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Abstract

This paper applies the Recursive Projection Method (RPM) to the problem of finding the effective
mechanical response of a periodic heterogeneous solid. Previous works apply the Fast Fourier Trans-
form (FFT) in combination with various fixed-point methods to solve the problem on the periodic
unit cell. These have proven extremely powerful in a range of problems ranging from image-based
modeling to dislocation plasticity. However, the fixed-point iterations can converge very slowly, or
not at all, if the elastic properties have high contrast, such as in the case of voids. The paper exam-
ines the reasons for slow, or lack of convergence, in terms of a variational perspective. In particular,
when the material contains regions with zero or very small stiffness, there is lack of uniqueness, and
the energy landscape has flat or shallow directions. Therefore, in this work, the fixed-point iteration
is replaced by the RPM iteration. The RPM uses the fixed-point iteration to adaptively identify the
subspace on which fixed-point iterations are unstable, and performs Newton iterations only on the
unstable subspace, while fixed-point iterations are performed on the complementary stable subspace.
This combination of efficient fixed-point iterations where possible, and expensive but well-convergent
Newton iterations where required, is shown to lead to robust and efficient convergence of the method.
In particular, RPM-FFT converges well for a wide range of choices of the reference medium, while
usual fixed-point iterations are usually sensitive to this choice.

1 Introduction

This paper proposes and applies the Recursive Projection Method (RPM) – a method to adaptively com-
bine Newton and fixed-point iterations – to the problem of finding the effective mechanical response of a
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periodic heterogeneous linear elastic solid. Specifically, given the average strain or stress, the goal is to
compute the stress and strain distribution within the unit cell. While the linear elastic setting is of interest
in itself, it is also used extensively as part of the iterative solution process in nonlinear elastic or inelastic
settings.

Early numerical works in the periodic setting exploited Fast Fourier Transforms (FFT)1 to partially sim-
plify the problem; however, due to the heterogeneity of the elastic properties, the problem is not com-
pletely decoupled in Fourier space. Therefore, fixed-point methods are used to complete the solution
process [MS94, MS98, MMS99]. This approach was used to compute the effective properties of hetero-
geneous materials that are linear, or nonlinear through iteration. However, while the method is extremely
fast for small elastic contrasts, the convergence is slow or even lost for higher elastic contrasts. This
rules out systems such as materials with voids, where the void is treated as a part of the body with zero
stiffness, for instance. This led to the formulation of the Accelerated FFT Method in [MMS01], based
on a scheme proposed in [EM99] for scalar conductivity problems, that modified the original method
to handle high contrast composites. A further refinement, proposed in [MB12], is the Polarization FFT
Method, which has been shown to be a special case of a general class of methods in [MS14]. A separate
promising approach is [PL13], based on ideas from energy minimization, though they do not test it on
the case of large elastic contrasts.

These methods have been applied in a variety of settings, including in highly nonlinear problems where
they are used in each step of the iteration. For instance, in the context of plasticity, we mention application
at the macroscale [Leb01, LR20], to continuous dislocation models [BH16, PMB+20], as well as recent
seminal work in coupling discrete dislocations with fast calculation of elastic interactions [GRL16]. An-
other important area of application is to phase-field models of microstructure formation in multifunctional
materials, e.g. [CS13]. The Fourier methods have also proven powerful in simulating experimental im-
ages of microstructure because of the ability to apply the method directly on image data without needing
the identification of material boundaries and related challenges [PMG+15].

The methods mentioned above – starting from the original FFT method to the Accelerated and Polariza-
tion FFT methods – are based on fixed-point methods or variations thereof; see [MS14] for a summary.
Consequently, though some of these methods can converge for large elastic contrasts, the convergence
gets slower as the contrast increases. In addition, an important part of these methods is the notion of
a homogeneous reference medium (for details, see Section 2). The notion of a reference medium goes
back to [Esh59], and has proven to be a powerful concept in homogenization analysis [AP13, Lip93].
However, in the numerical setting, the convergence of the fixed-point methods can be very sensitive to
the choice of the reference medium. These reasons motivate the proposed work in applying the RPM to
this problem.

A classical result is that the solution of the elasticity problem can be posed as a minimization of the
strain energy density under standard assumptions, e.g. [Cia88]. That is, the balance of linear momentum,

represented by divσ = 0 where σ is the stress and y is the deformation, is equivalent to min
y

∫
Ω

W (∇y),

where W is the elastic energy density, Ω is the domain, and
∂W

∂∇y
= σ. For simplicity, we have assumed

displacement fixed on the entire boundary. The perspective that the solution of the equilibrium equation
is equivalent to the minimization of strain energy leads to useful insights into the solution methods. In
particular, consider the case of a heterogeneous elastic material with voids. Typically, the voids are not

1Following common practice in this field, we denote also the class of algorithms that use Fast Fourier Transforms as FFT
methods.
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taken to be part of the bodyΩ, and instead they are defined through interior surfaces that are traction-free.
However, in the FFT method, one cannot easily treat the voids in this manner because the discretization
must be uniform for efficiency; hence, the voids are taken to be part ofΩ, and treated as regions with zero
stiffness. The zero stiffness regions imply that there is infinite elastic contrast, but also loss of uniqueness
of the solution.

The uniqueness of solutions is an elementary calculation in linear elasticity, e.g. [Cia88]. Assuming a
boundary value problem with 2 solutions y1 and y2, it can be shown that the difference u := y1 − y2
satisfies

∫
Ω

εu : Cεu = 0, where C is the linear elastic stiffness tensor, and εu is the small strain

associated with u. If C is pointwise positive-definite, then εu ≡ 0, and we have uniqueness up to rigid
motions; Dirichlet boundary conditions on a finite part of the boundary fixes the rigid motion.

From a heuristic perspective, the lack of uniqueness of the solution in a material with zero-stiffness
regions is reasonable: the fictitious material points in the void region can have arbitrary displacement
(while respecting the required smoothness), and this does not cost any elastic energy or affect the physics
of the problem. Hence, we can expect soft or flat directions in energy landscape. When we have large
elastic contrast due to regions with very low stiffness, the energy will be shallow though perhaps not
completely flat. Convergence along these directions can be exceedingly slow, or even lost, in a fixed-
point method.

We briefly note that for rigid inclusions, the strain within the rigid objects must vanish, while the stress
can be arbitrary as long as smoothness and equilibrium are satisfied. The discussion above can be readily
adapted to this setting using the complementary strain energy density.

Given the expectation that the energy landscape is flat or shallow in some directions, the use of New-
ton or similar iterations is likely to provide convergence within a relatively small number of iterations.
However, each Newton iteration is far more expensive than a fixed-point iteration, and increasingly so as
the dimension of the solution space increases. The RPM, proposed in [SK93], provides the possibility
of a balance between the fixed-point and the Newton methods. The first key aspect of RPM is that it
uses the fixed-point iterations to adaptively identify the unstable subspace. That is, starting from the as-
sumption that fixed-point methods will converge when applied to the problem, RPM examines successive
outcomes from the fixed-point iteration scheme to discern if, and how, the basis of the unstable subspace
should be augmented. The second key aspect of RPM is that as the unstable subspace is built up, Newton
iterations are performed on the unstable subspace. This enables a balance between the less expensive but
non-converging fixed-point method and the more expensive but better converging Newton method.

We point out that while Newton iterations are performed only on the unstable subspace, the fixed-point
iterations are performed on the entire space. The reason to perform fixed-point iterations not only on the
stable subspace, but rather on the entire subspace which is slightly more expensive, is that it enables the
use of existing fixed-point methods with minimal changes to existing code and algorithm. In fact, we
exploit this feature to apply RPM to both the original FFT method [MS98] as well as to the Accelerated
FFT method [MS14].

Briefly, the key outcomes of our comparisons of RPM-FFT with the existing methods is that the RPM-
FFT method is faster than the other methods for large elastic contrasts. However, an even more important
advantage appears to be that the convergence of RPM-FFT is very robust with respect to the choice of
the reference homogeneous material, whereas the fixed-point methods are sensitive to this choice; this
is particularly important since there are only some heuristic ideas about how to optimally choose the
reference material.
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For brevity, we refer below to the method proposed in this paper as RPM-FFT; the conventional algorithm
from [MS98] as Classical FFT; the method proposed in [MMS01] as Accelerated FFT; and the method
proposed in [MB12] as Polarization FFT.

The manuscript is organized as follows:

• Section 2 summarizes the Classical FFT method;

• Section 3 describes the RPM-FFT method;

• Section 4 provides a variational perspective;

• Section 5 provides numerical examples and comparisons.

2 Classical FFT Method Based on Fixed-Point Iteration

The original FFT method proposed by Moulinec and Suquet [MS98], and some subsequent improve-
ments, are briefly summarized below in the setting of linear elasticity. The goal is to solve the linear
elasticity problem on a unit cell V in a periodic geometry with a heterogeneous medium. The average
symmetric strain tensor E is given.

We use F [·], ·̂,F−1[·] respectively to denote the Fourier transform, Fourier space representation, and
inverse Fourier transform.

The displacement field u(x) is decomposed into a linear part and a zero-mean fluctuating part: u(x) =
E · x + v(x), ignoring a constant. This implies the strain decomposition εu(x) = E + εv(x), where

ε(·) :=
1

2

(
∇(·) +∇(·)T

)
is the strain.

We notice that ε̂v(k) = ε̂u(k) ∀ k 6= 0, and ε̂u(0) = E while ε̂v(0) = 0. Therefore, for conciseness
after this section, we will use ε̂ to represent both ε̂v and ε̂u, and ε to represent both εu and εv.

The unit cell problem can then be written as

divσ(x) = 0 ∀ x ∈ V (2.1)
σ(x) = C(x)εu(x) (2.2)

where σ is the stress field, and is periodic.

We can then introduce, following [MB12, MS14, EM99] and others, a homogeneous linear elastic com-
parison medium with stiffnessC0 and the polarization τ (x) :=

(
C(x)−C0

)
εu(x). This enables us to

rewrite the stress-strain relation as:

σ(x) = C0εv(x) + τ (x) +C
0E (2.3)

The solution to the unit cell problem can be written in terms of the periodic Greens function Γ 0 corre-
sponding to C0:

εv(x) = −Γ 0(x) ∗ τ (x) ∀ x ∈ V (2.4)
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The Fourier space representation of this relation is:

ε̂v(k) = −Γ̂ 0(k)τ̂ (k) ∀ k 6= 0; ε̂v(0) = 0 (2.5)

Typical FFT methods use the fact that taking the (fast) Fourier transform and then multiplying in Fourier
space is much faster than convolution in real-space. However, we note that both the real and Fourier
representations in (2.4, 2.5) are implicit, through the dependence of the effective forcing τ on the solution
u. Therefore, further work is required to solve this (linear) implicit equation.

From a linear algebra perspective, the Fourier transform takes us to the eigenbasis in a homogeneous
problem; in a heterogeneous problem, the Fourier transform brings us close to the eigenbasis, and further
calculations are required to completely diagonalize the operator. Roughly, one can make an analogy
between the effort to completely diagonalize and the effort to solve the implicit equation in Fourier
space.

The implicit equations are typically solved with fixed point methods, and variations of these. In [MS98],
for instance, they use the iteration ε̂i+1(k) = ε̂i(k)− Γ̂ 0(k)σ̂i(k); see Algorithm 1. Like all fixed point
methods, convergence is slow or lost when the problem contains an unstable subspace. This is precisely
the case when there is large contrast leading to flat energy landscapes and loss of uniqueness, as has been
observed in practice [EM99].

Algorithm 1 Classical FFT algorithm [MS98]
1: Initialization
2: ε0 ← E; σ0 ← C(x) : ε0

3: Iteration (ε0,σ0)
4: while error > tolerance do
5: ε̂i ← F [εi]; σ̂i ← F [σi] . FFT on ε and σ
6: ε̂i+1 ← ε̂i − Γ̂ 0 : σ̂i . ∀ k 6= 0; ε̂i+1(0) = E
7: εi+1 ← F−1[ε̂i+1]
8: σi+1 ← C(x) : εi+1

9: error← (〈‖k · σ̂(k)‖2〉)1/2

‖σ̂(0)‖
≡ (〈‖divσ‖2〉)1/2

‖〈σ〉‖
10: end while

3 The Proposed RPM-FFT Method

We first outline the key elements of the recursive projection method following the seminal work of Shroff
and Keller [SK93], and then the application of RPM to the FFT approach.

When using fixed-point iterative procedures to solve nonlinear problems, slow convergence or even di-
vergence can be caused by a small number of eigenvalues of the Jacobian matrix approaching or leaving
the unit disk {|z| < 1}. The Recursive Projection Method (RPM) is a stabilization procedure that can
recover the convergence.

Consider a problem in N dimensions posed on RN . The method begins by dividing the space RN into
P, that we denote as the unstable eigenspace, and its orthogonal complement Q. P and Q correspond
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respectively to the eigenspace of those eigenvalues leaving the disk and those inside the disk. Then, the
fixed-point iteration is performed only on the complement Q while Newton’s method – or, in practice, a
variation such as quasi-Newton – is performed on the unstable eigenspace P.

Writing the original problem to be solved in the fixed-point form as follows:

u = F (u), F : RN → RN (3.1)

the fixed-point iteration can be written:

u(ν+1) = F (u(ν)) (3.2)

where ν indicates the iteration number. While the eigenvalues of the Jacobian matrix Fu :=
∂F

∂u
lie

inside of the disk
Kδ = {|z| ≤ 1− δ} for some δ > 0 (3.3)

and the initial value u(0) is sufficiently close to the solution, the fixed-point iteration will converge. A
small positive constant δ is used to ensure that one is sufficiently far from the boundary between stable
and unstable fixed point iterations.

Suppose now that m eigenvalues lie outside the disk Kδ

|µ1| ≥ · · · ≥ |µm| > 1− δ ≥ |µm+1| ≥ · · · ≥ |µN | (3.4)

Let Z ∈ RN×m be the orthonormal basis for P. The projectors of the subspaces P and Q are respectively
P = ZZT andQ = I −ZZT . For each u ∈ Rn, there is a unique decomposition:

u = p+ q, p ≡ Pu ∈ P, q ≡ Qu ∈ Q (3.5)

This allows the introduction of f(p, q) := PF (p+ q) and g(p, q) := QF (p+ q).

Applying Newton’s method on the unstable subspace P:

p(ν+1) = p(ν) + (I − f (ν)
p )−1(f(p(ν), q(ν))− p(ν)) (3.6)

where fp(p(ν), q(ν)) = PFu(u(ν))P is the derivative of f with respect to p.

We continue to use fixed-point iteration on Q:

q(ν+1) = g(p(ν), q(ν)) (3.7)

Efficiently identifying the unstable eigenspace P is an essential feature of RPM. This corresponds to
finding the basis Z; or, in practice, an approximation of Z since the Jacobian matrix can be expensive
to compute. In [SK93], this is accomplished directly by monitoring the convergence rate of q(ν), without
computing the Jacobian matrix. This is an important feature that significantly reduces the computational
cost, and we follow that procedure here.

The method begins by assuming that the unstable eigenspace P is 0-dimensional and Z = 0. We then
iteratively build up the unstable eigenspace by adding to Z the eigenspace corresponding to those eigen-
values that approach the unit disk . The eigenspace that corresponds to the eigenvalues approaching the
unit disk corresponds to the dominant eigenspace of gq = QFuQ.
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If the fixed-point iteration does not converge within the specified limit of iterations nmax, the eigenspace
corresponding to the eigenvalues approaching the unit disk is identified as follows. In [SK93], it is
shown that ∆q(ν) ≡ q(ν+1) − q(ν) ≈ (gq)

ν∆q(0), i.e., a power iteration with gq applied to ∆q(0). From
the properties of power iterations, ∆q(ν) identifies the eigenspace of gq that corresponds to the largest
eigenvalue, assuming that ∆q(0) has a nonzero component in this space.

Following [SK93], we approximate the dominant eigenspace of gq using QR factorization to write:

D ≡
[
∆q(ν), ∆q(ν−1)

]
=: D̃T (3.8)

where D̃ ∈ RN×2 is orthogonal and T ∈ R2×2 is upper triangular. When T11 � T22, we add the first
column of D̃ to the basisZ, corresponding to one real eigenvalue approaching the unit disk. Else, we add
both columns of D̃ to the basisZ, corresponding to a complex conjugate pair of eigenvalues approaching
the unit disk. Alternate approximations are further discussed in [SK93].

To apply the RPM method to the specific context of the FFT fixed-point algorithm, we formally define
the fixed-point operator F from Algorithm 1 through the equation:

εi+1 = F−1
[
F [εi]− Γ̂ 0 : F [C(x) : εi]

]
(3.9)

Define z := ZTp ∈ Rm to represent p in the basis Z. Then the stable / unstable decomposition can also
be written as:

u = Zz + q, p = Zz, q = (I −ZZT )u (3.10)

It is suggested in [SK93] that it is often sufficient for convergence to simply compute only once the
quantity (I − fp)−1 using finite differences. In our calculations in this paper, we have also found this to
be sufficient for convergence, and of course very efficient.

DefiningH := ZTFuZ, the iteration (3.6, 3.7) can now be rewritten in a form that is more efficient and
transparent for implementation:

z(ν+1) = z(ν) + (I −H)−1(ZTF (u(ν))− z(ν)) (3.11)

q(ν+1) = (I −ZZT )F (u(ν)) (3.12)

u(ν+1) = Zz(ν+1) + q(ν+1) (3.13)

Finally, integrating the FFT method into RPM, gives us Algorithm 2.

An important feature is that the fixed-point iteration is conducted on the entire solution space and not only
on the stable subspace. After the fixed-point iteration, only that part of the outcome corresponding to the
stable part is retained in constructing the next iterate of the approximate solution. While marginally more
computationally expensive than using a fixed-point iteration only on the stable subspace, it has the impor-
tant advantage that standard existing fixed-point codes can directly be used with minimal modification as
the RPM “wraps around” the fixed-point method.

4 A Variational Perspective

We begin with noting an analogy between the problem of interest here and the energy-minimization
formulation of electrostatic fields in matter. The field equations and constitutive response of electrostatic
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Algorithm 2 RPM-FFT algorithm
1: Initialization
2: ε0 ← E; ξ0 ← F (ε0)
3: Iteration (ε0, ξ0)
4: while error > tolerance do
5: z(ν) ← ZTε(ν); ζ(ν) ← ZTξ(ν) . Project to unstable subspace
6: z(ν+1) ← z(ν) + (I −H)−1(ζ(ν) − z(ν)) . Newton iteration
7: q(ν+1) ← ξ(ν) −Zζ(ν)
8: ε(ν+1) ← Zz(ν+1) + q(ν+1)

9: ξ(ν+1) ← F (ε(ν+1)) . Fixed-point iteration
10: ν = ν + 1
11: if ν > nmax then . Start Newton iteration if number of fixed-point iterations exceeds nmax
12: Z ← In(q,Z) . Increase basis size
13: H ← FuZ . Compute additional column ofH
14: ν = 0
15: end if

16: error← (〈‖k · σ̂(k)‖2〉)1/2

‖σ̂(0)‖
17: end while

fields in matter are respectively:

div∇φ = div p on Ω, p(x) = p̃(∇φ(x),x), BCs: φ(x) = V0(x) ∀x ∈ ∂Ω (4.1)

where φ is the electric potential, p is the dipole per unit volume induced by the electric field∇φ, and p̃ is
the material-dependent response function that can be an explicit function of position. For simplicity, we
have assumed Dirichlet boundary conditions V0 on the boundary ∂Ω of the domain Ω, but it is straight-
forward to use more general BCs. Note that we neglected various constants such as the permittivity of
vacuum.

Under some physically-motivated conditions on p̃, this can be reformulated as the minimization of elec-
trostatic energy. For instance, we consider the case of a linear dielectric which is analogous to the linear
elastic medium considered in this paper, in which case p̃ takes the form:

p̃(E(x),x) = χ(x)E (4.2)

where χ(x) is the second-order electrical susceptibility tensor.

Following [JK90] for magnetostatics – see also [SB01] and [YD11] for electrostatics – we can write this
as an energy minimization with a nonlocal constraint:

minEelectro[p, φ], with Eelectro[p, φ] =
1

2

∫
Ω

(
p · χ−1p+ |∇φ|2

)
, subject to div∇φ = div p on Ω

(4.3)
with BCs φ(x) = V0(x) ∀x ∈ ∂Ω.

From the fundamental physics of electrostatics problems, related to the motion of charges under an elec-
tric field, we have χ is positive-definite pointwise. Therefore, from an elementary application of the
direct method of the calculus of variations, a unique minimizer exists; loosely, the energy is bounded be-
low and grows quadratically in all directions from the positive-definiteness ofχ. The nonlocal constraint,
while somewhat nonstandard, can be readily dealt with, e.g. [JK90].
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We turn now to linear inhomogeneous elasticity. We recall the balance of linear momentum:

divC(x)εu = 0 (4.4)

posed on the periodic unit cell V with periodic BCs. We decompose C(x) = C0 + d(x), where C0 is
the homogeneous reference medium. This gives:

divC0εu = − divdεu (4.5)

Recall from Section 2 that we defined the polarization field τ := dεu. Following closely the electrostatic
case, we can pose this as a nonlocally-constrained critical-point problem. Define the energy E:

E[τ ,u] =
1

2

∫
V

(
τ : d−1τ + εu : C0εu

)
, subject to divC0εu = − div τ (4.6)

Use the variation τ → τ + εω and u→ u+ εw:

δE =

∫
V

(
ω : d−1τ + εu : C0εw

)
(4.7)

The variations ω and w are not independent; they are constrained to satisfy:

divC0εw = − divω (4.8)

On both sides of the equation above, do the following: (1) take the inner product with εu; (2) integrate
over V ; (3) use integration-by-parts to move the derivatives. The result of these operations is:∫

V

εu : C0εw =

∫
V

−ω : εu (4.9)

where the boundary terms cancel out due to periodicity.

Using (4.9) in (4.7), and requiring δE = 0 for arbitrary ω, we have:

d−1τ − εu = 0, divC0εu = − div τ (4.10)

We highlight here that the tensor d(x) is generally not positive-definite pointwise, particularly in the
important case of high elastic contrasts. For instance, consider a material with voids, where the non-
voided material is stable, i.e. C(x) is positive-definite in the non-voided material, and C(x) = 0 in the
void region. The reference medium is taken to be stable, i.e. C0 is positive-definite to enable solution of
the constraint equation. Then, d = −C0 in the voids, and is not positive-definite pointwise. Therefore,
in general, we do not expect existence of minimizers for E.

Loosely, the energy has unstable directions which are not bounded below. Therefore, gradient descent
methods – which can be written as fixed-point methods as shown below for this energy formulation and
by [Sch17] – do not converge. On the other hand, using Newton iterations along the unstable directions –
once these are identified – can greatly improve convergence, which is precisely the role of the Recursive
Projection Method.

9

https://doi.org/10.1016/j.cma.2020.112946


Effective Response of Heterogeneous Materials using the Recursive Projection Method Xiaoyao Peng, Dhriti Nepal, Kaushik Dayal
Comput. Methods. Appl. Mech. Engrg. 364:112946, 2020. (https://doi.org/10.1016/j.cma.2020.112946)

4.1 Fixed-Point Iterations as Gradient Descent

We consider a gradient / steepest descent approach to minimizing the energy E:

E =
1

2

∫
Ω#

(
τ : d−1τ +

1

2
εu : C0εu

)
, subject to divC0εu = div τ (4.11)

The gradient direction in function space is given by d−1τ − εu, and a gradient flow in the standard L2

norm is τ̇ ∼ d−1τ − εu.

Consider an explicit update scheme where the constraint equation is also updated at each iteration. We
obtain the following fixed-point algorithm:

1. given εiu
2. τ i+1 = τ i + a(d−1τ i − εiu)
3. divC0ε

i+1
u = div τ i+1

4. loop

(4.12)

where a is related to the fictitious timestep and mobility, and the superscript indexes the iterations. No-
tice that the constraint update (step 3 above) requires solution of a homogeneous periodic linear elastic
problem with a given right side. This can be done very efficiently using fast Fourier transforms. Each
iteration in the loop above is therefore extremely quick, but the key question is whether the algorithm
converges and, if so, how many iterations it takes. Given that E may not possess minimizers, it follows
that gradient descent may not converge.

The Classical FFT, summarized in [MS14], can be written in the fixed point form:

1. given εiu
2. τ i+1 = dεiu

3. divC0ε
i+1
u = div τ i+1

4. loop

(4.13)

This can be considered as derived from the explicit update scheme above, except that the update for τ in
step 2 goes directly to the minimum – for a given εiu – using that the energy is quadratic. As in the explicit
update scheme, this is very fast for each iteration, but whether it converges, and the rate of convergence,
depend on the structure of the energy landscape.

The Polarization FFT proposed by [MB12] can be rewritten in the form:

1. given εiu
2. τ i+1 = dεiu

3. divC0ε
i+1
u = divC0d

−1τ i+1 + β divC0d
−1C0ε

i
u − divC0d

−1C0ε̃
i
u

where ε̃iu solves divC0ε̃
i
u = div

(
ατ i + (α + β)C0ε

i
u

)
4. loop

(4.14)

While this form is not as transparent or convenient, it enables us to compare the methods in the context of
gradient descent. We notice that in this form, the polarization method can be considered as a relaxation
method that mixes in the value from the previous iteration, with α and β being the relaxation parameters.
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5 Numerical Comparisons Between Classical FFT, Accelerated FFT,
and RPM-FFT

As a canonical problem for many of the calculations below, we follow [MS98] in using a circular stiff
fiber embedded in a compliant matrix, at the center of a square unit cell and periodic boundary conditions
(Fig. 1). This example is chosen because of the availability of approximate closed-form solutions. We
use the following notation: a denotes the fiber radius; b denotes the size of the square unit cell; Ef
and νf = 0.35 denote respectively the elastic modulus and the Poisson’s ratio of the fiber, noting that
we assume isotropic elasticity; Em and νm = 0.23 denote respectively the elastic modulus and the
Poisson’s ratio of the matrix, again assuming isotropic elasticity; and K = Ef/Em is the elastic contrast,
where particular focus will be on large values of K. The average strain is denoted by the components
E12, E11, E22. For all tests in this section except Section 5.5, the reference medium is assumed to be

isotropic and we choose the elastic modulus Eo =
Ef + Em

2
and the Poisson’s ratio νo = νf = νm.

As a first test, we simply confirm that RPM-FFT converges to the correct solution in Fig. 1. There is no
discernible difference2 in the solutions obtained from the Classical FFT and RPM-FFT methods. Further,
Classical FFT takes less time3 than RPM-FFT. This is unsurprising given that the elastic contrast is small
(K ≈ 5.8). As K increases, the advantages of the RPM-FFT method over the Classical FFT method
become clear. We examine this and other issues below, with a more detailed reporting of computational
time.

5.1 Time to Convergence vs. Elastic Contrast

We next compare the time taken for convergence across the Classical FFT, Accelerated FFT, and RPM-
FFT methods. We continue with the circular fiber in matrix setting, with K going from 10 to 105, and
νm = νf = 0.25. We use a 256 × 256 discretization, and apply an average shear strain: E12 = 0.5%,
E11 = E22 = 0.

Fig. 2 shows the now well-known dramatic improvement between the Classical FFT and the Accelerated
FFT methods; [MMS01] show that the rate of convergence in the Classical FFT method goes as the
contrast K, while for the Accelerated FFT method the rate of convergence goes as the square root of the
contrast K.

Fig. 2 also compares the Accelerated FFT method and RPM-FFT method. When the contrast is below
103, the Accelerated FFT method converges faster. However, as the contrast increases, RPM-FFT is
increasingly competitive, and surpasses Accelerated FFT. The rate of convergence of RPM goes as K0.43

for this particular class of examples. The exponent appears to be roughly the same in a few other problems
that we tested.

We note that the comparisons for all of these methods was conducted by implementing the codes in
Matlab with no additional optimization of any of the methods to ensure fair comparisons.

2The tolerance in all calculations reported in this paper is taken to be 10−4.
3All times reported in this paper are wall-clock times.
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Figure 1: Top row: ε12 component of the strain using Classical FFT (left) and RPM-FFT (center)
methods. Bottom row: the figure on the right shows ε12 along the horizontal symmetric axis for
both RPM-FFT and Classical FFT; the figure on the left shows the normalized difference. The
geometry is given by a/b = 1/16, and the figure shows only the region in the vicinity of the fiber.
The mesh is 2048 × 2048. We use Ef = 68.9GPa and Em = 400GPa; the contrast K ≈ 5.8. We
apply shear loading: E12 = 0.5%, E11 = E22 = 0.

5.2 Balancing Newton Iterations against Fixed Point

As can be expected, the speed of RPM-FFT depends strongly on the size of the unstable subspace on
which Newton iterations must be performed. While the Newton’s method has better convergence prop-
erties, each Newton iteration is also far more expensive than the fixed point iteration, particularly as
the dimension of the unstable subspace increases. On the other hand, the fixed point method converges
slowly, or not at all, on the unstable subspace, which also increases the expense as it requires a large
number of iterations.

In this section, the term “unstable subspace” refers to the subspace that the RPM-FFT method identifies;
this is not necessarily the true unstable subspace whose corresponding eigenvalues are outside the unit
disk.

An optimal method has to balance between the opposing issues identified above. Denoting by nmax
the number of fixed-point iterations before increasing the size of the unstable subspace, we notice that
setting nmax too low causes the dimensionality of the unstable subspace to increase quickly and makes
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Figure 2: Time at convergence of three methods with varying K. Note the log scale. The lines are linear
best fits.

each Newton iteration expensive; on the other hand, if nmax is too high, there will be minimal progress
from the large number of fixed-point iterations before switching to Newton iterations.

We examine this interplay numerically for the model problem described previously, for varying K. We
first fix K, and then compare the times obtained for a large range of nmax going from 1 to 50. We then
repeat over a range of K. Of these, we denote the value of nmax with the best (least) time as nbestmax(K).
Fig. 3 shows the times to convergence for a fixed value of nmax = 10, as well as the times to convergence
for nbestmax(K), as a function of K. An immediate conclusion is that there is almost no difference at low
K, and not much difference at higher K.

We next compare the effect of the size of the problem on nbestmax(K), for a fixed value of K = 50. Fig. 4
shows nbestmax for different problem sizes, here identified with the number of grid points in each direction.
An immediate conclusion is that nbestmax increases with the problem size.

5.3 Effect of Volume Fraction and Problem Size

In the model problem of a stiff fiber in a soft matrix, the volume fraction of the stiff fiber has been taken
to be small; for a/b = 1/16, the stiff fiber has a volume fraction λ = 0.3%. Note that we use the term
volume fraction though we are working in the 2D setting.

We expect that the size of the unstable subspace is related to the size of the fiber based on the heuristics
discussed in Sections 1, 3 and 4. As the volume fraction increases, we therefore expect a a larger unstable
subspace and consequently more expensive Newton iterations.

We examine this issue through numerical experiments, and find that RPM-FFT works well even at the
combination of large elastic contrast K and volume fraction of fiber λ. For instance, even with K ≈ 104

or higher, and a/b = 9/10 ⇒ λ = 63.6%, RPM-FFT is easily able to converge. Fig. 5 shows the time
to convergence as a function of λ. While larger elastic contrasts require more time to converge – in line
with our observations above – we notice that the time to converge is almost insensitive to λ for volume
fractions larger than 5%.
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Figure 3: Time at convergence of RPM with fixed nmax = 10 and nbestmax(K). The lines are linear best
fits.

We next consider the case of fixed λ but with changing problem size with a fixed geometry. That is,
we compare discretizations of varying coarseness. The number of grid points within the fiber, as well
as overall, increases as the discretization is made finer. We consequently expect the unstable subspace
identified by RPM to also increase. Fig. 6 shows the relation between the size of the unstable subspace
as the problem size increases from 32 × 32 to 512 × 512, for different values of elastic contrast K. The
volume fraction λ is held fixed 1.2%. Roughly, we observe a logarithmic scaling between the size of the
unstable subspace and the number of grid points within the fiber.

5.4 Interaction Between Stiff Fibers

Motivated by recent advances in functional composites [HSP+19, RRWN17], we examine the setting of
two circular carbon fibers embedded in a polyurethane matrix. It is a significant challenge to character-
ize the effective properties of heterogeneous materials such as nanofiber- and nanoparticle- reinforced
nanocomposites starting from the scale of resolving the entire microstructure. This makes it challenging
to develop physics-based high-fidelity model that predict the performance of such nanocomposite sys-
tems. The FFT methods can help to make stronger direct connections between mechanics modeling and
experimental data, which in turn can have a significant impact on understanding the structure-property
relations of these complex heterogeneous nanocomposite systems.

We consider the geometry of Fig. 7 with two fibers that are either close to each other – the separation is
smaller than the smaller fiber diameter – and when they are further apart. The moduli are assumed to be
Ef = 900 GPa for the carbon fiber and Em = 0.03 GPa for the polyurethane, giving an elastic contrast
of K = 3 × 104. Two fibers, radius a and 2a, are located in a rectangular unit cell of size 2b × b, with
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Figure 4: The best nmax for different problem sizes. The line connects datapoints to aid visualization.

b = 10a. We examine two cases: when the fibers are far apart with distance b between the centers of the
fibers, and when the fibers are closer with distance 0.4b, see Fig. 7. We apply a uniaxial average strain:
E11 = 5%, E22 = E12 = 0.

Fig. 7 shows strain and strain energy density fields for the two configurations. In all of these configura-
tions, the strain and strain energy density fields are essentially 0 within the stiff fibers, and also show good
convergence properties with no obvious spurious oscillations near the transition from matrix to fiber. We
notice that in the case where the fibers are further apart, the energy density and strain fields suggest that
the fibers can be essentially considered dilute and non-interacting. However, when the fibers are closer
together – as is typical of experimental specimens [HSP+19, RRWN17] – there is a clear interaction be-
tween the fields, and the energy density and strain fields take their largest values in the region between
the fibers.

5.5 RPM Applied to the Accelerated FFT Method

Two important advantages of the RPM approach are, first, that it uses the fixed-point iterations to iden-
tify the unstable subspace; and, second, once identified, it performs Newton iterations on the unstable
subspace with fixed-point iterations on the entire space. This makes it easy to apply the RPM strategy
to existing fixed-point methods with minimal changes to algorithm / code. We therefore exploit this to
apply the RPM approach to the Accelerated FFT method which is also based on a fixed-point framework.
Given that the Accelerated FFT method has much superior performance compared to the Classical FFT
method, we might expect that a RPM-Accelerated FFT method likely performs even better. We examine
this issue below.

In [MS14], it is shown that the Accelerated FFT method is a special case of the general polarization-based
fixed-point method developed by [MB12]. Algorithm 3 is the general polarization-based method, where
α and β can take any value within a range. For the choice α = β = 2, the polarization-based method
reduces to the Accelerated FFT method. In [MS14], they also discuss and compare the Accelerated
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Figure 5: Time to convergence of RPM-FFT with varying λ and K. The lines connect the datapoints to
aid visualization.

FFT method with other polarization-based methods, corresponding to the choices α = β = 1.5 and
α = β = 1.

All of these methods are fixed-point based methods, and therefore require that the eigenvalues of the
Jacobian are within the unit disk for convergence. The Accelerated FFT method has the lowest upper
bound [MS14], and we therefore combine this with the RPM method.

In all of these methods, an important part of the method is the additive decomposition of the heteroge-
neous stiffness into a homogeneous reference medium and a fluctuation; see Section 4. The convergence
rate is typically very sensitive to the choice of reference medium.

It has been observed that the choice of the reference medium affects the rate of convergence in many
fixed-point based schemes. In the classical FFT method [MS98], the best choice was found to be the
average of the supremum and infimum of the elastic moduli. In Accelerated FFT [MMS01] and Polariza-
tion FFT [MB12] the optimum is shown to be Eo/Ef =

√
K when computing with a very high precision

(10−10).

However, as also discussed in Section 4, we expect the RPM-based approach to be insensitive to this
choice. Therefore, we apply the RPM approach to the Accelerated FFT method, which is readily obtained
by simply replacing the fixed-point operation in algorithm 2 with the iteration procedure in algorithm 3.

Table 1 compares the number of iterations and the time for Accelerated FFT and RPM-Accelerated FFT
for a wide range of contrasts. The enhancement provided by RPM is increasingly large as the elastic
contrast K increases.

We next examine the sensitivity to the choice of reference medium for Accelerated FFT and RPM-
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Figure 6: Size of unstable subspace with problem size. The lines connect the datapoints to aid visual-
ization.

Algorithm 3 Polarization-FFT algorithm
1: Iteration i+ 1 (given εi)
2: σi ← C(x) : εi

3: sia = σ
i + (1− β)C0 : εi

4: sib = ασi + βC0 : εi

5: ŝb
i ← F [sib];

6: ε̂b
i ← −Γ̂ 0 : ŝb

i ∀k 6= 0 and ε̂b(0)i = βE
7: εib ← F−1[ε̂b

i]
8: εi+1 = (C(x) +C0)−1 : (sia +C

0 : εib)

Accelerated FFT. Fig. 8 compares the time to convergence and number of iterations – for a wide range
of K – for the usual Accelerated FFT method against the RPM-Accelerated FFT method, for various
choices of reference medium.

When K is small, the performance of the Accelerated FFT follows what has been observed in [MS14]:
namely, the best choice is at when Eo/Ef =

√
K. But this is not the case for K = 103, 104. Meanwhile,

RPM-Accelerated FFT is much less affected by the different choices of the reference over all of the Ks
being tested. As pointed out in [MS14], the Eo/Ef =

√
K choice is valid when the precision is high

(10−10), which explains Fig. 8 (e,f,g,h), as all tests here are computed with 10−4 precision which is more
in line with standard practice.

We notice, particularly at high contrast, that the use of RPM in conjunction with Accelerated FFT makes
the method much more robust with regard to the choice of reference medium.
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Figure 7: Energy density (top row) and ε11 (bottom row) for almost-rigid fibers, when the fibers are near
and far away from each other.

6 Concluding Remarks

We have applied RPM [SK93] to the problem of determining the stress and strain in the unit cell of a
periodic linear elastic material. Existing methods for this problem, e.g. Classical FFT [MS98] and Ac-
celerated FFT [MMS01] methods, are fixed-point methods, and can have difficulty converging when the
eigenvalues of the Jacobian lie outside the unit disk. While Newton methods can recover the conver-
gence, they are very expensive on the high-dimensional problems of interest. RPM [SK93] provides an
elegant and efficient balance between fixed-point and Newton methods: it uses the fixed-point iterations
to adaptively identify the unstable subspace that requires Newton, and performs Newton only on that
subspace. Fixed-point iterations can be performed on the complementary stable subspace. For practical
reasons of not changing existing algorithms and code, fixed-point is performed on the entire space, but is

Number of Iterations Time (seconds)
K Acc-FFT RPM-Acc-FFT Acc-FFT RPM-Acc-FFT

500 234 83 6.46 4.47
1000 335 81 8.51 4.42
5000 335 81 20.24 4.40

10000 1136 82 28.29 4.44
50000 2741 82 68.56 4.45

100000 3863 161 98.60 11.13

Table 1: Number of iterations and time to convergence for the Accelerated-FFT and RPM-Accelerated-
FFT for a wide range of K.
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then projected to the complementary stable subspace.

A variational perspective, using analogies from electromagnetism, provides insight into the reason that
the RPM decomposition can work well. In particular, we expect that there are flat or unstable directions in
the energy landscape in the context of certain formulations of heterogeneous linear elasticity, particularly
when the stiffness tensor can vanish, as in the case of voids in materials. The RPM-FFT method proposed
in this paper exploits this structure to perform Newton iterations in directions along which the fixed-point
would be unstable.

Our results show that the RPM-FFT is more efficient than the fixed-point methods as the contrast is
increased. Further, all of the fixed-point methods mentioned above require the use of a homogeneous
reference medium as an important part of the method, but there is typically no systematic approach to
selecting the reference medium. We see that while the fixed-point methods can be sensitive to the choice
of reference medium, the RPM-FFT method is extremely robust in terms of convergence for a wide range
of choices for the reference medium.

We also note the feature of RPM that it can be easily used to “wrap-around” any fixed-point algorithm.
Consequently, while we have used it here for two specific instances of FFT-based methods, it can be
easily combined with other formulations if they are found to be more efficient.

While we have applied RPM-FFT to the context of mechanical response, our overall approach is appli-
cable to numerous linear problems with the same structure in homogenization [Mil02]. Further, while
we have not examined nonlinear problems here, it is relatively straightforward to do this. Briefly, most
methods for nonlinear problems using the FFT consist of the repeated use of linear solves [LR20], and
the method presented can readily the other approaches in a modular way.

Finally, we note that while we have used Newton iterations for the space that is unstable under fixed-
point iterations, it is possible to replace or combine Newton iterations with a conjugate gradient or other
solver that could provide better performance [VZM14, GMC13, KBS14]. Potential improvement can be
achieved by combining the model order reduction techniques for FFT solvers as proposed in [KMG+19]
with RPM. This provides a direction for future exploration. In this context, we particularly highlight
the recent interesting approach proposed in [Sch17], where a different variational principle is shown to
provide promising results.
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Availability of Codes

The code developed and used for the calculations in this paper is available at
https://github.com/KaushikDayalGroup/RPM-for-FFT-and-Elasticity
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[VZM14] Jaroslav Vondřejc, Jan Zeman, and Ivo Marek. An fft-based galerkin method for homoge-
nization of periodic media. Computers & Mathematics with Applications, 68(3):156–173,
2014.

[YD11] Lun Yang and Kaushik Dayal. A completely iterative method for the infinite domain
electrostatic problem with nonlinear dielectric media. Journal of Computational Physics,
230(21):7821–7829, 2011.

22

https://doi.org/10.1016/j.cma.2020.112946


Effective Response of Heterogeneous Materials using the Recursive Projection Method Xiaoyao Peng, Dhriti Nepal, Kaushik Dayal
Comput. Methods. Appl. Mech. Engrg. 364:112946, 2020. (https://doi.org/10.1016/j.cma.2020.112946)

Figure 8: Number of iterations and times to convergence as a function of reference medium modulus Eo.
We examine K = 10, 102, 103, 104 in the first, second, third and fourth rows respectively.
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