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Abstract

Hierarchical matrix approximations have gained significant
traction in the machine learning and scientific community as
they exploit available low-rank structures in kernel methods
to compress the kernel matrix. The resulting compressed ma-
trix, HMatrix, is used to reduce the computational complexity
of operations such as HMatrix-matrix multiplications with
tuneable accuracy in an evaluation phase. Existing imple-
mentations of HMatrix evaluations do not preserve locality
and often lead to unbalanced parallel execution with high
synchronization. Also, current solutions require the compres-
sion phase to re-execute if the kernel method or the required
accuracy change. MatRox is a framework that uses novel
structure analysis strategies with code specialization and a
storage format to improve locality and create load-balanced
parallel tasks for HMatrix-matrix multiplications. Modular-
ization of the matrix compression phase enables the reuse
of computations when there are changes to the input accu-
racy and the kernel function. The MatRox-generated code
for matrix-matrix multiplication is 2.98%, 1.60X, and 5.98%
faster than library implementations available in GOFMM,
SMASH, and STRUMPACK respectively. Additionally, the
ability to reuse portions of the compression computation for
changes to the accuracy leads to up to 2.64X improvement
with MatRox over five changes to accuracy using GOFMM.
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1 Introduction

Kernel methods in machine learning such as kernel-
regression [30, 50], Gaussian kernel-based learning methods
[16, 38], and support vector machines [18] used in applica-
tions such as feature extraction [52] and text recognition
[9, 50], as well as scientific simulations, involve computa-
tions on a dense symmetric positive definite (SPD) matrix
that is obtained by computing a kernel function K on pairs
of points from a set of points {xy, . . ., x5 }. The values of the
NxN kernel matrix K are given by K(i, j) = K(x;, x;), witha
typically large N. For example, in Gaussian ridge regression,
the kernel exp(—||x; — x;||5/2h?), with h as bandwidth, is ap-
plied to a machine learning dataset, i.e. points. The resulting
kernel matrix is used in costly matrix-matrix multiplications,
with complexity O(N?), in a direct solver to minimize a loss
function.

The computational complexity of kernel matrix computa-
tions is reduced significantly, leading to orders of magnitude
performance improvement [5], if instead of assembling K
and operating on it, it is compressed to K using the kernel
function, points, and an admissibility condition [6, 28]. An
admissibility condition is the value of a distance measure
between points above with which the kernel value for that
point pair is approximated.

Many of kernel matrices are structured (or low-rank, or
data-sparse). Hierarchical matrix computations, leverage the
data-sparse structure introduced by the point set distribu-
tion and the admissibility condition during a compression
phase to implicitly obtain K. First, points are partitioned
into a hierarchy and a cluster tree (CTree) is created from
the partitioning of points. Then, based on the admissibility
condition, i.e. a geometric distance between points, inter-
actions between nodes are calculated and included in the
CTree to form the HTree. This structure, embedded in the
HTree and the CTree, is used in the compression phase to
hierarchically approximate low-rank blocks of the kernel
matrix. The low-rank approximated blocks, as well as the
blocks that are not approximated, are referred to as subma-
trices and form the compressed matrix K, also known as the
HMatrix. The submatrices are then operated on instead of K
in an evaluation phase.
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Previous work attempts to optimize hierarchical matrix
computations, specifically the evaluation phase, on paral-
lel multicore architectures [20, 32, 62]. H? structures are
amongst the most commonly used hierarchical algorithms
and GOFMM [62], STRUMPACK [20], and SMASH [8] are
well-known libraries that implement H? structures. How-
ever, these implementations do not preserve locality and
often lead to a load-imbalanced execution with high syn-
chronization overheads, which limits the performance and
scalability of hierarchical matrix evaluations on parallel ar-
chitectures.

The order and dependency of computations during eval-
uation is determined by the HTree. GOFMM [62] uses the
HTree as the input for dynamic task scheduling, however,
their scheduling trades locality for load balance. SMASH [8]
traverses the CTree level-by-level, thus, synchronization
overheads increase with the length of the critical path. Also
schedulers that work with the CTree do not realize the addi-
tional dependencies introduced by the admissibility condi-
tion, which leads to additional synchronization costs. Imple-
mentations such as SMASH and STRUMPACK [20] do not op-
timize for load balance. Finally, some libraries are optimized
for a specific H? structure, for example STRUMPACK is
specialized for Hierarchical Semi-separable (HSS) [11] struc-
tures, or only support low-dimensional points, e.g. SMASH.

In this paper, we present two structure analysis algorithms
to generate specialized code that improves data locality and
maintains a good load balance for HMatrix evaluations. We
store the submatrices in the order they are visited during
evaluation to improve locality. Our work focuses on HMatrix-
matrix multiplications for the evaluation phase; we use the
words HMatrix evaluation and HMatrix-matrix multiplica-
tion interchangeably throughout the paper. The proposed
algorithms are implemented in a framework called MatRox,
which uses structure information from the points, the kernel
function, as well as the admissibility and accuracy require-
ment. The MatRox inspector compresses K, analyzes struc-
ture, and generates optimized code. The executor computes
the HMatrix-matrix multiplication.

Additionally, MatRox enables partial reuse of computa-
tions when the kernel function and/or input accuracy are
modified. In scientific and machine learning simulations, of-
ten the kernel matrix has to be re-compressed because either
the overall accuracy of the HMatrix-matrix multiplication is
not sufficient or has to be reduced for faster evaluation, or
the kernel function changes. While available libraries have
to rerun the costly compression, MatRox reuses parts of the
previous inspection, e.g. compression information, and also
reuses the previously generated evaluation code.

The main contributions of this work include:

e A novel structure analysis strategy, based on the mod-
ularization of compression, called interaction blocking.
Current approaches parallelize HMatrix evaluation in
two parts. One of these parts visits all pairs of nodes
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that interact with a parallel reduction. The proposed
interaction blocking algorithm turns reduction paral-
lelism into embarrassingly parallel computations by or-
ganizing interactions into blocks that share data which
improves locality and removes synchronization.

e The structure coarsening algorithm that is also based
on the modularization of compression. The second
part that current approaches parallelize in HMatrix
evaluation sequentially visits all levels in the hierarchy
and in-parallel computes nodes in the same level (i.e.
wavefront parallelism [55].) The structure coarsening
algorithm organizes the wavefront parallelization into
coarser groupings to better balance data locality and
load. The number of points organized into each node
and a user-requested accuracy are used to approximate
load.

e The Compressed Data-Sparse (CDS) storage format
that organizes data based on the loop visitation order
in HMatrix evaluation to improve locality.

e Implementation of the proposed strategies in a frame-
work called MatRox. The MatRox-generated code is on
average 2.98X, 1.60X%, and 5.98% faster than GOFMM,
SMASH, and STRUMPACK respectively.

e An approach that enables the reuse of computations in
compression for when the kernel function and/or accu-
racy change. The approach enables deriving a family
of successively-approximated HMatrices in incremen-
tal fashion, rather than starting from scratch. MatRox
with reuse is 2.21X faster than GOFMM over 5 changes
to the input accuracy.

2 Approach Overview

In this section, we review the typical approach to hierarchical
approximation and then provide an overview of the approach
presented in this paper that is implemented in MatRox.

2.1 Background

Current library implementations of hierarchical matrix ap-
proximations typically have an interface as follows. The user
provides to the library, the pointset shown in Figure 1a, an
admissibility parameter 7, a kernel function, and a desired
block approximation accuracy (bacc). The compression phase
approximates the kernel matrix, implicitly created using the
points and the kernel function. The admissibility parame-
ter 7 dictates how pairs of points are determined to be far
or close, and the block approximation accuracy bacc indi-
cates how closely submatrices need to be approximated. A
representation of the compressed matrix is the input to the
evaluation code that multiplies the HMatrix with another
matrix or vector. Compression is typically expensive, how-
ever, the objective is to compress the kernel matrix once
and reuse over many evaluations, e.g. multiple matrix-vector
multiplications or a matrix-matrix multiplication.
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(a) Example pointset that has been hierar- (b) Cluster tree and Htree. Each node represents a (c) Conceptual diagram of approxi-
chically partitioned. For example partitions partition. Edges between nodes indicate an interac- mation matrix. Red submatrices are
3 and 4 are both included in partition 1. tion. not approximated, blue ones are.
1 // Loops with reduction 1 // Blocked loop blockset ) }
. o0 b1
2 #pragma omp parallel for 2 #pragma omp parallel for schedule(dynamic) ={{(3,3),(3,4),(4,3), (4, 4) 1 {(7,7),(8,8)};
3 for (every near interaction (i,j)){ 3 for(every block b)
. by
4 #pragma omp atomic 4 for(every d € blockset[b]) (©,9),19,10),(10,9), (10, 10)}}
5 Y; += Dy ; * Wj; 5 i =d[o]; j = d[1];
6} 6 Y; += Dyj,; * Wy, coarsenset
> cly cl
7 ’ - (BT AR 0a): ()
8 8 // Loop over the CTree sto St
9 // Loops with carried dependencies 9 for(every coarsen level cl)
10 for(l=depth; 1>=1;1--) 10 #pragma omp parallel for schedule(static) (f) Structure sets
11 #pragma omp parallel for 11 for(every sub-tree st) ) .
12 for(every node i € level-1) 12 for(every i € coarsenset[cl][st]) %
13 if(i is leaf node) 13 if (i is a leaf node) ' T
- yT - yT
14 Si =V xW; 14 Si =V W (g) The D generators stored in CDS
15 else 15 else
16 S; += ViT * Sic 16 S; += ViT * Sie ' '
. Si 4= VI % Sye . Si 4= VT % Sye [wlvv[w]w]n]nw][w][w]v
(d) Library code for evaluation for D and V matri- (e) MatRox code for evaluation for D and V matrices. ‘

ces (h) The V generators stored in CDS
Figure 1. With HMatrix approximation, Y = KW is approximately computed with Y ~ KW. Figures 1a and 1b demonstrate
how K is implicitly obtained and Figure 1c shows its conceptual diagram. Figure 1b illustrates the hierarchical organization
of subpartitions of the pointset and the submatrices U;, V;, B; and D; (where i is a CTree node) that will be generated to
approximate interactions between points in various partitions. K is implicitly obtained from these submatrices. Figure 1d
demonstrates a typical library approach and Figures 1e to 1h show MatRox’s approach for computing Y = KW, i.e. HMatrix
evaluation. In a simplified form (not accounting for hierarchy, i.e. submatrices per node), we have K = UBV” + D and thus the
operations to perform Y = KW are,OP1: Y += D*W,OP2: S = VT « W, OP3: L += B#S, OP4: Y += U *L; S is an intermediate
matrix. The codes in Figures 1d and 1e perform these operations in hierarchical form; i is a node in the tree, Ic and rc are the
left and right children of node i respectively. Lines 3-6 in Figures 1d and 1e apply OP1 on the D submatrices; Lines 10-17 do a
CTree bottom-up traversal for OP2 on V submatrices; OP3 and OP4 are the same loop type as OP1 and OP2 respectively and
thus are not shown for space. Figure 1d is a typical library implementation of HMatrix evaluation using the CTree, Line 10 in
the figure visits the levels of CTree for OP2. MatRox groups the D submatrices into blocks based on interactions and the V
matrices into coarsen level sets (Figure 1f) and also stores the submatrices in the CDS format as shown in Figures 1g and 1h.
The MatRox code in Figure 1e uses the sets and CDS to optimize HMatrix evaluation; ¢l is the index for coarsen levels, and st
is the index for sub-trees in the cl-th coarsen level. The figure only shows blocking of near interactions in MatRox.

Compression. To approximate K, points are first clustered Far from each other, their interaction, (i,j), is approximated.
into hierarchically-organized sub-domains. Figure 1a shows Interactions between sub-domains Near to each other are
a clustering that creates 10 sub-domains. Figure 1b shows a not approximated. The admissibility condition zdist(a, ) >
cluster tree for this clustering with each of the tree nodes (diam(a) + diam(p)) in which dist(a, f) is the geometrical
representing a sub-domain. If two sub-domains i and j are distance between the two sub-domains « and f, diam(«) is
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the diameter of a, and 7 is the input admissibility parameter,
determines near-far interactions. The added dashed edges in
blue and red to the cluster tree in Figure 1b represent these
interactions and together form the HTree. The red edges are
near interactions and blue edges show the far interactions.

Figure 1c shows an example approximated K matrix
with colored sub-blocks. The blue-colored blocks are ma-
trix blocks that are approximated during the compression
phase’. The degree to which each block is approximated is
determined by the submatrix-rank (srank). The srank is adap-
tively tuned to meet the user-requested block approximation
accuracy (bacc). The red blocks are not approximated.

Evaluation. The approximated matrix K is never explicitly
assembled, instead the HTree is used during evaluation to
compute the desired HMatrix-matrix multiplication.

Figure 1d shows a typical library implementation of the
evaluation phase. Existing library implementations of evalu-
ation are classified into (i) Loops with reduction that operate
on the near and far interacting nodes in the HTree; (ii) Loops
with sparse dependencies between parents and children that
do a bottom-up or top-down, level-by-level traversal of the
cluster tree to generate other portions of the approximated
matrix. Lines 3-6 in Figure 1d show the reduction loop com-
puting near interactions by operating on the D submatrices;
operation on the B submatrices is of the same loop type.
Lines 10-17 in Figure 1d show the loop over the CTree that
operates on the V matrices with bottom-up traversal; the U
submatrices are operated on with the same loop type but
using top-down traversal. Some library implementations
perform the level-by-level traversal with a synchronization
between levels and others place tasks into a dynamic task
queue to enable run-time load balancing.

2.2 Approach implemented in MatRox

MatRox is composed of an inspector and an executor. The
inspector is a modularized implementation of compression. It
analyzes structure to generate optimized evaluation code and
to store the submatrices associated with nodes in the cluster
tree into an optimized data structure called Compressed Data-
Sparse (CDS). Together the optimization of the code and
reorganization of the data lead to faster evaluation compared
to libraries. Additionally, when the inputs to the inspector do
not change, the inspection can be conducted at compile-time.

The approach presented here improves data locality and
reduces synchronization costs by blocking computations and
associated data when the computations share data and are
dependent on each other. For example, the computations
involving the submatrices (9,9), (9,10), (10,9), and (10,10) are
blocked together using interaction blocking. The interaction
blocking algorithm analyzes the HTree to create a blockset
shown in Figure 1f that creates an order for computation.

1We use interpolative decomposition [42] for approximations.
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/// MatRox Inspector Code
#include <matrox.h>
// Inputs declaration
Points points("path/to/load/points");
Float(64) tau = 0.65;
Float(64) bacc = 1e-5;
Ker kfunc = GAUSSIAN;
// Outputs declaration
HMatrix H("path/to/store/hmat.cds");
Op HMatMul("path/to/store/matmul.h");
inspector(points, tau, kfun, bacc, &H, &HMatMul);
/// MatRox Executor Code
#include "path/to/matmul.h"
HMatrix H("path/to/load/hmat.cds");
Dense W("path/to/load/matrix/W");
Dense Y(Float(64), H.dim x W.cols);
Y = matmul(H, W);

Figure 2. How a user provides parameters and calls the Ma-
tRox inspector for compression and executor for evaluation.

This enables the blocked loop in Figure 1e to be fully par-
allel, because the blocks are selected to eliminate reduction
dependencies between block computations. MatRox uses the
OpenMP dynamic scheduler to load-balance based on the
blocksets. Interaction blocking also improves temporal local-
ity with reusing W; and Y; in Figure 1e line 6. Spatial locality
is also improved through consecutive storage of submatrices
D; in CDS.

The loop over the CTree is reorganized into coarsen levels
and load-balanced sub-trees within those coarsen levels. The
structure coarsening algorithm analyzes the cluster tree to cre-
ate a coarsenset shown in Figure 1f that contains the coarsen
levels and sub-trees. In Figure1b, there are two coarsen lev-
els (cly,cly). The green nodes are in coarsen level 0 and node
2 is in coarsen level 1 by itself (node 0 is not involved in
any computation). The coarsened loop in Figure le has a
sequential loop over the coarsen levels and then a parallel
loop over all of the sub-trees within that coarsenset. The
sub-trees are load-balanced based on the srank. MatRox uses
the static OpenMP scheduler for loops on coarsensets. V/
sub-matrices associated with all of the nodes in a coarsenset
are organized together in the CDS format to improve spatial
locality as shown in Figure 1g and 1h. Structure coarsening
also improves temporal locality by keeping subtrees in one
coarsenset, so that matrix S in lines 14-17 in Figure 1le is
reused.

An example of how MaRox is used is shown in Figure 2
in which the user provides the points, the kernel function,
the admissibility condition, and block accuracy to the inspec-
tor. The output of the inspector is used by the executor to
complete evaluation. The CDS stored submatrices, shown
with H in Figure 2, as well as the generated HMatrix-matrix
multiplication code are used by the executor.

In addition to the interaction blocking and structure coars-
ening optimization, MatRox also specializes the evaluation
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Figure 3. MatRox takes admissibility, points, kernel function, and accuracy as inputs and generates a storage format and an
optimized code for HMatrix-matrix multiplication. It first compresses the matrix in the compression phase and then inspects
the output of the compression phase in structure analysis. MatRox then uses the result of structure analysis, i.e. structure sets,
to generate an optimized code and a storage format CDS. The MatRox executor runs the generated code with CDS.

code for a given matrix block. For example, since the par-
allelism in the HTree is less when we get closer the root,
MatRox peels the last iteration of the nested computation
to exploit block-level parallelism, e.g. with parallel BLAS.
With all these changes, MatRox obtains 9.06X speedup com-
pared to GEMM and 2.11X compared to GOFMM for covtype
dataset on a Haswell processor.

3 Modular HMatrix Approximation

MatRox consists of an inspector that generates specialized
code and an efficient storage of the compressed data to im-
prove locality and load balance in HMatrix-matrix multiplica-
tions. Figure 3 shows the overview of MatRox. The inspector
is separated into three phases of modular compression, struc-
ture analysis, and code generation. The user-provided inputs
are separately passed to their respective modules in com-
pression. Compression generates the submatrices, sranks, as
well as the CTree and HTree to be used by different com-
ponents of structure analysis. Information from structure
analysis, i.e. the structure sets, is used along with an internal
representation of the HMatrix-matrix multiplication for code
lowering and specialization in the code generation stage. Fi-
nally the generated code and the submatrices stored in CDS
are used by the executor for an efficient HMatrix-matrix
multiplication. This section describes the MatRox internals.

3.1 Modularizing compression

MatRox provides a modularized design for the compression
phase by defining four well-separated modules, i.e. interac-
tion computation, tree construction, sampling, and low-rank
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approximation. Each module has well-defined inputs and
creates and stores one or more of the outputs HTree, CTree,
the sranks, and the submatrices, which we call the structure
information.

By modularizing compression we divide it into smaller
pieces, each of which will take only the required user-
provided inputs and/or inputs from another piece. With the
tree construction, interaction computation, low-rank approx-
imation, and sampling modules, the structure information
are separately stored and are passed to the structure anal-
ysis phase or to other parts in compression. The following
discusses each module in the compression phase.

Tree construction and interaction computation. The
points are inputs to the tree construction module and the
output is the CTree. The CTree is constructed recursively
using a partitioning algorithm with the tree root as the entire
pointset. The partitioning terminates when the number of
points in the leaf node is less than a pre-defined constant m,
i.e. leaf size. MatRox uses two partitioning algorithms, kd-
tree [47] and two-means [50], which are respectively used
for low (d < 3) and high (d > 3) dimensional data. The
interaction computation module takes as input the CTree
and the admissibility parameter to find near and far sub-
domains using the admissibility condition. It then adds the
interactions to the CTree to create and store the HTree.

Low-rank approximation and sampling. The inputs
to the low-rank approximation module are the HTree, kernel
function, block-accuracy, and the sampling information and
the outputs are the sranks and the submatrices. Interpola-
tive Decomposition (ID) [42] is used to create the U, V, and
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B submatrices with low-rank approximation and the full-
rank D submatrices, i.e. the near blocks, are stored without
approximation. Each low-rank block in that is compressed
with a rank that is adaptively tuned to meet the input block-
accuracy specified by the user. The rank with which a block
is approximated with is stored in the sranks vector. ID can
be expensive for larger block sizes [34], thus, sampling tech-
niques are used to reduce the overhead of ID [39].

Sampling is a separate module in MatRox compression
that takes only the points and the CTree as inputs and gen-
erates the sampling information for each sub-domain to be
used by the low-rank approximation module. MatRox uses
nearest-neighbour sampling [35] to reduce the overhead of
low-rank approximation. The sampling module first takes
the unclustered points to generate the k-nearest-neighbour
list for each point [15]. k is the number of sampled points,
sampling size [62], and is a predefined constant. Finding
the exact k-nearest-neighbours of all points can be costly
(points with high dimensions.) To reduce this overhead, we
use a greedy search based on random projection trees that
recursively partitions the points along a random direction
[15]. The lists are then combined for each block using the
clustering in CTree to form a nearest-neighbour list for the
corresponding sub-domain/block. Finally, importance sam-
pling [39] selects from the nearest-neighbour list of a block
and generates the sampling information for that block.

3.2 Structure analysis

As shown in Figure 3, after finishing compression, all struc-
ture information is known, and MatRox analyzes this infor-
mation using the interaction blocking and structure coarsen-
ing algorithms to create the coarsenset and blockset that are
later used to generate specialize code for HMatrix-matrix
multiplication. The submatrices and sranks from the mod-
ular compression phase are used with the sets to store the
HMatrix in the CDS format. In this section, we describe this
structure analysis.

Interaction blocking. As shown in Algorithm , the in-
teraction blocking algorithm takes the HTree and an addi-
tional parameter called blocksize, as inputs and creates the
blockset. We only show the interaction blocking algorithm
for near interactions; far interactions follow a similar algo-
rithm. The interaction blocking algorithm in lines 3-9, maps
a near interaction between nodes i and j to the location of
(i/blocksize, j/blocksize) in the blocks array. This mapping
increases the possibility that interactions that involve the
same node are in the same block which increases locality.
However, as shown in line 5 of Figure 1d all interactions
(i,j) will write to the location i of y, thus, these interactions
have to be put in the same block of blockset to eliminate
synchronization; this is implemented in Lines 10-16 of Algo-
rithm .

Structure coarsening. The structure coarsening algo-
rithm creates a coarsenset that optimizes the loops over the

i,
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Algorithm: Interaction blocking for near interac-
tions
Input :HTree, blocksize
Output  :blockset
1 blockDim = (HTree.numNodes - 1 + blocksize) / blocksize
2 blocks[blockDim,blockDim] = (0,0);
/* Find blocks based on near interactions

*/
for every node i € HTree and i != root do
iid = (i-1) / blocksize
for node j € HTree.near[i] do
jid = (j-1) / blocksize
blocks(iid,jid).append(i,j)
end

L= - RN - T )

end
/* Add blocks into blockset
for i=0; i<blockDim; i++ do
for j=0; j<blockDim; j++ do
if blocks(i,j).size() > 0 then
‘ blockset[i].append(blocks(i,j))
end

*/
10
11
12
13
14
15 end

16 end

CTree by improving locality while maintaining load balance.
The algorithm is an adaptation of the Load-Balanced level
Coarsening (LBC) method [13] with the difference that here
the algorithm is designed for binary trees and a different cost
model based on sranks is used to balance load. As shown in
Algorithm , structure coarsening takes the CTree, the sranks,
number of sub-trees p, and a tuning parameter agg as in-
puts and generates a coarsenset. In lines 2-7 the levels of the
CTree are coarsened to build the coarsened levels. A level of
a tree refers to nodes with the same height. Tree[lb:ub] shows
a coarsen level that includes nodes with levels in the range
of Ib-ub. Algorithm builds all disjoint trees in a coarsen
level, line 5, and stores them in coarsenset in post-order.
For example in Figure 1b, the disjoint trees of HTree[0:1]
are sub-trees with a root node in 1, 5, and 6. This ensures all
nodes with dependency are assigned to the same thread to
improve locality. The structure coarsening algorithm com-
putes the cost of each sub-tree using sranks in lines 8-14.
The subtree cost is related to the size of submatrices asso-
ciated with the subtree nodes and is determined by sranks.
The computed costs are used in lines 15-19 of Algorithm to
merge the initial disjoint sub-trees with a first-fit bin-packing
algorithm [14] and to create p new sub-trees that are load
balanced. These sub-trees will execute in parallel.

Data layout construction. In the final phase of struc-
ture analysis, MatRox uses the structure sets to store the
generated submatrices in a format, which we call the com-
pressed data-sparse (CDS) format, that improves locality
during the HMatrix-matrix multiplication. CDS follows the
order of computations in the blocked and coarsened loops
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Algorithm: Structure coarsening

Input :CTree, p, agg, sranks
Output :coarsenset
| = [CTree.height/agg]
for i=0; i<l; i++ do
Ib = i*agg;
ub = (i+1)*agg;
cl = disjoint_subtrees(CTree[lb:ub]);
coarsenset.append(cl);

N g W N =

end

/* Cost estimation for each node */
8 for nodex € CTree do

if x € CTree.leafnodes then

‘ CTree[x].cost = cost(sranks(x))

-

10
else
CTree[x].cost = cost(sranks(x),
srank(Ichild(x))+sranks(rchild(x)))
end

11
12

13
14 end

/* Merge subtrees in each coarsen level */
15
16

17

for i=0; i<l; i++ do

cl = coarsenset|[i]

nPart = cl.size() > p ? p : cl.size()/2
18 coarsenSet[i] = bin_pack(cl, nPart);

19 end

which is obtained from the structure sets. More specifically,
the U, V submatrices are stored in the order specified by
the coarsenset and the B, D submatrices are stored by the
order specified by the near and far blocksets. The size of each
submatrix is known with sranks and is used as the offsets in
CDS (see Figure 1f for an example.)

3.3 Code generation

Code generation in MatRox uses structure information to
lower an internally generated abstract syntax tree (AST)
to an optimized evaluation code. Figure 3 shows different
components of code generation. MatRox lowers the AST
in either the block or the coarsen lowering stages or both.
The resulting lowered code from these stages iterates over
the structure set. Figure 1e shows an example lowered code
where the blocked loop iterates over the blockset and the
coarsen loop goes over coarsenset. The number of blocks
and number of levels are used to determine whether the block
and/or coarsen lowering should be applied. If the number
of blocks is larger than an architecture-related threshold,
block-threshold, MatRox applies block lowering. Similarly the
number of levels and a coarsen-threshold is used to determine
the application of coarsen lowering. These thresholds are
defined to ensure there are enough parallel workloads that
amortize the initial cost of launching threads. MatRox further
optimizes the lowered code with low-level optimizations,
using structure information, as shown in Figure 3.
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4 Experimental Results

We compare the inspector and executor performance of Ma-
tRox to the corresponding parts from STRUMPACK [20],
GOFMM [62], and SMASH [8], which are well-known li-
braries for HMatrix approximation. The inspector perfor-
mance for MatRox is quite similar to the existing libraries.
The resulting matrix-matrix multiply performed by the ex-
ecutor is much improved over existing library implementa-
tions due to improvements in data locality and parallelism.

4.1 Methodology

We select a set of datasets, i.e. points, used also in prior
work and shown in Table 1 from real-world machine learn-
ing and scientific applications. Problem IDs 1-8 are machine
learning datasets from the UCI repository [2] and are high-
dimensional points. Problem IDs 9-13 are scientific comput-
ing points that are low-dimensional [8]. STRUMPACK only
runs for small datasets, i.e. problem IDs 5, 6, 8, 13. We use a
Gaussian kernel [57] with bandwidth of 5 when comparing
to GOFMM and STRUMPACK. For comparisons to SMASH
we use their default settings of kernel function (1/|| x —y ||)
and the scientific pointsets ID 9-13 (SMASH only supports
1-3 dimensional points); MatRox uses the same setting when
compared to SMASH. The HMatrix is multiplied with a ran-
domly generated dense matrix W of size N X Q.

Testbed architectures are Haswell with Xeon™ E5-2680v3,
12 cores, 2.5 GHz, 30MB L3, and KNL with Xeon™ Phi 7250,
68 cores, 1.4 GHz, and 34MB L3. All tools are compiled with
icc/icpe 18.0.1 with -03. For BLAS/LAPACK routines we use
MKL [56]. MatRox is implemented in C++ in double precision,
available at: https://github.com/kobeliu85/MatRox_RU. The
median of 5 executions is reported for each experiment.

When comparing to libraries we use their default settings
and use the same in MatRox, e.g sampling size=32, maxi-
mum rank=256. MatRox-specific parameters are agg = 2,
p = number of physical cores, blocksize = 2 for near and
blocksize = 4 for far interactions, coarsen-threshold=4, and
block-threshold= number of leaf nodes. bacc is set to 1e —5 for
all experiments with MatRox and the libraries and the overall
accuracy, i.e. accuracy of the HMatrix-matrix multiplication,
is the same in MatRox and the libraries. We choose the ad-
missibility condition to match the library’s default setting.
STRUMPACK only supports HMatrix structures with a very
large admissibility condition in which all off-diagonal blocks
are low-rank approximated; also known as HSS. GOFMM
uses a budget parameter instead of admissibility, which we
also implement in MatRox. Recommended budget settings in
GOFMM are 0.03 and 0, in our results we refer to the former
FH?-b and the later as HSS as its structure is HSS. SMASH’s
default admissibility is 0.65, which we also use. To be consis-
tent across libraries we use the Gaussian kernel for SMASH
experiments; the SMASH paper [8] uses a different kernel
function.
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Table 1. Dataset: N is number of points, d is point dimension.

ID 1 2 3 4 5 6 7

Data| covtype higgs mnist susy letter pen hepmasg
N 100k 100k 60k 100k 20k 11k 100k

d 54 28 780 18 16 16 28

ID 8 9 10 11 12 13

Data| gas grid random dino sunflower unit

N 14k 102k 66k 80k 80k 32k

d 129 2 2 3 2 2

4.2 Performance of the MatRox inspector

MatRox’s inspector time is similar to that of libraries since
the time for structure analysis and code generation are negli-
gible compared to the compression time as shown in Figure
4. Structure analysis and code generation in MatRox is on
average 8.7 percentage of inspection time. The compression
time of STRUMPACK is larger than MatRox and GOFMM
because of using a different compression method.

Figure 4 also shows that the inspector time is amortized
with increasing Q (number of columns in matrix approxi-
mated K is multiplied by) because the evaluation time grows
with Q. The figure compares the MatRox overall time, in-
cludes inspector and executor times, with the overall time of
libraries, i.e. compression and evaluation, for all datasets and
Q sizes of 1, 1K, 2K, and 4K on Haswell. The compression
time for both 9{2-b and HSS and for all tools will not change
for Q = 1 and a larger Q. For example, for susy with H?2-b,
MatRox’s overall Speedup vs GOFMM is 1.56% for Q = 1K
and 2.02x for Q = 4K. Figure 4 does not include SMASH
because SMASH only supports matrix-vector multiplication
(Q = 1). We compared MatRox with SMASH for Q = 1 and
our results show that the overall time of MatRox and its
evaluation time is on average 1.1x and 1.6 X faster.

The benefits of improving evaluation with MatRox are
more for larger Qs. In scientific and machine learning ap-
plications, Q is typically large and often close to N, shown
in Table 1. Examples include multigrid methods in which
the coefficient matrix is multiplied by a large matrix [7],
Schur complement methods in hybrid solvers [61], high-
order finite-elements [17], as well as direct solvers [31]. We
also ran the un-approximated matrix-matrix multiplication
KW with GEMM. For the tested datasets on average Ma-
tRox’s overall time is 18X faster than GEMM for Q = 2K the
speedups obtained with HMatrix evaluation are significantly
higher than GEMM for larger Qs. We use a Q = 2K for the
rest of our experiments unless stated otherwise.

4.3 The performance of the MatRox executor

Figures 5 and 6 show the performance breakdown
of MatRox’s executor (evaluation) versus GOFMM and
STRUMPACK for HSS and #2-b on both Haswell and KNL.
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The theoretical floating point operations (FLOP) in HMa-
trix evaluation is computed for each dataset and the same
number is used for each dataset across all tools. As shown
in Figure 5, MatRox’s evaluation is on average 3.41X and
5.98x faster than GOFMM and STRUMPACK respectively on
Haswell. For KNL, MatRox is on average 8.37X and 21.25X
faster than GOFMM and STRUMPACK in order. Figure 6
shows the MatRox’s executor time of H?-b versus GOFMM
in which MatRox is on average 2.98X and 4.20X faster than
GOFMM on Haswell and KNL respectively.

The performance breakdown shows the effect of CDS as
well as the interaction blocking and structure coarsening al-
gorithms. To show the effect of CDS, we run both the MatRox
executor, that uses CDS, and GOFMM and STRUMPACK,
that use a tree-based storage format, with a single thread
and label in order with CDS (seq) and TB (seq). Coarsen,
block, and low-level lowering applied in MatRox are labeled
with coarsen, block, and low-level. The parallel version of
GOFMM and STRUMPACK use a dynamic scheduling labeled
with DS in Figures 5 and 6.

The different admissibility conditions in HSS and H?-b
allows us to demonstrate MatRox’s performance for different
HMatrix structures. HMatrix structures differ by the number
of blocks that they low-rank approximate, which changes
the ratio of loops over the CTree to loops with reduction.
Because in HSS no off-diagonal blocks are full-rank, loops
over the CTree dominate its execution time. As a result, from
Figures 5 and 6, structure coarsening contributes to a perfor-
mance improvement of on average 79.2% for HSS on Haswell,
which is more that the 46.8% on average improvement from
structure coarsening for H?-b. A similar trend is observed
on KNL where structure coarsening improves performance
on average 81.2% for HSS and on average 65.1% for H?-
b. Also, while interaction blocking contributes on average
38.3% and 25.2% to the performance of the MatRox generated
code for H?-b on Haswell and KNL respectively, block low-
ering is never activated for HSS since the number of loops
with reduction, i.e. near-far interactions, never exceeds the
block-threshold. MatRox peels the last iteration of loops over
the CTree. Low-level transformations lead to on average
6.28% and 4.24% performance improvement of the MatRox
code in HSS and H?-b respectively on Haswell. Since HSS is
dominated by loops over the CTree, the effect of low-level
transformation is also more prominent in HSS. Similar effect
is visible on KNL where, low-level transformations lead to
on average 12.20% and 7.72% performance improvement of
the MatRox code in HSS and H?-b respectively.

One major goal of inspection and lowering in MatRox is
to improve locality. Figure 7 shows the correlation between
the performance of MatRox generated code versus the cost
of average memory access latency among all datasets for
both HSS and H?2-b on Haswell. We measure the average
memory access latency [29] that is computed based on the
number of memory accesses, miss-ratio of different cache
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Figure 4. The overall time in MatRox, GOFMM, and STRUMPACK for different values of Q i.e., 1, 1K, 2K and 4K for HSS (top)
and H?-b (bottom) on Haswell. STRUMPACK only supports HSS and can execute for the letter, pen, gas, and unit datasets.

levels, and TLB, and use it as a proxy for locality. We use
the PAPT [53] library to collect L1, LLC (Last-level Cache),
TLB access and misses and number of memory accesses. The
coefficient of determination or R? is 0.81 that shows a good
correlation between speedup and memory access latency.

Figure 8 compares the wait time to CPU time in MatRox
and GOFMM on Haswell. To obtain these times, we are using
Intel’s VTune Amplifier similar to [13]. CPU time is the time
that the CPU takes to do HMatrix evaluation and wait time
measures the time that a thread is stalled because of APIs
that cause synchronization. As shown in Figure 8, the wait
times in MatRox are less than 12.2% and are lower than that
of GOFMM’s across all datasets which demonstrates better
load balance in MatRox. The MatRox generated code utilizes
on average 90.5% of CPU time (a ratio of 0.095) across all
datasets while GOFMM on average gives 77.6% CPU utiliza-
tion.
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4.4 Scalability of the MatRox executor

Figure 9 shows the scalability of MatRox executor vs.
GOFMM, STRUMPACK, and SMASH for two datasets on
Haswell and KNL; other datasets follow a similar trend.
SMASH does not support covtype and in the figure, MatRox-
Skernel is MatRox with SMASH settings. We select KNL in
addition to Haswell to demonstrate MatRox’s strong scal-
ability on more cores, i.e. 68 cores of KNL. MatRox scales
well on both architectures while the libraries show poor
scalability with increasing number of cores. For example,
GOFMM'’s performance reduces from 34 to 68 cores. Ma-
tRox’s strong scaling is because structure coarsening and
interaction blocking improve locality and reduce synchro-
nization while maintaining load-balance.

5 Reusing Inspection

The modular design in MatRox enables the reuse of specific
outputs of the inspector when parts of the input change. In
libraries, any change to the inputs results in re-running the



PPoPP 20, February 22-26, 2020, San Diego, CA, USA

700 -
[ MatRox: CDS(seq)
600 - [ MatRox: CDS + coarsen
[ MatRox: CDS + coarsen + low-level
[ GOFMM: TB(seq)
500 [CIGOFMM: TB + DS
) [T STRUMPACK: TB(seq)
o 400 I STRUMPACK: TB + DS
z
0300
200
100 [
0 N ] N
g & & &N & 2 oPf O &0
o‘iéQ .('\\QQ @‘\\ P4 \0(‘ &£ Q@"a $ 3§ o(\bo & \\0"9 S
< & K e°°
1500
1000 -
@
o
o
-l
'™
(0]
500 [
0 ) 3
g & & &N & & £ 2 Q& o & &
FEEFITECF T S
4 & & R
)

Figure 5. The performance of executor/evaluation in Ma-
tRox vs. GOFMM for HSS on Haswell (top) and KNL (bottom).
Labels seq, TB, and DS are sequential, tree-based format, and
dynamic scheduling respectively. Effects of CDS, structure
coarsening, and low-level transformations are shown sepa-
rately. Missing bars for STRUMPACK mean it could not run
that dataset.

entire compression and evaluation phases. However, when
the kernel function and/or the input accuracy change in Ma-
tRox, the modules and components in the inspector that do
not rely on these inputs can execute only once and be reused.
MatRox enables this reuse by separating the inspector into
two phases, i.e. inspector-p1 and inspector-p2. The inputs to
inspector-p2 are the kernel function and the input accuracy
and it is composed of the low-rank approximation, structure
coarsening, and data layout construction modules in Figure
3. The remaining parts of the inspector in Figure 3 belong
to inspector-p1. A change in the kernel function and/or the
accuracy only requires inspector-p2 and the executor to be
re-ran. Figure 10 shows an example code that allows for the
reuse of inspector-p1 when the bacc changes.

In scientific and machine learning simulations, typically
the input accuracy and the kernel function change more fre-
quently than the input points and the admissibility condition.
The reuse of inspector-p1 in MatRox reduces the overhead of
these changes. For example in finite-elements the discretiza-
tion, i.e. points, is often fixed [22], in statistical learning
the training samples, i.e. points, are reused during offline
training [30], and in N-body problems the CTree is only
reconstructed during rebuild intervals [4, 43]. The admissi-
bility condition also often remains the same in simulations
and is known by the domain practitioner as it depends on
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Figure 6. The performance of executor/evaluation in Ma-
tRox vs. GOFMM for H2-b on Haswell (top) and KNL (bot-
tom). Labels seq, TB, and DS are sequential, tree-based for-
mat, and dynamic scheduling respectively. Effects of CDS,
structure coarsening, interaction blocking, and low-level
transformations are shown separately.

Figure 7. Effect of improving locality on MatRox’s speedup
vs. GOFMM on Haswell. Average memory access latency
shows the average cost of accessing memory.

the problem structure. However, users often need to tune
the parameters in a kernel function specially in machine
learning simulations. For example, the bandwidth & in the
Gaussian kernel [57] is typically tuned with cross-validation
to avoid overfitting [45]. Also, often the practitioner needs
to tune the input accuracy (bacc) because the overall accu-
racy of the HMatrix-matrix multiplication is not sufficient,
i.e. bacc is correlated with the overall accuracy with a loose
upper bound [38], or the user might decide to trade accuracy
for faster evaluation (or vise-vesa) with re-compression.
Figure 11, shows the correlation between bacc and over-
all accuracy €7 obtained from e = IKW = KW ||¢/|[KW||¢
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Figure 9. Scalability result on Haswell (top two) and KNL
(bottom two) for datasets covtype (left) and unit (right).

for H?-b. As demonstrated, with a bacc of 1e—3 more than
50% of the datasets do not reach an overall accuracy of 1e—3
and thus the user has to retune. The tuning becomes more
important when more accurate results are required and also
depends on the spectrum (i.e., eigenvalues) of the kernel
Matrix. Figure 12 shows the MatRox’s overall time com-
pared to GOFMM for H?-b with 5 changes to the input
accuracy bacc, le—1 to 1le—5, with reusing inspector-p1. We
do not include STRUMPACK for space but it follows a similar
trend. As shown in the Figure, MatRox’s overall time is on
average 2.21x faster than GOFMM. For high dimensional
datasets such as mnist sampling is expensive, 89.2% of the
compression time in mnist, and thus the reuse of sampling in
inspector-p1 leads to a speedup of 2.64x for minst compared
to GOFMM. MatRox with inspector reuse vs SMASH leads
to on average 1.37X speedup with up to 2.4x for sunflower.
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///MatRox inspector code for re-using inspection
#include <matrox.h>
//Inputs declaration
Points points("path/to/load/points");
Float(64) tau = 0.65;
//0utputs declaration
Op HMatMul("path/to/save/mat_mul.c");
Tree ctree("path/to/store/ctree");
Set GroupSet("path/to/store/groupset");
Vector<Int(32)> sampling("path/to/store/sampling");
Op HMatMul("path/to/store/matmul.h");
inspector_p1(points, tau,&HMatMul,&ctree, &GroupSet, &
sampling);

///MatRox executor Code for re-using inspection
#include "path/to/matmul.h"
Tree ctree("path/to/load/ctree");
Set GroupSet("path/to/load/groupset");
Vector<Int(32)> sampling("path/to/load/sampling");
Float(64) tau; Ker kfunc = GAUSSIAN;
Dense W("path/to/load/matrix/W");
Dense Y(Float(64), ctree[@].num_points * W.cols);
// Accuracy tuning
for(auto acc : {le-1,1e-2,1e-3,1e-4,1e-5}){
inspector_p2(kfunc,acc,sampling,ctree,GroupSet,&H);
Y = matmul(H, W);

Figure 10. Reusing insvection in MatRox
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6 Related Work

The presented approach applies a modular inspector-
executor strategy to HMatrix Approximation. This section
summarizes previous approaches to improving the perfor-
mance of HMatrix approximation and related inspector-
executor strategies that were used in other contexts.

Hierarchical matrices. Hierarchical matrices are used
to approximate matrix computations in almost linear com-
plexity. Hackbusch first introduced H-matrices [6, 24], to
generalize fast multipole methods [23], where the matrix
is partitioned hierarchically with a cluster tree and then
parts of the off-diagonal blocks are approximated. Later, H*-
structures were introduced [27] which use nested basis ma-
trices [25], to further reduce the computational complexity
of dense matrix computations. H* has gained significant
traction in recent years [6, 26]. Hierarchical semi-separable
(HSS) [11, 59, 60] are a specific class of H? structures. Ma-
tRox supports HSS and other classes of H? using a binary
cluster tree; we abbreviate H? matrix with HMatrix.

HMatrix approximations have a compression and an eval-
uation phase. Numerous algorithms have been studied for
HMatrix compression [3, 10, 58] including interpolative de-
composition (ID) [40]. MatRox uses ID in its compression
phase and contributes on improving the performance of the
evaluation phase, which is the focus of many of the recent
works on HMatrix computations [62, 63].

Specialized libraries for HMatrix computations. Nu-
merous specialized libraries implement HMatrix evaluations
on different platforms and for different evaluation opera-
tions. HMatrix algorithms have been implemented on plat-
forms ranging from shared memory [20, 32, 62], distributed
memory [35, 37, 51], and many-core such as GPUs [36]. Hi-
erarchical matrices have been studied to accelerate matrix
factorization [1, 11, 60]. Ghysels et. al. [19] introduces an alge-
braic preconditioner based on HSS. Other work has improved
matrix inversion [41] and matrix-vector/matrix multiplica-
tion [11]. STRUMPACK, GOFMM, and SMASH are the most
well-known libraries that support HMatrix-matrix/vector
multiplications. SMASH [8] supports 1-3D datasets while
GOFMM [62] and STRUMPACK [20] also support datasets
of higher dimension. MatRox generates code for HMatrix-
matrix/vector multiplications for datasets of all dimensions
on multicore platforms.

Inspector-executor approaches. MatRox uses
a domain-specific inspector-executor approach to
generate code for HMatrix evaluation. Recent work
[12, 21, 33, 44, 46, 48] have proposed inspector-executors
that inspect the data dependency graphs in sparse matrix
computations to apply code optimizations that general
compilers cannot apply. Amongst them, inspectors based
on level-by-level wavefront parallelism [49, 55] are the
most well-known, but do not optimize for locality and
load-balance. Cheshmi et. al. [13] present an approach to
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improve wavefront inspectors, with the LBC algorithm by
coarsening levels for better locality and creating balanced
partitions. However, LBC only works for DAG from a
specific class of sparse matrix. MatRox improves the data
locality and parallelism in reduction and tree-based loops for
HMatrix approximation with a novel structure coarsening
method that uses a cost model of submatrix ranks and uses
a specialized partition for binary trees.

7 Conclusion and Future Work

We demonstrate a novel structure analysis approach based
on modular compression to generate specialized code and
an efficient storage that improves the performance HMatrix
approximations on multicore architectures. The proposed
interaction blocking and structure coarsening algorithms,
improve locality in HMatrix evaluations while maintaining
load-balance. The modular approach used in MatRox, allows
parts of the inspector to be reused when the kernel function
and accuracy change. MatRox outperforms state-of-the-art
libraries for HMatrix-matrix multiplications on different mul-
ticore processors. In future work, we plan to extend MatRox
to support other kernels such as matrix factorization with
support for GPUs and distributed systems, and ultimately
build a domain-specific language for a large class of approxi-
mate linear algebra computations.
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