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A Spatial Coherence Beamformer Design for Power
Doppler Imaging
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Abstract—Acoustic clutter is a primary source of image degra-
dation in ultrasound imaging. In the context of flow imaging,
tissue and acoustic clutter signals are often much larger in
magnitude than the blood signal, which limits the sensitivity of
conventional power Doppler in SNR-limited environments. This
has motivated the development of coherence-based beamformers,
including Coherent Flow Power Doppler (CFPD), which have
demonstrated efficacy in mitigating sources of diffuse clutter.
However, CFPD uses a measure of normalized coherence, which
incurs a non-linear relationship between image intensity and the
magnitude of the blood echo. As a result, CFPD is not a robust
approach to study gradation of blood signal energy, which depicts
the fractional moving blood volume. We propose the applica-
tion of mutual intensity, rather than normalized coherence, to
retain the clutter suppression capability inherent in coherence
beamforming, while preserving the underlying signal energy.
Feasibility of this approach was shown via Field II simulations,
phantoms, and in vivo human liver data. In addition, we derive
an adaptive statistical threshold for the suppression of residual
noise signals. Overall, this beamformer design shows promise
as an alternative technique to depict flow volume gradation in
cluttered imaging environments.

Index Terms—Doppler imaging, blood flow, spatial coherence,
power Doppler, beamforming.

I. INTRODUCTION

ASSESSMENT of blood flow using ultrasound has sub-
stantial clinical utility for diagnosis and surveillance.

However, achieving adequate visualization in all patients re-
mains a challenge for power Doppler imaging. Extraneous
signals imposed by thermal noise, off-axis scattering, and re-
verberation can degrade image quality and obscure perception
of blood flow [1]–[3].

A number of signal processing techniques may be used with
conventional beamforming to improve sensitivity toward blood
flow [4], [5]. Ultrafast acquisition sequences employ synthetic
aperture focusing to amend the reduction in image quality
inherent to unfocused transmissions [6], [7]. To improve
rejection of the tissue signal, advanced filtering techniques,
such as eigen-based filtering, have been proposed [8]–[10].
Further, filtering efficiency can be improved through down-
mixing and motion compensation techniques [10], [11].
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Despite these advancements, however, conventional delay-
and-sum beamforming remains susceptible to acoustic clutter
and thermal noise. This has motivated the development of
coherence-based beamformers, which use aperture domain
coherence as the basis of image formation rather than the
magnitude of echo reflectivity [12]–[14].

Aperture domain, or ‘spatial’ coherence quantifies the sim-
ilarity between echo signals received by a pair of elements.
Mediums with diffuse structure, such as tissue or blood,
exhibit a characteristic coherence behavior described by the
van Cittert-Zernike (VCZ) theorem [15]. As described by
Mallart and Fink, the spatial coherence function of these sig-
nals is proportional to the autocorrelation of the transmitter’s
aperture function [16], [17]. In comparison, thermal noise
and several forms of acoustic clutter are regarded as spatially
incoherent signals [18], [19]. As a result, the coherence of
aperture domain data can be leveraged to achieve suppression
of acoustic clutter and thermal noise.

Li et al. established a coherence-based beamforming tech-
nique for blood flow visualization called Coherent Flow Power
Doppler (CFPD), which employs a measure of correlation
between received echo signals. In a number of studies, CFPD
has demonstrated greater sensitivity over conventional power
Doppler (PD) in cluttered environments [14], [20], [21]. How-
ever, a drawback of CFPD is that the image intensity portrays
the normalized echo coherence, which is influenced by the
signal-to-noise ratio [19], [22]. This implies that CFPD image
intensity does not scale linearly with respect to blood signal
power, but rather as a function of the relative noise power.

The non-linear relationship between CFPD image intensity
and echo power compromises quantification of blood flow vol-
ume. In comparison, PD may be used to assess the fractional
moving blood volume, as PD image intensity is proportional
to the number of scatterers incurring a Doppler shift [23]–[25].
Assessment of the fractional moving blood volume is clinically
valuable, as changes in local blood volume are correlated with
malignancy and therapeutic response [26]–[28].

Herein, we propose a modification to the CFPD beam-
forming technique, termed power preserving Coherent Flow
Power Doppler (ppCFPD). We demonstrate that utilizing a
non-normalized coherence metric preserves sensitivity toward
the underlying blood echo power, while maintaining superior
rejection of acoustic clutter and thermal noise in comparison
to conventional power Doppler. Furthermore, we derive a
theoretical model for thresholding residual incoherent noise
incurred by small, partial correlations. The efficacy of these
techniques is demonstrated using simulation, phantom, and in
vivo data.
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II. IMAGE FORMATION TECHNIQUES

A. Power Doppler

Power Doppler is a conventional technique for blood flow
imaging, depicting the integrated echo amplitude. In compar-
ison to color Doppler, power Doppler offers several clinical
advantages, namely being unaffected by aliasing and being
relatively independent of insonation angle [25]. Unlike other
Doppler methods, power Doppler does not measure blood flow
velocity, but instead depicts the relative amount of flow within
a pixel, termed the ‘fractional moving blood volume’ [24].

To isolate the blood signal, a clutter filter is applied to an
ensemble of delay-and-sum beamformed RF-data to attenuate
slowly moving tissue clutter. The power may then be estimated
from the filtered complex data, r(a), over a temporal ensemble
of length A.

PD =
A∑
a=1

|r(a)|2 (1)

Additionally, averaging over an axial kernel may be introduced
to improve the estimation, as described by Loupas et al. [29].

B. Coherent Flow Power Doppler

Coherent Flow Power Doppler portrays the normalized
spatial coherence of the backscattered echo. CFPD adapts the
Short Lag Spatial Coherence (SLSC) tissue imaging technique
by initially applying a filter to the delayed channel data to
suppress the tissue signal. Subsequent calculation of the SLSC
metric and summation over a temporal ensemble suppresses
spatially incoherent clutter [14].

The SLSC metric is formulated using the normalized spatial
coherence measured between two channel signals separated by
a given distance, or ‘lag’. The normalized coherence, R(m),
for a transmit aperture of size N may be written as

R(m) =
1

N −m

N−m∑
i=1

∑n2

n=n1
yi(n)yi+m(n)√∑n2

n=n1
y2i (n)

∑n2

n=n1
y2i+m(n)

,

(2)
which is calculated for all pairs of time-delayed, filtered RF
channel signals, yi and yi+m, separated by a given lag, m. To
reduce random errors, estimation over a kernel, n, spanning
approximately one wavelength is employed. Conventionally,
m and N are described in terms of number of elements.

Measurement of the average normalized covariance is re-
peated for a set of M successive lags, which is used to obtain
the SLSC metric,

V (a) =
1

M

M∑
m=1

R(m). (3)

The final CFPD image is reconstructed through computation of
the SLSC metric for each pixel, which is squared and summed
over a slow-time ensemble of length A, as

CFPD =
A∑
a=1

V (a)2. (4)

C. Power Preserving Coherent Flow Power Doppler

The proposed approach involves a modest, but impactful,
modification to the CFPD beamforming scheme [30]. These
adaptations are enacted to preserve the linear relation between
pixel intensity and the blood echo power, while maintaining
improved suppression of incoherent signals over PD. Omission
of the denominator in the calculation for normalized coherence
yields the spatial coherence, which may be written

R̆(m) =
1

N −m

N−m∑
i=1

n2∑
n=n1

yi(n)yi+m(n). (5)

In this paper, the term spatial coherence will be used to refer to
Equation (5), and the term normalized spatial coherence will
be used in reference to Equation (2). Coherence, also called
mutual intensity, can be difficult to interpret in comparison
to normalized coherence, as the resultant value is scaled by
the relative signal intensities. However, in the context of a
backscattered blood or tissue echo, spatial coherence may
be theoretically described through an assessment of the van
Cittert-Zernike theorem, as described in Section III-A.

Observing the spatial coherence for a given lag, m, allows
the underlying signal energy to be conveyed in the intensity of
the beamformed image. Averaging the spatial coherence for a
defined set of M lags produces

V̆ (a) =
1

M

M∑
m=1

R̆(m). (6)

Subsequently, the ppCFPD image is reconstructed by summing
over a temporal ensemble, shown in Equation (7). Noting
the omission of the squaring term used in Equation (4), the
computation of the spatial coherence shown in Equation (7)
effectively yields units of amplitude squared. As a result,
the amplitude of the ppCFPD image exhibits a power scale
equivalent to power Doppler.

ppCFPD =
A∑
a=1

V̆ (a) (7)

III. THEORY

A. Coherence of Signals in the Aperture Domain

The van Cittert-Zernike theorem describes the development
of wavefront coherence as a wave propagates away from an
incoherent, quasi-monochromatic source [15]. In the context of
ultrasound, insonification of an incoherent scattering medium
gives rise to a backscattered echo, which is functionally
equivalent to the medium acting as an incoherent source. As
such, the coherence of the time-delayed echo observed at two
channel positions across the aperture takes a predictable form
[16]. For a pair of delayed channel signals, y1(f) and y2(f)
at the focal depth, z, the spatial coherence may be written as

R̆(x1, x2, z, f) = y1(f)y2(f) =
χ(f)

z4
Ro(x1 − x2), (8)

where χ(f) is the scattering function and Ro is the au-
tocorrelation of the transmit aperture function evaluated as
a function of the spatial separation between the channels,
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x1 − x2. As described in prior literature, the autocorrelation
of a rectangular aperture may be modeled as a triangular
function, Λ[mN ] [16]. Assuming a rectangular aperture, we may
equivalently describe spatial coherence using the relation

R̆(m) =
χ(f)

z4
Λ[
m

N
]. (9)

The scattering function, χ(f), describes the collective acoustic
scattering produced by the scatterers contained in the illu-
minated media. In a general sense, the scattering intensity
and integrated Doppler spectra are linearly proportional to
the number of scatterers incurring a Doppler shift [17], [23];
thus, spatial coherence is proportional to the fractional moving
blood volume. Comparatively, measures of normalized spatial
coherence portray only the transmitter aperture function and
omit dependence on the scattering amplitude and depth [16].

B. The Effect of Noise on Coherence Measures

Acoustic clutter and thermal noise limit the performance
of Doppler imaging techniques, particularly for slow flow as-
sessment [2] and deep imaging targets [22]. These incoherent
signals, which we refer to as ‘noise’ for brevity, produce a
spatial coherence function that may be modeled by a delta
function at lag zero [18], [19]. Coherence-based beamformers
leverage this characteristic, as tissue and blood signals exhibit
higher measures of normalized coherence in the short lag
region (M < 30% N ) [12], [14]. However, normalization
imparts a dependency on the signal-to-noise (SNR) level,
which is a practical drawback for beamforming applications.

This effect can be demonstrated by considering a scenario in
which a received echo has been corrupted by noise. To begin,
we note that the normalized spatial coherence described in
Equation (2) is equivalent to the first moment, or mean, of the
correlation, ρy1y2 , measured between two channel signals.

If we consider the noise signal, n, to be uncorrelated from
the signal of interest, s, the correlation measured between the
two channel signals may be written

ρy1y2 =
E[(s1 + n1)(s2 + n2)]√
E[s21 + n21] E[s22 + n22]

, (10)

where the symbol E[·] denotes the expectation operator.
Assuming a rectangular receive aperture and that the re-

spective signal powers associated with any two elements on the
array are approximately equal, we can describe the correlation
coefficient as

ρy1y2 =
Ps(1− m

N )

Ps + Pn
=

1− m
N

1 + Pn

Ps

, (11)

where Ps represents the underlying blood signal power and
Pn denotes noise power [19], [31]. Thus, the normalized
coherence observed between two signals retains a dependence
on the signal SNR.

In comparison, we may perform an analogous derivation
for the spatial coherence posed in Equation (5). We note
that this spatial coherence expression is equivalent to the first
moment of the covariance, σy1y2 . Using the same assumptions
as before, we obtain

σy1y2 = E[(s1 +n1)(s2 +n2)] = Ps(1−
m

N
) +Pnδ(0). (12)

As described in prior literature, the spatial coherence function
of incoherent noise signals can be approximated as a delta
function at lag zero, which is excluded from the summation
in Equation (6) [18]. Therefore, we may theoretically conclude
that the ppCFPD pixel intensity scales linearly with the power
of the received blood echo, and is independent of additive
noise for non-zero lags, as performed in Equation (6).

IV. ROBUST NOISE THRESHOLDING

Despite a favorable theoretical assessment, a small amount
of uncorrelated noise will persist at non-zero lags due to
random partial correlations [19]. The residual noise signal is
often low amplitude; however, remaining noise may misguide
assessment of flow, particularly in SNR-limited environments.

Further, a consequence of employing a measure of coher-
ence in the ppCFPD beamforming scheme is the potential for
negative pixel values to be produced. Negative pixel values
confound image quality metrics and need to be addressed
for standard log compression. Prior literature in related areas
have associated negative pixel values with partial correlations
incurred by clutter, and thus have enforced thresholding to set
all negative pixel values to zero [32], [33].

We propose a statistically-driven threshold to adaptively
suppress residual additive noise and simultaneously justify
eliminating the negative signals generated by incoherent
backscattered signals. The additive noise is modeled as a statis-
tically independent process from the blood signal. Therefore,
the threshold may be defined through an exercise where we
presume that the channel data contain only noise.

A. An Expression of ppCFPD Pixel Intensity for Noise Signals

We begin by writing an equivalent statement of the ppCFPD
pixel intensity, shown in Equation (7), for the particular
scenario in which the channel data contain only noise. We
model this noise signal as an independent, normally distributed
random variable with constant variance, distributed identically
across all elements. The ppCFPD coherence measure described
in Equation (5) may be written in terms of the normalized
correlation coefficient, ρyiyi+m

, through the relationship

R̆(m) =
1

N −m

N−m∑
i−1

ρyiyi+m

√√√√ n2∑
n=n1

y2i (n)

n2∑
n=n1

y2i+m(n).

(13)
Due to the assumption of constant variance, this equation
may be simplified by noting that the noise variance can be
equivalently written as

σ2
noise =

√√√√ 1

H

n2∑
n=n1

y2i (n)
1

H

n2∑
n=n1

y2i+m(n), (14)

where H indicates the axial kernel size. Thus we may further
simplify Equation (13) to

R̆(m) =
Hσ2

noise

N −m

N−m∑
i−1

ρyiyi+m
. (15)
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Modeling ρyiyi+m
as an ergodic random variable, we may

extend this derivation to Equations (6) and (7), to obtain an
expression of ppCFPD pixel intensity as

ppCFPD = AHσ2
noise

1

M

M∑
m=1

1

N −m

N−m∑
i=1

ρyiyi+m
. (16)

B. Modeling Gaussian Statistics of ppCFPD Pixel Intensity
for Noise Signals

Next, we consider the statistical character of the correlation
measured between channel signals, ρyiyi+m , and subsequently,
the statistical character of ppCFPD pixel intensity. For a
Gaussian noise signal, the expected value of the correlation
coefficient is zero. In application, estimation of the sample
correlation using finite signal lengths will incur non-zero
correlation measures, i.e. non-zero variance.

The exact distribution of the sample correlation measured
between two normal variables is rather arduous, so we employ
an approximation as follows [34]. For small correlations, we
note the Fisher transform is approximately an identity function,
such that the value of ρ(m) is approximately equal to its
related Z-score, z(m). The correlation coefficient may be
transformed to the Z-space via the Fisher Transform,

z(m) =
1

2
ln

1 + ρ(m)

1− ρ(m)
= arctanh(ρ(m)). (17)

For the derivation of ppCFPD pixel intensity statistics, we
will approximate the distribution of the correlation coefficient
using its correspondent Z-score statistical distribution, which
is approximately normally distributed, (z ∼ N(0, σz)), with
calculable standard deviation

σz =
1√

H − 3
. (18)

Modeling ρ(m) as a normally distributed random variable al-
lows us to generalize the statistical character of ppCFPD pixel
intensity via properties of location-scale family probability
distributions, which we briefly discuss in Appendix A. Thus,
we find that the pixel intensity for noise signals is normally
distributed with a mean and variance described as

µpixel = AHσ2
noise µz ≈ 0

σ2
pixel = A(

1

M
Hσ2

noise σz)
2
M∑
m=1

1

N −m
.

(19)

Additionally, it may be noted that the summation term may
be expressed via generalized harmonic numbers, as

M∑
m=1

1

N −m
= HN-1 −HN-M-1, (20)

such that a closed form approximation can be obtained using
the truncated series form

Ha −Hb = ln(
a
b

) +
a−1 − b−1

2
− a−2 − b−2

12
. (21)

This derivation is further described in Appendix B.

C. Approximation of Noise Variance

In practice, it is necessary to estimate the noise variance,
σ2
noise, as depicted in Equation (14). Reasserting our assump-

tion that the noise signal is zero-mean, the noise variance is
equal to the noise power

(
E[(x− µ)2] = E[x2]

)
. As described

in prior literature [19], [35], we can obtain an expression for
noise power in terms of the SNR, as

σ2
noise ≡ Pn =

Ps+n
SNR + 1

, (22)

where the SNR can be estimated via a lag-one autocorrelation
technique described by Long et al. [36].

D. Definition of a Threshold

Once we obtain an estimate of the ppCFPD pixel variance
for the noise signal as shown in Equation (19), we can derive
a threshold to suppress residual noise. Here, we will define the
threshold as the upper bound of the 95% statistical interval of
noise signal intensity. For a given pixel, x, this may be written

f(x) =

{
x, if x ≥ 1.96 σpixel,
0, otherwise.

(23)

We note that the method of setting negative pixel values to
zero used by other investigators is equivalent to defining the
threshold as the upper bound of the 50% statistical interval of
pixel intensity [32], [33], [37].

Comparatively, PD and CFPD pixel intensity is biased by
noise. A supplementary derivation of pixel intensity for PD
is presented in Appendix C. For channel data containing only
noise, we observe PD pixel intensity is approximately Gamma
distributed with mean and variance described as

µpixel = ANσ2
noise

σ2
pixel = 2A(Nσ2

noise)2.
(24)

V. METHODS

A. Simulated Data Acquisition

Simulations were performed using Field II to study the per-
formance of ppCFPD under varied noise conditions [38], [39].
The simulated phantom included a single blood vessel with a
5 mm diameter, embedded in a 9 cm by 5 cm homogeneous
tissue block at a 45◦ angle relative to the transducer. The blood
signal was simulated using scatterers moving in a laminar
flow state. The velocity distribution was parabolic [40], with
a maximum velocity of 5 cm/sec. This models the range of
velocities observed in capillary (<1 mm/sec), arteriole (<1
cm/sec), and small arteries [2], [40].

Channel data for the blood scatterers and tissue scatterers
were simulated separately, then combined into a single channel
data set. The blood channel data were scaled -60 dB relative to
the surrounding tissue. Normally distributed white noise was
added to the channel data to simulate thermal noise [19]. The
noise was scaled between 20 to -20 dB relative to the power
of the blood channel data. No temporal motion was simulated.

The simulated acquisitions were performed using a 128-
element linear array transducer with a center frequency of
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3 MHz and pitch of 0.257 mm. For each acquisition, plane
waves between -4◦ and 4◦ spaced by 1◦ were simulated
at a PRF of 9 kHz. The channel data were delayed using
Plane Wave Synthetic Focusing (PWSF), in which the delayed
channel data acquired at consecutive angles were summed
to produce a final pulse repetition frequency of 1 kHz [41].
PWSF achieves a uniform focusing throughout the image and
maintains consistent coherence measures [31]. A 10 Hz IIR
filter cutoff was used for temporal clutter suppression, chosen
empirically to provide filter stability and rejection of the tissue
signal.

Matched PD, CFPD, and ppCFPD images were generated
as shown in Figure 1. For ppCFPD and CFPD processing, a
maximum lag (M ) of 20 was used to correspond with prior
literature [20]. A kernel size (H) equal to one wavelength was
employed, to reconcile the trade-off between jitter and loss of
spatial resolution [42]. Images were formed using an ensemble
of 50 frames, and displayed on a 10log10(·) dB scale.

B. Perception of Fractional Moving Blood Volume

The assertion that ppCFPD image intensity is linearly
proportional to the blood echo power was evaluated via a
successive dilution study, emulating a prior PD assessment
by Rubin et al. [24]. As described in subsection V-A, the
blood channel data was obtained independently from the
tissue channel data using Field II. The blood scatterers were
separated into two groups: a stationary subset and a moving
subset. The fractional moving blood volume was modified
by incrementally changing the ratio of moving-to-stationary
blood scatterers. This was done to fix the acoustic scattering
strength of the blood scatterers across fractional levels and
produce equivalent scaling for a given SNR. The stationary
blood scatterers are rejected during processing, so the observed
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Fig. 2: Signal (blue) and background (green) ROIs for image
quality metrics.

blood signal power decreases proportionally with the fractional
moving blood volume, in agreement with prior literature [23],
[24]. The fraction of moving blood scatterers was iteratively
decreased from 100% (all moving) to 1% (nearly all sta-
tionary). Five independent simulations of blood and tissue
were generated for each fractional step. In addition, additive
thermal noise was added to the channel data containing blood
and tissue to assess discrimination of fractional moving blood
volume at five blood channel SNR levels.

The average blood pixel intensity was measured within a
defined region of interest for each non-log compressed image,
as shown in Figure 2. For each fractional step, the mean
and standard deviation of the average intensity was measured
across the five independent simulations to generate curves.
The curves were normalized to the highest mean value for
each noise case, in accordance with the technique by Rubin et
al. [24]. The theoretical thresholding was not applied when
estimating the fractional moving blood volume. However,
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Fig. 1: Comparison of image formation techniques. For ppCFPD, application of the theoretical threshold (ppCFPD, adaptive)
suppressed the noise floor more effectively than thresholding negative values (ppCFPD, zero). Note that the dynamic range is
extended so that the noise floor is visible in all cases. Images depict a 100% fractional moving blood volume realization with
-10dB blood channel SNR.
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Fig. 3: Phantom study images. Figure depicts a 100% fractional moving blood volume realization with 5 cm/s flow, obtained
at 11 V. Bmode image shown on a 60 dB scale.

negative pixels were excluded from the calculation of mean
and standard deviation, since negative pixels are produced by
out-of-phase noise signals [33].

C. Image Quality Metrics

Conventional image quality metrics, including contrast and
contrast-to-noise ratio (CNR), were calculated as shown in
Equations (25) and (26). Negative pixels were not considered
when calculating image quality metrics. This approach is
consistent with similar coherence algorithms used in prior
literature, which set negative pixels to zero [32], [33], [37].

We calculated image quality using

Contrast = 10log10(
S̄i
S̄o

) (25)

CNR =
|S̄i − S̄o|√
σ2
i + σ2

o

(26)

where Si indicates the signal within the vessel ROI, and So
indicates the signal within the background ROI, as shown
in Figure 2. The standard deviation of the pixel values is
represented by σ. The mean signal value is denoted by an
overbar symbol. The theoretical thresholding was not applied
when calculating metrics.

We acknowledge that the image quality metrics measured
across PD, CFPD, and ppCFPD may not be entirely compa-
rable; these algorithms depict fundamentally different quan-
tities (echo intensity and spatial coherence, respectively), so
conventional metrics may not equally impute the ability to
discriminate structures with a similar intensity level. For
instance, squaring the SLSC metric in the summation of
Equation (4) extends the dynamic range of CFPD, which im-
proves measures of contrast, but does not necessarily improve
feature detection. Recently, Rodriguez-Morales et al. proposed
an alternative image quality metric termed the generalized
contrast-to-noise ratio (GCNR) [43]. The GCNR metric de-
picts the likelihood of discriminating a signal of interest as an
expression of probability density function overlap, which is
invariant to changes in dynamic-range. For completeness, we
include an assessment of image quality in terms of the GCNR,
measured

GCNR = 1−OV L, (27)

where OVL is the overlap between the intensity distribution
of the background and the intensity distribution of the blood
signal. This formulation implies that GCNR = 1 if there is
complete discrimination of the blood signal, and GCNR = 0
if the distributions completely overlap. To compute the GCNR,
histograms with 1,000 equally spaced bins were generated
for the data within the signal and noise ROIs, respectively.
The fraction of pixels contained in overlapping bins was
measured as OVL. The GCNR was measured at each fractional
moving blood volume increment, for blood channel SNR levels
between -20 and 20 dB.

D. Assessment of Theoretical Bound for Noise Thresholding

For algorithm validation, the theoretical noise threshold
was applied to the simulation and phantom data produced in
subsections V-A and V-E. The noise power was estimated
using the lag-one spatial coherence described by Long et
al. [36]. For the Field II simulations, a single estimate of
pixel variance was obtained as shown in Equation 19, using
the average of the noise power estimates for σ2

noise. Values
below the theoretical threshold were set to zero prior to log
compression.

For the phantom data, local estimates of pixel variance were
obtained to accommodate depth-dependent attenuation. Noise
variance, as shown in Equation 12, was computed for each
pixel via lag-one spatial coherence, using a kernel matching
the SLSC axial kernel.

E. Phantom Data Acquisition

A wall-less vessel phantom study was conducted for further
validation. An aqueous solution of 6% (mass %) polyvinyl-
alcohol (PVA) with a molecular weight of 89,000 (Sigma-
Aldrich, St. Louis, MO) was heated to 85◦ C and stirred until
fully dissolved. To form a scattering medium, graphite powder
was added to the solution at a 6% mass concentration [44].
Once the solution reached room temperature, the PVA/graphite
solution was poured into a mold made of a 12 oz disposable
paper cup. Prior to adding a PVA/graphite solution, a 6.35 mm
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(1/4 in) diameter glass rod was inserted to form a single 45
degree vessel. The phantom was stored in a freezer at -20◦C
for 16 hours, then thawed at room temperature for 8 hours
to complete one freeze-thaw cycle. Three freeze-thaw cycles
were completed to increase phantom stiffness and preserve the
vessel structure upon removal of the glass rod.

An aqueous cornstarch solution served as a blood-
mimicking fluid. The concentration of cornstarch was varied
to emulate fractional changes in the proportion of blood
scatterers. The base solution contained contained 3% (mass
%) cornstarch [14], which corresponded to the 100% relative
concentration. The base solution was diluted to obtain 85, 70,
55, 40, 25, 10 and 0% relative concentrations. To ensure the
concentration remained constant, the solution was placed in
a beaker and continuously stirred. A continuous-flow pump
(Cole-Parmer, Vernon Hills, IL) was used to circulate the
solution through the vessel at velocities of 3 and 5 cm/s
(95 and 57 ml/min). Proximal to the phantom, the blood
mimicking fluid was passed through a pulse dampener to
obtain a laminar flow profile.

The phantom study was conducted using a Verasonics
Vantage system (Verasonics, Inc., Kirkland, WA) and an L12-5
linear array probe with a 5.43 MHz center frequency. Channel
data were acquired from nine angled plane wave transmits
spanning from -4◦ to 4◦, spaced by 1◦. The channel data

acquired at the nine angles were compounded to achieve
synthetic aperture focusing, resulting in a final PRF of 1 KHz.
Data were acquired at 11, 16, and 21 Volts to obtain varied
SNR. For each voltage, the SNR was estimated from the RF
data using the temporal lag-one correlation [35]. A 50 Hz
IIR filter was used to suppress tissue clutter. The PD, CFPD,
and ppCFPD images were formed using matched ensembles
of 50 frames, as shown in Figure 3. For ppCFPD and CFPD
processing, a maximum lag (M ) of 20 and a kernel size (H)
equal to one wavelength was employed.

F. In Vivo Data Acquisition

An in vivo liver imaging case was obtained from a healthy
adult male subject in compliance with Vanderbilt’s Institu-
tional Review Board (IRB) protocol. The study was conducted
using a Verasonics Vantage system (Verasonics, Inc., Kirkland,
WA) and a C5-2 curvilinear array probe with a 4.16 MHz
center frequency. Channel data were acquired at 21 V from
nine angled unfocused transmits spanning from -4◦ to 4◦,
spaced by 1◦. The steered transmit delays were calculated as
t = rφ sin θ

c , where r is the probe radius, φ is the elemental
angle span, θ is the steering angle, and c is the speed of sound.
The channel data were coherently compounded to achieve
synthetic aperture focusing, producing a final PRF of 600 Hz.
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Fig. 4: Plots depict the mean and standard deviation of image quality metrics measured across simulation realizations.
Top Row: The ppCFPD blood signal amplitude remains a linear approximation of the fractional moving blood volume despite
variation in the blood channel signal-to-noise ratio (SNR) from -20 dB to 20 dB. This may be observed in the figure, as the
ppCFPD curve closely approximates the theoretical value, shown in black. Center Row: The CNR of ppCFPD remained nearly
constant across noise levels indicating effective suppression of the noise floor relative to the blood signal. Bottom Row: For
all noise cases, ppCFPD and CFPD offered greater contrast than conventional PD.
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Fig. 5: Each plot depicts the GCNR metric as a function of the blood channel signal-to-noise ratio, for incrementally decreasing
fractional blood volume levels. The fractional moving blood volume ranged from 100% (left), indicating full flow, to 1% (right),
indicating nearly no flow. The ppCFPD images produced a higher GCNR for blood flow at all levels of flow, indicating greater
discrimination capability in comparison to PD and CFPD.

An adaptive demodulation scheme was applied to the
channel data to reduce motion incurred by the patient and
sonographer, using a kernel size of 10 λ and a lag of 1 frame
[4], [11]. A 120 Hz IIR filter was applied to suppress tissue
clutter. For ppCFPD and CFPD processing, a maximum lag
(M ) of 20 and a kernel size (H) equal to one wavelength was
employed. The theoretical threshold was applied. The images
were formed using 50 frame ensembles.

VI. RESULTS

A. Fractional Moving Blood Volume
Figure 4 depicts plots of PD, CFPD, and ppCFPD image

intensity as a function of the fractional moving blood volume
for five simulated SNR levels. CFPD produces a non-linear
response with respect to echo magnitude, whereas the ppCFPD
image response is linear. The observed variability of CFPD
is a result of normalization, which imparts a dependence on

SNR, as CFPD image intensity is proportional to
(

1−m/N
1+Pn/Ps

)2
.

This relationship results in a concave or convex function of
intensity, depending on the SNR.

As observed in prior literature, PD is an effective linear esti-
mator of the fractional moving blood volume in good imaging
conditions [25]. However, this relationship is compromised
in SNR-limited environments, as noise overwhelms the PD
signal. In comparison, ppCFPD is robust to varied SNR and
remains proportional to the fractional moving blood volume.
The greater capability of ppCFPD to accurately estimate rela-
tive concentrations of blood flow in SNR-limited environments

is attributed to greater suppression of incoherent noise, which
extends the dynamic range and improves sensitivity toward
low-amplitude features.

B. Image Quality

Figures 4 and 5 depict image quality measures for ppCFPD,
CFPD, and PD obtained at seven blood volume concentrations
and five levels of SNR. In matched simulations, ppCFPD
yielded marked image quality improvement over PD, exhibit-
ing contrast improvements up to 26.24 dB and a CNR gain of
1.38.

In Figure 4, we observe that measures of contrast and CNR
for CFPD exceed those of ppCFPD in several cases. This
illustrates the dependence of CFPD image quality on SNR.
At 20dB SNR, CFPD demonstrates a substantial CNR gain
in comparison to lower SNR levels. This behavior is similar
to SLSC performance, where the CNR value has been shown
to peak at a specific SNR depending on intrinsic contrast of
the medium [19], [45]. In comparison, CNR performance of
ppCFPD is fairly flat, indicating that it is robust to noise.

It is worth noting that we observed low intensity side
lobes in both CFPD and ppCFPD under conditions of low
channel noise, which has also been observed in previous
literature [14], [32]. These side lobe artifacts are due to out-of-
phase correlations produced by off-axis signals. The squaring
term in CFPD transforms these negative correlation values to
positive pixel intensities; as a result, CFPD exhibits a slight
reduction in contrast at high SNR levels due to the presence of
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Fig. 6: Left: Distribution of pixel intensity for channel data containing only noise. The theoretical threshold is an effective
approximation of the 95% confidence interval, compared to the empirically measured value. Right: The confidence interval
remained a robust approximation of noise pixel variance for simulations additionally containing blood. Data shown depicts a
100% fractional moving blood volume realization with -10dB SNR.
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Fig. 7: Axial cross sections of simulation data for 10dB channel SNR (left) and -10dB channel SNR (right) cases. Realization
shown depicts a 100% fractional moving blood volume case. The black line depicts the theoretical threshold.

these side lobes [14]. In ppCFPD image formation, negative
values are removed, so these side lobes do not degrade image
quality metrics. The squaring operation in CFPD additionally
decreases the GCNR of CFPD in SNR-limited environments,
as a greater proportion of the noise pixel intensity may overlap
with low, positive blood pixel values.

C. Theoretical Thresholding

Initial simulations demonstrate feasibility in using the the-
oretical threshold for robust noise suppression. For a case
of channel data containing only noise, the assumption that
the statistical distribution of the correlation coefficient is
equivalent to the distribution of the Z-score appears to hold.
Extension of this model to ppCFPD pixel intensity appears to
remain valid in simulation, as depicted in Figures 6 and 7.
Figure 7 depicts an axial cross section for simulations with
10 dB and -10 dB channel SNR. Both ppCFPD and CFPD
demonstrate greater dynamic ranges as a result of improved
noise suppression. The theoretical threshold remains effective
at both SNR levels.

Both ppCFPD and CFPD beamforming improve discrimi-
nation of the blood signal from background noise in compar-
ison to PD. Application of the theoretical threshold further
improves this delineation, shown in single vessel simulations
in Figure 1.

The presence of side lobes in the high SNR cases did skew
the distribution of ppCFPD pixel intensity toward negative
values, which violates the assumption of Gaussian distributed
noise. As a result, we observed underestimation of the theoret-
ical noise threshold for simulations with high SNR. However,

in these conditions, the blood is readily observed without
thresholding.

Preliminary efficacy of the theoretical threshold was also
observed in phantom data. Figure 8 shows an axial cross sec-
tion of the phantom with locally-derived threshold estimates.
The theoretical threshold can be applied to effectively suppress
the noise floor in the ppCFPD images.

D. Phantom Study

Overall, ppCFPD offered greater noise suppression than PD,
resulting in image quality improvements of up to 13.42 dB
in contrast and 2.1757 for CNR. Figure 12 depicts image
quality metrics for the 5 cm/s case across voltages. Varying
the acquisition voltage between 11, 16, and 21 Volts produced
varied SNR levels of 28.14 ± 3.67 dB, 31.16 ± 3.66 dB, and
33.31 ± 3.68 dB, respectively.

Figures 9 and 10 depict results for ensemble lengths ranging
from 10 to 50 frames. As shown in Fig. 10, ppCFPD remains
an effective estimator of the fractional moving blood volume
for short ensemble lengths, which is necessary for most
clinical systems.

Figures 11 and 12 demonstrate that ppCFPD image perfor-
mance was consistent across the varied voltage levels, indicat-
ing that ppCFPD is robust to varied SNR. In comparison, the
CFPD image performance exhibits a non-linear relationship
toward the fractional moving blood volume.

A small amount of clutter is visible in the deeper region
of the ppCFPD image of Figure 3; however, the clutter signal
is likely tissue signal that was not suppressed by the wall
filter. The application of motion compensation techniques [11]
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Fig. 8: Axial cross section of phantom ppCFPD data (blue)
depicting the theoretical threshold (black) obtained using local
estimates.
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tom data shown corresponds to the 5cm/s flow rate and 21 V
acquisition.
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Fig. 10: Fractional moving blood volume plots for ensemble lengths between 10 (left) and 50 (right) frames. The phantom
data shown correspond to 5 cm/s flow obtained at 21 Volts.

and advanced clutter filters [8] would improve suppression of
residual tissue signals.

E. In Vivo Case

PD, CFPD, and ppCFPD images of a healthy liver were
produced to demonstrate preliminary in vivo efficacy, as shown
in Figure 13. The in vivo case had a beamformed SNR of 33.14
dB.

The CFPD and ppCFPD images have a greater dynamic
range than the PD image, resulting in greater discrimination
of low amplitude vasculature. As shown with in vivo data,
limiting the PD display dynamic range improves contrast, but
results in the loss of low intensity image features.

VII. DISCUSSION AND CONCLUSIONS

This paper presents an adapted coherence-based beamform-
ing technique based on a measure of spatial coherence, rather
than normalized spatial coherence, to mitigate incoherent clut-
ter signals while preserving the backscattered echo intensity.
In addition, a theoretical threshold was derived to rigorously
justify the suppression of negative pixel values and small
positive pixels associated with clutter signals, and to facilitate
improved perception of vasculature.

The performance of ppCFPD was robust to varied ensemble
lengths, SNR levels, and blood flow velocities. The coherence
metric used in ppCFPD is not normalized; therefore, ppCFPD
images portray the mutual intensity of the channel signals.
As shown in simulation and phantom data, the resultant
ppCFPD image intensity scales linearly with the underlying
echo magnitude. This means that the ppCFPD image intensity
portrays the fractional moving blood volume, which may be
clinically valuable for in vivo assessment of local changes
in perfusion. In comparison, CFPD employs a normalized
measure of coherence, which results in varied performance
depending on the SNR.

The ppCFPD technique produced higher image quality over
PD, which is ascribed to improved suppression of thermal
noise and incoherent clutter. Subsequently, ppCFPD images
exhibit a greater dynamic range than PD images, which en-
ables low intensity blood vessels to be more readily observed.

The simulation and phantom experiments assessed ppCFPD
performance for varied conditions of white thermal noise.
We anticipate that other forms of spatially incoherent clutter,
such as reverberation, will be suppressed in accordance with
our theoretical derivation, though not directly studied here.
However, other forms of image degradation, such as phase
aberration, may reduce overall coherence measures [18]. In
the presence of these factors, spatial coherence would be
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Fig. 11: Fractional moving blood volume plots for phantom
data obtained at 11, 16, and 21 V for 3 cm/s (top) and 5 cm/s
(bottom) blood flow velocities.
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Fig. 12: CNR and Contrast plots for phantom data obtained
at 11, 16, and 21 V. Mean and standard deviation of metrics
shown for the 5 cm/s velocity realizations.
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Fig. 13: Preliminary images of liver blood flow to demonstrate in vivo feasibility. Bmode images shown on a 60 dB scale.
Top Row: PD, CFPD, and ppCFPD images displayed on a 27 dB scale. Images produced via the ppCFPD algorithm effectively
delineated small vessels, which are nearly indistinguishable from the noise floor in the PD case.
Bottom Row: The dynamic range is scaled to just above the perceptible noise floor for each image. The dynamic range is 21 dB
for PD, 25 dB for CFPD, and 27 dB for ppCFPD. Decreasing the dynamic range compromises the visibility of low-intensity
vasculature in PD relative to ppCFPD and CFPD.

decreased and the ppCFPD pixel intensity would likely be
degraded, though PD would suffer as well.

We note that coherence-based beamformers can be used
in conjunction with other advanced tissue clutter suppression
techniques. In this paper, an adaptive demodulation technique
proposed by Tierney et al. was used to compensate for tissue
motion in vivo [11]. Advanced filtering techniques would
likely further improve suppression of residual tissue, which
is not inherently mitigated in coherence-based beamforming.
Filtering is necessary because tissue signals are coherent in the
aperture domain. We expect that the combination of coherence
beamforming and advanced clutter filters will yield superior
sensitivity toward blood flow.

As described for similar coherence-based beamforming ap-
proaches, computational cost remains a practical drawback
of this technique. The ppCFPD beamforming scheme has a
substantially larger computational burden in comparison to
power Doppler due to the necessity to perform coherence
estimates of channel data signals. We anticipate that a software
beamforming implementation would make a real-time imple-
mentation of ppCFPD feasible, using approaches developed
by others [21].

An unresolved challenge for coherence imaging in general
is the presence of so-called ‘dark-region artifacts’ [46], [47].
These artifacts occur when regions adjacent to bright targets
exhibit reduced coherence measures due to high amplitude off-
axis scattering. In the context of blood flow imaging, out-of-
phase or negative correlation measures produce the appearance
of negative pixel values. Since measures of signal power and
PD are inherently positive valued, the consensus in prior
investigations has been to set these values to zero [32], [37].
We hypothesize that the development of advanced filters may
reduce the amplitude of acoustic clutter, which can produce
dark-region artifacts and reduce visualization of adjacent, low-

amplitude blood flow.
Overall, this approach shows promise for improving dis-

crimination of blood flow within cluttered environments. Both
CFPD and ppCFPD offer improved image quality over PD;
however, we demonstrated that the CFPD technique exhibited
non-linear characteristics as a function of varied SNR. In
comparison, ppCFPD was robust to thermal noise power and
retained sensitivity to relative variations in fractional moving
blood volume. This preliminary study suggests that a mutual
intensity metric may be a valuable approach to assess blood
flow gradation in cluttered imaging environments.

APPENDIX A
ELABORATION ON LOCATION-SCALE PROBABILITY

As asserted in Section IV-A, location-scale probability
statistics, which includes the normal distribution, are used
to obtain the model of ppCFPD pixel intensity for noise
signals. The family of location-scale probability distributions
assert that for any random variable X described by a class of
distributions, Ω, that belongs to the location-scale family, the
distribution Y d

= a+ bX is also a member of Ω.
This means that for two independent, normally-distributed

random variables, X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2),

their linear combination will also be normally distributed,

aX1 + bX2 ∼ N(aµ1 + bµ2, a2σ2
1 + b2σ2

2). (28)

As posed previously in Equation (16), the expression for the
ppCFPD pixel intensity for a signal containing only noise is

ppCFPD = AHσ2
noise

1

M

M∑
m=1

1

N −m

N−m∑
i=1

ρyiyi+m ,

where we describe the variable ρyiyi+m to be a normally
distributed random variable with calculable mean and variance
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as described in 18, assuming that ρyiyi+m
is approximately

equal to its comparable Z-score, z(m), for low correlation
values as obtained in the case of IID noise.

The remaining variables in Equation (16) are defined as
constants, such that the ppCFPD pixel intensity shares a linear
relationship with ρyiyi+m , following the assertions in Equation
(28). This allows us to obtain the final probability distribution
for the ppCFPD pixel intensity described in Equation (19).

APPENDIX B
CLOSED FORM APPROXIMATION OF A HARMONIC NUMBER

We note that an approximate closed form solution for
generalized harmonic numbers is formulated as

Hn ≈ ln(n) + γ +
1

2n
−
∞∑
k=1

B2k

2kn2k
, (29)

where Bk are Bernoulli numbers and γ is the Euler-
Mascheroni constant, which describes how harmonic numbers
asymptotically approach the natural log. A closed form ap-
proximation can be obtained using a truncated series

Hn ≈ ln(n) + γ +
1

2n
− 1

12n2
+

1

120n4
. (30)

The accuracy of using the truncated series approximation in
the difference equation ∆H = (HN-1 − HN-M-1) is depicted
below in Table I. The relative error was evaluated for N = 128
elements and M = 20 lags as

Error, dB = 20 log10

(
|∆Ĥ −∆H|

∆H

)
. (31)

TABLE I: Accuracy of HN-1 −HN-M-1 Approximation

Approximation Form Error, dB

Ha −Hb = ln( a
b ) -47.3 dB

Ha −Hb = ln( a
b ) +

a−1−b−1

2
-98.1 dB

Ha −Hb = ln( a
b ) +

a−1−b−1

2
− a−2−b−2

12
-194.7 dB

APPENDIX C
POWER DOPPLER NOISE STATISTICS

The formula for power Doppler shown in Equation (1) may
be expanded to

PD =
A∑
a=1

(
N∑
i=1

yi(n)

)2

, (32)

where the power Doppler signal is computed as the squared
sum of N delayed channel signals, yi(n), summed over a
temporal ensemble, A.

If we assert the same assumptions as in the ppCFPD
analysis, namely that yi(n) ∼ N(0, σ2

noise), we find that

N∑
i=1

yi(n) ∼ N(0, Nσ2
noise). (33)

Squaring this normal term yields a Gamma distribution,(
N∑
i=1

yi(n)

)2

∼ Γ(
1

2
, 2Nσ2

noise), (34)

of shape k = 1
2 and scale θ = 2Nσ2

noise. The summation of
A Gamma distributed parameters, Xi, with the same scale, θ,
produces

A∑
i=1

Xi ∼ Γ

(
N∑
i=1

ki, θ

)
, (35)

hence we find that power Doppler pixel intensity computed
for channel signals containing only noise is distributed

PD ∼ Γ

(
A

2
, 2Nσ2

noise

)
, (36)

with a non-zero mean and variance of

µpixel = kθ = ANσ2
noise

σ2
pixel = kθ2 = 2A(Nσ2

noise)2.
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