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Abstract— Deep neural networks have been shown to be
effective adaptive beamformers for ultrasound imaging. However,
when training with traditional £, norm loss functions, model
selection is difficult because lower loss values are not always
associated with higher image quality. This ultimately limits the
maximum achievable image quality with this approach and raises
concerns about the optimization objective. In an effort to align the
optimization objective with the image quality metrics of interest,
we implemented a novel ultrasound-specific loss function based on
the spatial lag-one coherence and signal-to-noise ratio of the
delayed channel data in the short-time Fourier domain. We
employed the R-Adam optimizer with lookahead and cyclical
learning rate to make the training more robust to initialization and
local minima, leading to better model performance and more
reliable convergence. With our custom loss function and
optimization scheme, we achieved higher contrast-to-noise-ratio,
higher speckle signal-to-noise-ratio, and more accurate contrast
ratio reconstruction than with previous deep learning and delay-
and-sum beamforming approaches.
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I. INTRODUCTION

Feed-forward neural networks can approximate any
continuous function through nonlinear transformations [1],
making them a powerful tool for image reconstruction tasks such
as ultrasound beamforming that can be cast as such [2], [3].
Deep neural networks (DNNs) have shown great efficacy in
adaptive beamforming by successfully suppressing sources of
acoustic clutter such as off-axis scattering in challenging
imaging scenarios [3]-[6]. However, our previous work in this
area has been limited by the difficulty of model selection. When
training with traditional £; or mean squared error (MSE) loss
functions, we have observed a consistent trend that lower loss
upon convergence does not necessarily lead to higher image
quality metrics such as contrast-to-noise ratio (CNR), signal-to-
noise ratio (SNR), and contrast ratio (CR) reconstruction
accuracy [5]. This phenomenon motivated the creation of a new
ultrasound-specific loss function.

II. METHODS

A. Loss Function

Training for CNR directly poses a significant challenge with
our current deep learning architecture since CNR is calculated
on the beamformed data and our neural network operates on
delayed channel data in the short-time Fourier domain before
summation. In order to incorporate the notion of CNR in the loss
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function in a computationally efficient manner, we added a
spatial lag-one coherence (LOC) term to the original loss
function. Lag-one coherence captures the contribution of
thermal noise and spatially incoherent acoustic noise, providing
a local measure of image quality [7]. We also added a noise-to-
signal ratio (NSR) term to the loss function. The LOC and NSR
terms do not include any information about overall signal
amplitude and are based solely on the training data, so in order
to retain amplitude information in a supervised learning
approach, it is necessary to include a data fidelity term such as
smooth £, or MSE.

Using the notation of [8], the lag-one ensemble correlation
was calculated on the delayed channel data in the short-time
Fourier transform domain according to (1), where &1 indicates
the set of all lag-one pairs of channels and * denotes the complex
conjugate. An axial kernel of one sample was used to improve
computational efficiency as suggested in [8].
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The overall coherence term used in the loss function was
calculated as in (2) in order to optimize for the maximum
achievable lag-one coherence according to the van Cittert-
Zernike theorem [9]. M is the number of elements (65 in this
case) and A1 is a weighting factor that must be tuned to
determine the term’s relative contribution to the entire loss
function.
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The NSR term used in the loss function was calculated as in (3),
where A2 is the weighting factor.
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The final loss function employed used smooth £; instead of
MSE due to its superior performance.

o
Loss = Smooth £; + A;|(1 — 1) — LOC| + 4, (;) 4)
B. Optimization
Adding LOC and NSR terms to the original loss function

should allow us to maximize the image quality metrics of
interest, but in practice it seemed to create a rough loss landscape
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full of sub-optimal local minima that was very difficult to
optimize using traditional approaches. To address this, we began
using the R-Adam optimizer, an adaptive optimizer based on the
standard Adam optimizer that includes built-in warmup [10],
[11]. Warmup reduces the variance in adaptive momentum
calculations at the beginning of training, leading to stability and
robustness to bad initializations. In the case of R-Adam, the
warmup is itself adaptive and is based on the underlying
variance of the data [10].

To further improve the long-term stability of the
optimization while still converging relatively quickly, we
employed lookahead [12]. Lookahead keeps two sets of weights:
one from a slower version of the optimizer and one from a faster
version of the optimizer that “looks ahead” by taking &
additional training steps for every single training step the slower
optimizer takes. The weights of the slower optimizer are updated
in the direction of the faster optimizer’s weights via linear
interpolation. How far in that direction the weights are updated
depends on a hyperparameter o (set to 0.55). After updating the
slower optimizer’s weights, the faster optimizer starts over again
at the same place before advancing ahead & steps (set to 5). This
optimization scheme has been shown to provide the long-term
stability of stochastic gradient descent optimization with the
convergence speed of adaptive optimizers such as Adam [12].
We used an open-source PyTorch implementation of lookahead
[13].

Finally, we utilized a cyclical learning rate scheduler to add
additional robustness throughout the entire training process [14].
We found that its stabilization effects were complimentary to
those of R-Adam and lookahead. Reference [15] also reports
added benefit of using a scheduled learning rate multiplier with
any adaptive optimizer, corroborating our observations. We
used a triangular mode, a base learning rate of 0.001, and a
maximum learning rate of 0.003.

C. Training, Validation, and Testing Data

For a detailed description of the Field II simulation scheme,
please see Ref. [6]. Briefly, the training data consisted of 24
hypoechoic targets each generated with a native contrast of -22,
-24, -26, -28, and -30 dB, yielding a total of 120 unique cysts.
All samples inside of the cysts were included in training as well
as the same number of samples in the background in order to
keep balanced classes. Seventy-five percent (43,344 samples)
were used for training and 25% (14,448 samples) were used for
validation during training. The hypoechoic cyst test set was
separate from the training set and included five hypoechoic
targets each with a native contrast of -22, -24, -26, -28, and -30
dB. The training data were processed with the short-time Fourier
transform for input into the network as in Ref. [6].

D. Model Architecture

The deep neural network was a feed-forward network with
30 hidden layers and 1000 nodes in each layer. ReLU activations
functions were used and batch normalization was applied during
training before the activation function. Dropout of 0.2
probability was used for the input layer and each successive
hidden layer during training. The batch size was 1024 samples.
Since the number of active elements in the transducer was 65,

the size of the input and output layers were 130 x 1, where 130
is made up of the real (in-phase) values for each element
concatenated with the imaginary (quadrature) values for each
element. The minimum number of epochs for training was 300,
after which training would cease when the validation loss did
not improve after 50 epochs. For testing and model selection, the
loss, CNR, SNR inside and outside the cyst, and CR were each
averaged across the five targets for each native contrast ratio
case. The beamformer that performed the best on all of these
measurements would then be selected.

III. RESULTS

Fig. 1 shows results from standard delay-and-sum (DAS)
beamforming, the proposed approach (A1=0.02, A2=0.01), and
three sub-optimal DNN approaches. DNN approach #1 used a
traditional optimization scheme (Adam optimizer with a fixed
learning rate of 0.001) with a traditional loss function (smooth
L;). DNN approach #2 used the proposed optimization scheme
(R-Adam with lookahead and cyclical learning rate) with a
traditional loss function (smooth £;). DNN approach #3 used
the proposed loss function with a traditional optimization
scheme. Careful inspection of Fig. 1 reveals a much improved
speckle pattern when using the proposed approach, particularly
inside the cyst.

Table 1 shows the image quality metrics for each of the
beamforming approaches shown in Fig. 1. The letters a and b
refer to using MSE loss and smooth £, loss, respectively. To
ensure a fair comparison of each approach, three beamformers
with the same hyperparameters were trained for all four DNN
approaches and their results were averaged for all 25 hypoechoic
cysts in the test set. To indicate the contrast ratio reconstruction
accuracy across the -22 to -30 dB range, the mean squared error
between the model’s contrast ratio for each cyst and the true
value was computed. The speckle SNR (SNRs) was computed
inside and outside the cyst. Table 1 clearly shows the benefit of
employing the proposed optimization scheme and loss function.
From the optimization strategy alone, there is an improvement
in CNR of about 0.8 dB over the previous DNN approach, just
barely surpassing DAS. From the loss function alone, there is a
bump in SNRs inside the cyst of about 0.4 dB, showing that the
cyst is being reconstructed more accurately. The contrast ratios
of these DNN approaches have huge biases, leading to large CR
MSE values. However, the full benefit of the loss function is not
realized until it is combined with the optimization strategy.
CNR, SNRs, and CR accuracy for the proposed approach are
higher than the previous DNN approaches and DAS, showing
the benefit of our method.

TABLE 1. IMAGE QUALITY METRICS FOR BEAMFORMING APPROACHES
Method Image Quality Metric (dB)
CR MSE CNR SNRs outside SNRs inside
DAS 8.8757 5.3235 1.9923 1.7834
DNN Ia 127.1490 4.5826 1.7236 1.1563
DNN 1b 128.5730 4.6117 1.7282 1.1315
DNN 2a 59.7852 5.3678 1.9073 1.3541
DNN 2b 65.7790 5.4572 1.9166 1.3430
DNN 3 12.5730 4.5085 1.7442 1.7782
Proposed 3.6053 5.6648 2.0395 2.0747
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Fig. 1. Qualitative comparison of beamforming approaches on a -26 dB hypoechoic cyst. Note the differences in speckle pattern on the inside of the cyst. a) delay-
and-sum beamforming. b) DNN approach #1: smooth L, loss with traditional optimization scheme. c) DNN approach #2: smooth L, loss with proposed
optimization scheme. d) DNN approach #3: proposed loss function with traditional optimization scheme. e) Proposed deep learning approach with custom loss
function and advanced optimization scheme. All images are shown on the same dynamic range and same axes. The colorbar is in units of dB.
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