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Abstract

Contactless fingerprints have emerged as a convenient,
inexpensive, and hygienic way of capturing fingerprint sam-
ples. However, cross-matching contactless fingerprints to
the legacy contact-based fingerprints is a challenging task
due to the elastic and perspective distortion between the two
modalities. Current cross-matching methods merely rec-
tify the elastic distortion of the contact-based samples to
reduce the geometric mismatch and ignore the perspective
distortion of contactless fingerprints. Adopting classical
deformation correction techniques to compensate for the
perspective distortion requires a large number of minutiae-
annotated contactless fingerprints. However, annotating
minutiae of contactless samples is a labor-intensive and in-
accurate task especially for regions which are severely dis-
torted by the perspective projection. In this study, we pro-
pose a deep model to rectify the perspective distortion of
contactless fingerprints by combining a rectification and a
ridge enhancement network. The ridge enhancement net-
work provides indirect supervision for training the rectifi-
cation network and removes the need for the ground truth
values of the estimated warp parameters. Comprehensive
experiments using two public datasets of contactless finger-
prints show that the proposed unwarping approach, on av-
erage, results in a 17% increase in the number of detectable
minutiae from contactless fingerprints. Consequently, the
proposed model achieves the equal error rate of 7.71% and
Rank-1 accuracy of 61.01% on the challenging dataset of
2D/3D’ fingerprints.

1. Introduction

During the past two decades, the ubiquitous adoption
of fingerprint-based identification methods have indicated
the dominance of fingerprints over other biometric modal-
ities. The random nature of the type and location of fea-
tures, especially minutiae, in a fingerprint provides reliable
and highly discriminative information for fingerprint iden-
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tification tasks. Ideally, the number of these features within
a single fingerprint is large enough that even a partial la-
tent fingerprint collected from a crime scene may be used
to identify an individual [4, 8]. Capturing fingerprints is
fast, easy, and relatively inexpensive. The convenience of
capturing fingerprints has further been improved by utiliz-
ing contactless fingerprint devices and developing appro-
priate recognition techniques. These methods are adopted
for either dedicated capturing hardware [1, 15] or existing
devices such as mobile phones [26, 27, 23]. Using ordi-
nary cameras to capture contactless fingerprint samples has
drawn increasing attention in recent years due to two main
factors. First, it is cheaper to employ an existing host de-
vice, such as a cell phone, to capture samples. Second, the
contactless fingerprint recognition algorithm can be incor-
porated as an authentication unit on the host device itself.

Despite the many benefits of contactless fingerprint
recognition systems, identifying the contactless fingerprints
is a challenging problem. In an unconstrained scenario, a
finger can be under non-ideal and varying environmental
conditions, such as nonuniform illumination. These con-
ditions often reduce the performance of classical ridge en-
hancement and minutiae extraction methods [11]. There-
fore, some algorithms require constraints on the image cap-
ture process in order to mitigate the effects of environmental
variations [15]. However, these capture constraints can crit-
ically limit the application space of the recognition system.
In addition to environmental variations, the perspective dis-
tortion introduced by the 3D geometry of the finger makes it
more difficult to extract information from a contactless fin-
gerprint image using classical algorithms. For instance, per-
spective distortion severely alters the range of the ridge fre-
quencies. Consequently, classical ridge enhancement meth-
ods fail to reconstruct the whole ridge map since they con-
sider a smooth ridge frequency map with a small change
around the fingerprint area [11].

As the amount of perspective distortion increases at a
distance away from the center of the finger in the contact-
less fingerprint, several studies suggest considering solely
the central region of the fingerprint for the matching process
[17, 19]. However, limiting the processing area within a fin-
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Figure 1. Complete diagram of the model. After preprocessing the input contactless sample, the first network called the warp estimator
predicts the parameters of the warp. It can predict the deformation based on either the PCA-constrained (Sec. 2.1.1) or the free grid (Sec.
2.1.2) model of warp. Using the estimated warp parameters, we unwarp the contactless sample. The second network, performs ridge
segmentation on the unwarped sample to produce an equivalent binarized ridge map of the ground truth contact-based fingerprint. The
final output of the model is then compared to the ground truth ridge map to provide the supervision (Sec. 2.3) needed for updating the

parameters of the ridge enhancer and the warp estimator.

gerprint reduces the number of minutiae and may decrease
the matching accuracy [12, 6]. An alternative approach is
to utilize the localized texture patterns called level zero fea-
tures from the whole contactless fingerprint which can be
extracted either directly [14, 23], or indirectly [16, 18] by
training a deep convolutional neural network (CNN). The
main limitation of these methods is the constrained inter-
operability of the algorithm since they cannot provide a se-
mantic representation for a given contactless fingerprint that
can be matched against fingerprint samples from various
contact-based devices. Rectifying the perspective distortion
of the contactless fingerprints can increase the active area
for the matching process and, consequently, can result in a
higher matching accuracy. On the other hand, the rectified
contactless fingerprint can represent a ‘clean’ sample of a
finger that is compatible for matching to the legacy samples
by extracting reliable minutiae. Several approaches have
been proposed in the literature to address the elastic defor-
mation of fingerprints introduced during the capturing pro-
cess [24, 21, 22, 25,7, 17]. Thin Plate Spline (TPS) and its
approximation [3] have been widely adopted to rectify the
elastic distortion of fingerprints [2, 25, 17, 7].

As previously discussed, perspective distortion can pre-
vent the classical fingerprint enhancement algorithms from
extracting reliable ridge information from areas which are
far from the center of the contactless sample. Therefore,
there is not enough supervision (ground truth parameters of
the perspective distortion) to directly train a model to pre-
dict the parameters of the warp. In this study, we develop a
deep contactless fingerprint unwarping model that learns to
estimate the distortion parameters of the contactless finger-

prints without requiring a direct access to the ground truth
distortion parameters. Our model consists of two jointly op-
timized networks as shown in Figure 1. The first network
estimates the warp parameters that can geometrically map
the input contactless fingerprint to its equivalent contact-
based sample. The second network enhances the unwarped
sample to extract the binarized ridge map of the correspond-
ing contact-based fingerprint. We propose a joint optimiza-
tion framework to couple the two networks and indirectly
learns the geometric mapping between the contactless fin-
gerprint and its equivalent contact-based fingerprint. In
summary, the contributions of the paper are as follows:

e A novel deep unwarping model is proposed to rectify
the perspective distortion of a contactless fingerprint,
such that the binarized ridge map of the unwarped con-
tactless fingerprint matches the ridge map of its corre-
sponding contact-based fingerprint.

e An end-to-end joint optimization framework is pro-
posed to solve the problem in a weakly supervised
manner, ie., there is no need for the ground truth pa-
rameters of the distortion.

e A differentiable ridge enhancer model is developed to
reduce the environmental variations of contactless fin-
gerprints and provide an indirect supervision for the
unwarping model.

e A novel statistical model of the perspective warp is
developed which provides a more robust representa-
tion of the warp compared to conventional PCA-based
models.



2. Methods

As discussed in Section 1, two main factors cause the dif-
ference between contactless and contact-based fingerprints.
First, both are geometrically distorted, and there is a non-
linear spatial transformation between them. Second, varia-
tion of the environmental conditions (e.g. different lighting
situations) are more severe in capturing contactless samples.
To address the perspective distortion problem, we develop
a deep contactless fingerprint unwarping model in Section
2.1. In addition, we develop a model to extract ridge infor-
mation of the unwarped samples in Section 2.2. At the end,
we train the whole model concurrently by proposing a joint
optimization process.

2.1. Contactless Fingerprint Unwarping Model

Given an input contactless sample x,, and the binarized
ridge map of the equivalent contact-based fingerprint sam-
ple zp, we seek to find the parameters © of a non-linear spa-
tial transformation 7" such that unwarping «,, using 7'(., ©)
results in a unwarped sample z,, that has the maximum
ridge overlap with z;. The unwarped contactless sample
can be formulated as:

xy =T (zp, O). (D

To estimate the parameters of the warp, we use a non-linear
function f which takes the input contactless sample x;, and
estimates the set of parameters of warp © = f(z,). We
develop a CNN for the choice of f, and we train it using an
end-to-end joint optimization which is discussed in Section
2.3. Having the estimator f, we can rewrite Equation 1 as:

Ty = T(xp, f(xp)) 2

Inspired by the previous approaches for rectifying distorted
fingerprints [21, 22, 25,7, 17], we define a statistical model
to represent the perspective distortion of contactless finger-
prints. We define a fixed regular sampling grid G, on z,,
which contains N horizontal and M vertical nodes. The
corresponding grid GG,, on the unwarped contactless sample
is the result of transforming G, using 7'(., ©). Therefore,
all the parameters of the warp can be obtained using these
two grids. Instead of estimating the parameters of the warp
directly, we estimate the displacement between the nodes of
G, and G,,. We develop two warp models to represent the
displacements caused by the perspective distortion.

2.1.1 PCA-constrained Warp Model

A classical approach to model a warp [25] is to use a set
of training samples representing the source and the target
keypoints. We manually extract minutiae points from 400
contactless samples and their corresponding contact-based

Figure 2. A sample demonstration of the free grid model of size
3% 3. Green and red nodes denote the source and the target grid,
respectively. In the free grid scenario for modeling the warp, the
warp estimator estimates a displacement vector which consists
of the differences between the locations of the source and target
nodes.

samples. We model the warp as a displacement of corre-
sponding points on the original grid and the warped grid as
follows:

d; = v =P, 3)
where d; is the displacement field of minutia for the ith pair
of contactless and its corresponding contact-based finger-
print, and v} and v} are the vectorized locations of all the
points in grid G,, and G, for the ith pairs of samples, re-
spectively. Using PCA on the vectorized locations of all the
training samples, we extract the principal components of the
displacement between the two modalities [25, 7]. Approxi-
mation of the displacement fields using PCA is:

t
(jga“i’zci\/)\iieia (4)
=1

where d is the average displacement, t is the number of se-
lected principal components for modeling the warp, ¢; is
the coefficient of the ith eigenvector component, e; is ith
eigenvector and J; is its corresponding eigenvalue. In this
framework, the warp estimator f can estimate the warp by
predicting the coefficients of the most significant principal
components of the warp OF¢4 = {¢; : i € {1,..,t}} for
an input contactless sample.

2.1.2 Free Grid Warp Model

Modeling the statistics of the warp using PCA is highly de-
pendent on the number of samples that are used for extract-
ing the principal components of the warp. To have a more
robust and flexible model for the warp, we develop a second
warp model in which the warp parameters are directly de-
fined as the displacement of each node in the target grid G,



compared to G,,. Therefore, the target outputs of the warp
estimator f for this model are expressed as ©¢ = v, —v,,
where v, and v, are the vectorized locations of all points
in grid G, and G, respectively. Figure 2 shows a sim-
ple demonstration of the free grid method for modeling the
warp.

So far, two warp models have been defined to represent
the warp between the contactless and contact-based finger-
prints. The parameters of the first warp are the coefficients
of the PCA, and we refer to them as ©7¢4, The parameters
of the second warp are exactly the displacement of ridge in-
formation, and we refer to them as ©F G, Unfortunately, it is
a difficult and labor-intensive task to extract minutiae from a
contactless fingerprint (especially the marginal area of ridge
information). Therefore, we do not have enough supervi-
sion (minutiae-annotated pairs of contactless and contact-
based fingerprints) for training the deep CNN f. To over-
come this issue, we develop a second model that indirectly
provides the supervision needed to train the warp estimator
model.

2.2. Ridge Enhancement Model

Given an unwarped contactless sample x,,, we develop a
model to predict its ridge structure. For this purpose, one
can adopt a classical ridge enhancement method, such as
[11], which performs band-pass filtering for enhancing the
ridge information. However, due to the lack of supervision
for training the unwarping model, we seek to propose a joint
optimization problem where the unwarping model can use
the indirect supervision provided by the ridge enhancement
unit through backpropagation. Therefore, we need to de-
velop a differentiable ridge enhancement model so that the
reconstruction loss can be used to update the parameters of
the unwarping model. We adopt a deep U-Net model to pre-
dict the binarized ridge information of the unwarped con-
tactless fingerprint. Given the unwarped sample z,, with a
size of w X h, the ridge enhancement model generates a bi-
nary map y = G(z,,) of size w x h x 2 where y(*7:*) and
y(3:1) denote the predictions of the network as the proba-
bility of the pixel at the location (4, j) in z, belonging to
one of the classes of ‘background’ or ‘ridge’, respectively.
In other words, this model is performing a dense binary
classification for each pixel in the unwarped contactless fin-
gerprint x,,.

2.3. End-to-end Joint Optimization

As discussed before, extracting minutiae from contact-
less fingerprints is a labor-intensive task, especially in the
case of training a deep model where thousands of samples
are needed for achieving reasonable performance. Without
having the minutiae annotations, we do not have enough su-
pervision for training the unwarping model. However, the
contact-based equivalents of the contactless fingerprints are

available, and we use them as the weak supervision for pre-
dicting the warp parameters. After enhancing the unwarped
sample x,,, the final output of the model is a binarized ridge
map as follows:

y=G(T (e f(z)))- ®)

Let y* be the binarized ridge map of the contact-based fin-
gerprint corresponding to the input sample x,,. We define
the enhancement loss as the dense cross-entropy loss for all
pixels in the output map as:

w h—1

-1 1
Z Z Z y*(i;.77k) log y(m}k). (6)
i=0 j

-1
EEML:A‘E
w =0 k=0

Due to the perspective distortion in contactless samples,
ridge information in the center are clearer, and it is easier
to reconstruct them. However, our goal is to unwarp and
enhance the ridge information which is degraded due to the
perspective distortion. Therefore, we develop a score map
that shows which parts of the input sample contain more
perspective distortion. We use this score map to force the
network to pay more attention to distorted areas rather than
clear ridges. The transformation 7" in Section 2.1 performs
an spatial transformation using the parameters estimated by
the unwarping model. During the unwarping process, T’
transforms each source location v = (i, j) in the input con-
tactless fingerprint to the target location u’ = (i, ') in the
unwarped version. We use these source and target locations
to estimate the amount of warp in each location of the input
contactless fingerprint. We define a warp score map S as:

S={si;=V(—)?2+(—j)>

- (7
VY (i,7) € {1.w} x {1..h}},

where s; ; shows the amount of warp at the location (4, j)
in the input sample. We normalize S such that s; ; € [o, 1]
as:
5 S —min{S}
S = 1- .
at(l-a) max{S} — min{S}

®)

Finally, using this normalized score map S, we rewrite
Equation 6 as:

-1
X
w—1 h—1 A
wh) i, Zj:o 8i,j
w—1h—1 1 &)

DT ;0 yHE3R) Jog 4 (1K)

i=0 j=0

Lenn =

We use stochastic gradient descent to minimize L gyp.
During the training, the error of the ridge segmentation
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Figure 3. Examples of the processed samples using the proposed method. Columns from left to right: a) the input contactless fingerprints,
b) the input samples after initial enhancement by adaptive histogram equalization, c) the deformation grid estimated using the final model
(model D), d) unwarped contactless fingerprints, e) the ridge maps extracted directly from the unwarped samples using Gabor filtering, f)
ridge maps estimated by the proposed ridge enhancer model, g) the ground truth ridge maps obtained from contact-based fingerprints. The
red values show the VeriFinger [20] matching scores of the unwarped ridge maps against their corresponding ground truth ridge maps.

backpropagates to update the parameters of the ridge en-
hancer and the warp estimator network. It may be noted
that the geometric transformer 7' is a differentiable TPS [10]
which allows the gradients of the loss to be backpropagated
to the warp estimator network. Therefore, the deep warp
estimator updates its parameters without any direct knowl-
edge about the ground truth parameters of the actual warp.
Figure 1 shows the total structure of the proposed model.

2.4. Network Architecture

Our model consists of two deep CNNs. The first net-
work acts as a non-linear regression model which estimates
the continuous parameters of the warp. The number of out-
puts, N,, of the warp estimator depends on the type of the
warp model defined in Sections 2.1.1 and 2.1.2. For the
case of the PCA-constrained model, we set N, = 4, and the
model estimates the coefficients for the top four significant
eigen vectors of the warp. For the case of the free grid warp
model, we set N, = 200, and the model estimates the dis-
placement of a grid with the size of 10 x 10 along two axes.
Table 1 details the structure of the warp estimator and ridge
enhancer networks.

3. Experiments

We define four test models to investigate the role of
the warp models and the warp score map. Table 2 de-
tails these models. To evaluate the proposed method, we
use two publicly available datasets of ManTech [9] and
2D/3D [28]. The ManTech dataset contains contactless
and contact-based fingerprints from all fingers of 496 sub-
jects. For each finger, 2 contactless fingerprints and sev-

eral contact-based fingerprints captured using different sen-
sors are available. We use all the 9,920 contactless samples
and their corresponding contact-based samples for training
our four models. The 2D/3D dataset has been published re-
cently and contains 9,000 samples from 1,500 fingers. For
each finger two contactless and 4 contact-based samples are
available. We use samples from 500 fingers for fine-tuning
the models trained on the ManTech dataset, and we use the
rest of the dataset for testing the model.

We preprocess all the samples to reduce the variations of
fingerprints. We first segment finger regions in all contact-
less samples by thresholding. Then we enhance the ridge
information using adaptive histogram equalization. We fix
and normalize the scale and rotation of samples using their
median ridge frequency and orientation. For contact-based
fingerprints, the median is computed over the whole area,
and for contactless fingerprints, the median is computed
over the central area of the fingerprint sample occupying
40 percent of the total ridge area. All samples are scaled to
have a median ridge interval of 10 pixels. The final size of
all samples is scaled to 256 X256 which is the default spatial
size of the input for our model.

We conduct several experiments to evaluate the pro-
posed method using the experimental setup defined in
[17] by generating 8,000 (1,000x2x4) genuine and
7,992,000 (1,000%x999x4x2) imposter pairs from the
2D/3D dataset. We compare our approach to several meth-
ods in the literature. In experiments 1 to 3, we match
contactless and contact-based fingerprints directly without
performing any unwarping process or enhancing using the
NIST-NBIS [13], VeriFinger [20], and MCC [5] methods.
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#L T KS [N #L | T S KS oS #L | T S KS oS Cn
1 C,B,RM 32 128, 32 1 |V 1 64 25,64 [ 10|V 1 512 16,512 -
2 | C.BRM 64 64, 64 2 |V 2 128 128,128 | 11 | D 2 512 32,512 L7
3 | CCBRM 64 32, 64 3|V 1 128 128,128 | 12 |V 1 512 32,512 -
4 | CCBRM 128 16, 128 4 |V 2 256 64,256 | 13 | D 2 256 64,256 LS5
5 | CCBRM 256 8, 256 5|V 1 25 64,25 |14 |V 1 25 64,256 -
6 | CBRM 512 4,512 6 |V 2 512 32,512 | 15| D 2 128 128,128 L3
7 | CBRM 1024 2,1024 71V 1 512 32,512 |16 |V 1 128 128,128 -
8 | CCBRM 2048 11,2048 8 |V 2 512 16,512 | 17 | D 2 64 256,64 LI
9 FB,R 1024 1,1024 9 |V 1 512 16,512 | 18 | V 1 4 256, 2 -
10 F 1, N, 1, N,

Table 1. Architecture of a) warp estimator, and b) ridge enhancer. All layers of the warp estimator are formed by combining Convolution
(C), Batch Normalization (B), ReLU (R), Max Pooling (M), and Fully-connected (F) modules. The spatial size of all kernels of the warp
estimator are 3. The stride for all Convolutions are 1. N, is the number of outputs described in Section 2.4. Each layer of the ridge
enhancer is either a Convolution block V={C, B, R} or a Deconvolution block D={Transposed Convolution, B, R}. The number of kernels
are denoted by ‘KS’, and the output size of each layer is denoted by ‘OS’. Layers 1, 3, 5, and 7 of the ridge enhancer are concatenated to
layers 17, 15, 13, and 11, respectively.
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Figure 4. The a) ROC and b) CMC curves for the 11 cross-matching experiments. In experiments 1 to 3, the raw contactless samples
are matched against the contact-based samples without any rectification. In experiments 4 to 6, contact-based fingerprints are rectified
for elastic deformation before the matching. In experiment 7 samples are matched using a trained Simaese network [16]. Contrary to the
previous methods, we first unwarp the contactless samples and then match them to contact-based fingerprints. Experiments 8 to 11 shows
the performance of our four test models.

L Test Model L A B C D posed in [16]. In the last four experiments, we match the
Warp Model Sec. 2.1 | PCA  FGrid PCA  FGrid unwarped and enhanced contactless fingerprints using the
Score Map Sec. 2.3 | wlo  wlo w/ w/ four variations of our model against contact-based finger-
prints. We use the VeriFinger 7.0 standard SDK [20] as the

Table 2. Four test models defined in Sec. 3 to investigate the role matcher at the top of our algorithms.

of different warp models and the warp score map in the total per-

formance of the model For each experiment, we measure the performance of

a method using Receiver Operating Characteristics (ROC)
and Cumulative Matching Characteristic (CMC) curves

In experiments 4 to 7, we use the previously proposed meth- which are plotted in Figure 4. Table 3 shows the equal error
ods of approximating TPS [2], deep fingerprint rectification rate and Rank-1, Rank-5, and Rank-10 accuracy for all ex-
[7], and robust TPS [17] to rectify contact-based finger- periments. According to the experiments, we observe that
prints for elastic deformation and match them to contactless the free grid warp model outperforms the PCA warp model
samples. It should be noted that contrary to the previous ap- developed for rectifying the elastic deformation of contact-
proaches [2, 25, 7, 17], we unwarp contactless fingerprints based fingerprints [25]. On the other hand, we observe that
rather than rectifying contact-based fingerprints. In exper- the warp score map defined in Equation 7 significantly helps
iment 7 we implement a Siamese model to match contact- the ridge enhancement network to pay more attention to the

based fingerprints against the contactless samples as pro- unwarped areas, and as a result, indirectly provides more



Exp. # Method Equal Error Rate (%) | Rank-1 (%) Rank-5(%) Rank-10 (%)
1 NIST-NBIS [13] 37.66 32.20 38.22 41.89
2 MCC [5] 32.10 35.84 41.90 45.03
3 VeriFinger [20] 25.32 35.13 44.40 47.70
4 Approximating TPS [2] 26.83 21.59 31.93 38.00
5 DeepDFR [7] 21.34 36.41 47.95 53.11
6 RTPS+DCM [17] 19.81 36.25 47.34 54.01
7 CNN-LZ [16] 8.38 56.08 70.17 78.04
8 Model A: PCA w/o ScoreMap 16.25 46.80 58.76 68.10
9 Model B: FGrid w/o ScoreMap 8.90 54.32 67.43 75.90
10 Model C: PCA w/ ScoreMap 11.16 48.20 63.09 70.84
11 Model D: FGrid w/ ScoreMap 7.71 61.01 73.82 80.88

Table 3. Detailed comparison of EER, Rank-1, Rank-5, and Rank-10 of cross-matching results on the 2D/3D dataset.

B) FGrid, w/o C) PCA, w/

D) FGrid, w/

Ground Truth SM

Figure 5. Comparison of the outputs of the four models described
in Sec. 3. The top row shows the ground truth contactless fin-
gerprint and its unwarped versions. The middle row shows the
ground truth ridge map and the final outputs of the four models.
The red score shows the matching score between the ridge map
and the ground truth obtained using VeriFinger [20]. The bottom
row shows the estimated warps for each model.

robust supervision for the warp estimator network. Figure
5 provides a visual comparison of the results obtained from
all four test models. We select model ‘D’, which utilizes
the free grid warp model and the warp score map, as the
superior model of this study due to its significant perfor-
mance compared to other three models. Figure 3 shows
some examples processed by this model. In another exper-
iment, we measure the number of minutiae detected by the
NIST-NBIS [13] and VeriFinger [20]. Table 4 shows the
number of minutiae extracted from the unwarped contact-
less fingerprints. This shows that unwarping the contactless
fingerprint can reveal some valuable information from the
distorted part of the sample. More specifically, samples un-
warped by our final model contain approximately 17% more
minutiae compared to the original contactless fingerprints.

NBIS | VeriFinger
Original 36.74 38.20
Unwarped-Model A | 40.85 41.04
Unwarped-Model B | 42.43 43.22
Unwarped-Model C | 41.54 42.37
Unwarped-Model D | 43.81 44.58

Table 4. Average number of minutiae extracted from contactless
fingerprints before and after the unwarping process. Unwarping
samples by model ‘D’ results in approximately 17% more minu-
tiae compared to the original contactless samples.

4. Conclusion

In this study, we proposed to unwarp the contactless
fingerprints to reduce the spatial mismatch introduced by
the perspective distortion and recover information from
severely distorted parts of the contactless samples. A crit-
ical issue faced when rectifying the perspective distortion
is the lack of enough minutia-annotated pairs of contact-
less and the corresponding contact-based fingerprints. To
overcome this hurdle, we proposed a deep contactless fin-
gerprint unwarping model which indirectly learns to unwarp
contactless fingerprints without having any supervision for
the desired warp parameters. The warp estimator model
learns to unwarp the input contactless fingerprint such that
the unwarp sample has enough overlap with its correspond-
ing contact-based fingerprint. The overlapping information
of the unwarped contactless fingerprint is computed by the
second model, a differentiable ridge enhancer, and the error
of alignment is used to update the parameters of both mod-
els simultaneously. The performance of the proposed model
is evaluated on two public datasets of contactless finger-
prints and is compared to several state-of-the-art methods
for rectifying fingerprint distortion. Extensive experiments
showed that, on average, the proposed model can recover
17% more minutiae from the contactless fingerprints com-
pared to the raw samples.
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