]q=1,...,Q = [r
(q)
i,j,ℓ]q=1,...,Q

λ⋆
i,j,ℓ = λi,j,ℓ

IV. PROFIT-MAXIMIZING POLICY

In the section, we study the design of incentive-compatible

pricing-routing policies with the goal of maximizing the

profit earned by the CNO. Consider the following problem:

max
ri,j,ℓ≥0,

0≤λi,j,ℓ≤Λi,j,ℓ

Pi,j,ℓ

B
∑

ℓ=1

V
∑

i=1

E
∑

j=1

[

Pi,j,ℓλi,j,ℓ − θ
T ri,j,ℓejλi,j,ℓ

]

.

s.t. ∀i ∈ V, ∀j ∈ E , ℓ ∈ B, ∀m ∈ Bℓ : (IV.1)

B
∑

l=1

V
∑

i=1

E
∑

j=1

λi,j,ℓejr
(q)
i,j,ℓ ≤ Cq, ∀q ∈ {1, . . . , Q}, (IV.2)

1T ri,j,ℓ = 1, (IV.3)

WV,j,ℓ ≤ WV−1,j,ℓ ≤ . . . ≤ W1,j,ℓ ≤
Rℓ

1

v1
, (IV.4)

i
∑

t=1

(vt+1 − vt)(Wt,j,ℓ −Wt,j,m) ≤ Rm
1 −Rℓ

1, (IV.5)

IC and IR Constraints (II.3)-(II.6) and (II.7).

The CNO’s profit is not affected by the average wait times

users experience. Instead, the objective function simply con-

siders the revenue from services sold minus the electricity

costs. The first and second constraints ensure that station

capacity constraints are not violated and routing probabilities

sum up to 1. The third (e.g., IV.4) and fourth (e.g., IV.5)

constraints ensure that the wait times that result from the

choice of λi,j,ℓ and ri,j,ℓ do not violate the requirements

imposed on wait times in an IC pricing-routing policy.

Note that the connection between the prices Pi,j,ℓ and the

admission rate and routing probabilities λ and R are only

through the IR and IC constraints. Accordingly, for a given

set of feasible values of λ and R, and hence Wi,j,ℓ(λ,R),
one may maximize the prices independently to maximize

revenue, as long as IR and IC constraints are not violated.





a static problem as we have assumed that the dynamics of

charging, which takes around 20 minutes, is faster than the

dynamics of the variations of arrival rates). We use the Danish

driving pattern in [38] to model EVs arrival rates (see Fig.

3).

TABLE III: Customers’ types
Value of Time ($/h) Energy Demand (kWh) Traveling Preferences

v1 = 20 e1 = 30 b1 = {s1, s2}
v2 = 30 e2 = 40 b2 = {s3, s4}
v3 = 40 e3 = 50 b3 = {s5, s6}
v4 = 50 e4 = 60 b4 = {s2, s3}
v5 = 60 e5 = 70 b5 = {s4, s5}
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Fig. 3. EVs arrival to the system at each time step.

We focus specifically on the special case of stations with

hard capacity constraints, where our proposed Algorithm 1

can determine the globally optimal pricing-routing policy.

Then we study both socially optimal and profit maximizing

scenarios. We highlight the results of our algorithm by

considering both charging stations equipped with behind-the-

meter solar generation and without any solar generation.

C. Experiment Results

In a socially optimal scenario, it can be seen from Fig. 4

that line loadings reach but not exceed the limit at hours 14,

23 and 24, which means the distribution network constraints

are active for station 6. Hence, the CNO can design an incen-

tive compatible pricing and routing scheme while considering

the impact of EV charging in the power distribution system

(in Fig. 4, it is shown that in the absence of distribution

system constraints, the optimal pricing/routing strategy would

violate network constraints).

Now, let us assume that charging station 6, which is the

farthest charging station from customers routes (i.e., the least

desirable assignment for them in terms of traveling distance),

can potentially be equipped with a behind-the-meter large-

scale (500kW) solar system (this will require 1500m2 of roof

space to install). For the random generation profiles, we use

solar data from [39] for June 2019 (one realization shown in

Fig. 5).

The first result we highlight is the energy consumption

profile of station 6 under the social-welfare maximizing sce-

nario with available solar capacity. Essentially, by comparing

energy demand with no solar generation, i.e., Fig. 4 and with
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Fig. 4. Line loading of the socially optimal problem for station 6.
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Fig. 5. Energy demand for charging station 6 with behind-the-meter solar
generation capacity.

solar generation, i.e., Fig. 5, we see that the availability of

free solar energy makes the farthest charging station have

higher levels of demand in order to maximize welfare, and so

customers have to drive further on average. We will highlight

this trade-off more thoroughly next.

Specifically, Table IV shows the cost of traveling from

the main corridor to reach charging stations over all types of

customers with vehicle arrivals shown in Fig. 3. We calculate
∑B

l=1

∑V
i=1

∑E
j=1 viλi,j,ℓWi,j,ℓ as the cost of traveling in

both socially optimal and profit maximizing scenarios over a

day. Without solar generation, for both the cases in which the

objective is to maximize social welfare and to maximize prof-

its, customers with a higher VoT and lower energy demand

have priority in joining the closer charging stations. With

solar generation, in the socially optimal case, customers with

higher energy demand are assigned to the furthest charging

station even to get cheaper electricity, and the traveling cost

is larger. However, for the profit maximizing case, customers

with a higher value of time (and hence higher willingness to

pay) are still assigned to the closer charging stations (and are

charged more), and the overall cost of traveling is less than

when the objective is to maximize social welfare, and larger

than not having solar generation.

TABLE IV: Cost of traveling of all customers over a day
Socially optimal Profit maximizing

With solar generation 9460 ($) 9320 ($)

Without solar generation 8280 ($) 8440 ($)

We would like to note that the concept of incentive-



compatibility as highlighted in our paper only applies to

each individual’s incentive for incorrectly reporting their

type to the CNO under the differentiated service program.

The algorithm provides no guarantee that every individual

is better off under the differentiated SO policy than they

would be under a Nash Equilibrium with no centralized

routing, hence incentivizing them to request the existence of

the differentiated service program. This is considered normal

since any type of congestion pricing mechanism (including

locational marginal pricing) to maximize welfare could lead

to cost increases for some individuals but overall improve

welfare for the society.

D. Bench-marking with status-quo

The goal of this experiment is to highlight the benefits of a

mobility-aware differentiated service mechanism as opposed

to self-routing by customers to stations, which can be consid-

ered the status-quo. We have compared the performance of

our proposed solution to the equilibrium load and wait time

pattern at the stations in the scenario where users self-route.

We assume that in the self-routing scenario, customers will

be charged at locational marginal prices for energy (which

can vary across stations). For the experiment, we assume 3

different user types, and 3 charging stations (this is clearly

not a realistic choice of the parameters, but computing all

the equilibria is computationally challenging in bigger cases).

The values we used for the numerical experiment are shown

in Table V:

TABLE V: Parameters
Energy demand (kWh) 50 60 40

Value of time ($/h) 20 30 40

Reward ($) 440 635 845

Locational marginal price ($/kWh) 0.5 0.4 0.3

Time travel distance (h) 0.3 0.6 0.9

Then, we let the customers to selfishly choose the charg-

ing station they want to charge at in order to maximize

their utility. We need to note that multiple Nash equilib-

ria may exist for this game. In our setup, there exist 4
different equilibria, and the values of social welfare are

7290.9$, 7302.1$, 7312.1$, 7328.1$. Observe that they are all

less than the value of social welfare achieved using our

proposed solution based on differentiated services, which

is 7398.9$. We can argue that this is a natural observation

given the lack of appropriate congestion pricing schemes that

can deter users from the most popular choice of stations.

We note that congestion pricing to guide users towards a

socially-optimal charge footprint while considering station

capacities is not straightforward to apply in this case for

reasons explained in the Introduction.

VI. CONCLUSIONS AND FUTURE WORK

We studied the decision problem of a CNO for managing

EVs in a public charging station network through differenti-

ated services. In this case, EV users cannot directly choose

which charging station they will charge at. Instead, they

choose their energy demand and their priority level, as well as

their traveling preferences (which stations they are willing to

visit) from among a menu of service options that is offered to

them, and the CNO then assigns them to the charging stations

directly to control station wait times and electricity costs.

This is reminiscent of incentive-based direct load control

algorithms that are very popular in demand response. We

propose incentive compatible pricing and routing policies for

maximizing the social welfare or the profit of the CNO. We

proposed an algorithm that finds the globally optimal solution

for the non-convex optimizations that appear in our paper in

the special case of hard capacity constraints in both social

welfare and profit maximization scenarios and highlighted

the benefits of our algorithms towards behind-the-meter solar

integration at the station level. For future work, we can

consider the heterogeneity of customers in assigning different

values to different charging stations that have to do with more

than just the travel distance to the station and the waiting

time in the queue. For example, users might be interesting in

accessing some of available shopping options and amenities

at particular stations while their vehicle is being charged.
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