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Abstract

Objects are usually organized in a hierarchical structure
in which each coarse category (e.g., big cat) corresponds to
a superclass of several fine categories (e.g., cheetah, leop-
ard). The objects grouped within the same coarse category,
but in different fine categories, usually share a set of global
features; however, these objects have distinctive local prop-
erties that characterize them at a fine level. This paper ad-
dresses the challenge of fine image classification in a weakly
supervised fashion, whereby a subset of images is tagged
by fine labels (i.e., fine images), while the remaining are
tagged by coarse labels (i.e., coarse images). We propose a
new deep model that leverages coarse images to improve the
classification performance of fine images within the coarse
category. Our model is an end-to-end framework consisting
of a Convolutional Neural Network (CNN) which uses fine
and coarse images to tune its parameters. The CNN outputs
are then fanned out into two separate branches such that
the first branch uses a supervised low rank self-expressive
layer to project the CNN outputs to the low rank subspaces
to capture the global structures for the coarse classifica-
tion, while the other branch uses a supervised sparse self-
expressive layer to project them to the sparse subspaces to
capture the local structures for the fine classification. Our
deep model uses coarse images in conjunction with fine im-
ages to jointly explore the low rank and sparse subspaces by
sharing the network parameters during the training which
causes the data obtained by the CNN to be well-projected
to both sparse and low rank subspaces for classification.

1. Introduction

Over the past few years, CNNs have provided promising
results in object recognition and other visual classification
tasks [15, 20, 30]. Along with these developments, image
sub-categorization has been used to increase performance
of a wide variety of applications in computer vision, such
as face recognition [39] and object detection [ 10]. However,
training a CNN requires a vast amount of accurately anno-
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Figure 1. Hierarchical structure for weakly supervised learning.

tated images [20]. Moreover, providing a sufficient amount
of labeled images to train a CNN is labor intensive, time
consuming, and usually requires expert knowledge to anno-
tate them accurately, especially where the class of objects is
too fine-grained [28, 6].

Objects in the fine classes which are grouped in the same
coarse category usually share a set of common visual fea-
tures. These shared visual properties are typically the global
structure underlying the objects which allow them to be cat-
egorized at a coarse level. However, these objects have dis-
tinctive local properties that are used to characterize them
at a fine level. For example, consider the images in Fig. 1.
These images are different species of big cats (e.g., chee-
tah, jaguar, leopard). We can see that all these animals
have spots; this is a global feature that is common among
them (i.e., commonalities). However, these animals have
distinctive feline features (e.g., cheetahs have a “tear line”
on their faces that leopards do not) which are specific to
each species. These are the local features that are disjoint
from the common features among these animals which are
used for fine image classification.

The low rank and sparse representation of the high di-
mensional data is based on the fact that a correlation often
exists among the data which belong to the same class such
that a low rank subspace captures the global and smooth
structures, while a sparse subspace captures the local struc-
tures and fine details underlying the data [3, 24, 8, 38].

In this work, we make a structural assumption about all
the data points which are extracted from the CNN in our
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framework. This assumption is based on the fact that there
is correlation among the data points which belong to the
same class. This structural assumption causes all the data
extracted from the CNN to exist in a union of low rank, or
approximately low rank, subspaces. These subspaces in our
model are explored by using a self-expressive property such
that each data point can be represented as a linear combina-
tion of other samples in the same subspace. In addition to
the low rankness of the data (i.e., low rank self-expressive),
we also put one sparsity constraint on the number of data
which are used to express a given image from a fine cate-
gory (i.e., sparse self-expressive). This is because the dif-
ferences between images in a fine category are very small,
so we want any given data point from a fine category to be
expressed as a linear combination of a very small number of
similar data points. We use low rank and sparse subspaces
to represent the coarse and fine concepts of the data to ad-
dress the challenge of fine and coarse image classification.
In our model, sparse and low rank subspaces are explored
jointly by sharing the network parameters to take advantage
of both the coarse and fine images during the training which
causes the data extracted from the CNN to be well-projected
to sparse and low rank subspaces for classification.

2. Related Work
2.1. Hierarchical Structure for Visual Recognition

The hierarchical structure between objects in most large-
scale datasets, such as ImageNet, has been incorporated in
deep models to learn each category of images in conjunction
with the other categories to improve the overall recognition
performance [12, 32, 5, 35, 28, 36]. Most of these methods
such as [28], learn the shared and disjoint properties among
the objects jointly by focusing on their commonalities and
differences in a class hierarchy such that the shared proper-
ties discriminate the objects at coarse level of abstraction,
while the disjoint properties characterize them at fine level
of abstraction. For example, Srivastava et al. [32] create a
class hierarchy and use a CNN model which transfers the
knowledge between the classes to enhance the overall per-
formance by using a small number of training samples.

In other scenarios, Xiao ef al. [35] introduce a training
method that expands a network hierarchically. Due to scal-
ability constraints, the categories in this method are first
grouped together based on their similarities, and then self-
organized into two groups including coarse and fine levels.

Furthermore, Goo et al. [12] propose a method that uses
the shared and specialized properties in a semantic hier-
archical structure to learn improved discriminative CNN
features. This method uses min and difference pooling to
implement generalization and specialization layers. In an-
other case, Guo et al. [13] introduce an end-to-end frame-
work that integrates a CNN and a Recurrent Neural Net-

work (RNN) for hierarchical categorization. In this method,
goal of the CNN is to obtain discriminative features from
the input images, while the goal of the RNN is to train the
coarse and fine image classification jointly.

Among all of the aforementioned methods which use hi-
erarchical structure to improve fine and coarse classification
performance, there are only two methods [28, 13] that con-
sider fine image classification in a weakly supervised fash-
ion. Here, we revisit the hierarchical structure between the
fine and coarse categories and propose a new deep model
which uses the self-expressiveness property of the data with
low rank and sparse representation to tackle the challenge
of fine image classification in a weakly supervised fashion.

2.2. Low Rank and Sparse Representation

Low Rank and Sparse Representation (LRR, SR) meth-
ods are usually used in an unsupervised manner to cap-
ture low dimensional linear subspaces underlying the data
[24, 9, , 7]1.  These subspaces usually have a self-
expressive property, meaning that a sample taken from a
single subspace can be expressed as a linear combination of
other samples from the same subspace [7, 27]. Generally,
in LRR and SR, an affinity matrix is constructed to measure
the pairwise similarities between the data points. The LRR
methods usually construct the affinity matrix such that it has
the minimum possible rank, while SR methods construct the
affinity matrix such that it has the minimum ¢; norm.

There are also supervised versions of LRR [31, 33] and
SR [18, 16, 26, 37, 11]. These methods sufficiently ex-
ploit the labeled data to learn a discriminative low rank and
sparse representation for the data points. These methods
incorporate label information as a constraint to guide the
learning process for exploring a robust and discriminative
subspace projection [23, 22]. In these methods, the data
from different classes are well-separated after projection.
Like the supervised methods, in this work we incorporate
the label information by using a contrastive loss function
[14] during the projection of the CNN outputs to the low
rank and sparse subspaces to increase the class separability.

3. Preliminaries
3.1. Low Rank and Sparse Self-Expressive

Assume that the data points {x1, 2, ...,z,} are clean
and sampled from multiple linear subspaces. A subspace
is considered self-expressive if each data point from the
subspace is expressed by a linear combination of the other
data from the same subspace. By stacking all of the data
points x; in a column-wise fashion into a data matrix X, this
property can be represented by a linear equation as follows:
X = X, where C'is an affinity matrix which measures the
pairwise similarity between all of the data points. Specifi-
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cally, this idea is formulated by an optimization problem as:

mcin||C||p st. X =XC, diag(C)=0, (1)

where p is an arbitrary matrix norm. The diagonal con-
straint on C' avoids trivial solutions such as identity matrix.

Various methods have been introduced to define an
affinity matrix to explore a set of subspaces. All of these
methods aim to find C such that ¢;; # 0 if x; and x; are
in the same subspace, and ¢;; = 0 if they are in different
subspaces. In the low rank representation [9, 24, 21],
the nuclear norm of C' is minimized in (1) instead of
minimizing the rank of C, because rank minimization is
an NP hard problem and the nuclear norm is the tightest
convex relaxation to the rank [4]. Following the model [9]
for LRR in general case which data may be contaminated
by noise, the model searches for a clean dictionary (e.g.,
A), and then assumes that the data are obtained by adding
noise or error term (e.g., ) to the clean dictionary (i.e.,
X = A+ FE). In this theoretically sound model, the er-
ror term for LRR is relaxed by a Frobenius norm as follows:

. A
rrlc{nl\Cll*+§||X—XC\|%, 2

where, ||.||« is the nuclear norm and ||.||r is the Frobenius
norm, and )\ is a hyper-parameter that balances the nuclear
and the Frobenius norm. By denoting the SVD of X as
UXV, the optimal solution of (2) is obtained by using:

N 1
C=wv(I- Xzﬁ)vﬁ, 3)

where U = [Uy,Us], ¥ = diag(¥X1,%3) and V = [Vq, V3.
Matrices are partitioned according to the sets Z; = {i :
Jz>%}andI2:{zm§ \%/\}[ 1.

In a sparse representation, however, each data point is ex-
pressed by the minimum possible number of the other data
from the same subspace. Similar to the low rank represen-
tation case, we relax the optimization problem by replacing
the ¢, with the ¢; norm, because the ¢, norm is a combi-
natorial norm and #; is the closest convex norm to the ¢,
norm. Thus, (1) for the sparse subspace, is as follows:

A
min IICH1+§|\X7XC||§,, diag(C) =0. (4

This problem can be efficiently solved by Alternating Di-
rection Method of Multipliers (ADMM) algorithm [2].

4. Supervised Self-Expressive Layers

Before explaining our entire framework in Section 5, in
this section we describe our supervised low rank and sparse
self-expressive layers in our framework, as shown in Fig.
2. These layers incorporate labels to explore sparse and low

rank subspaces underlying the data. In this framework, the
coarse properties of the data are represented by low rank
subspaces, while the fine properties of the data are repre-
sented by sparse subspaces. Therefore, the supervised self-
expressive layers in our framework have two main charac-
teristics: 1) the low rank self-expressive layer learns the
global and coarse concepts of the data, while the sparse self-
expressive layer learns the local and fine concepts of the
data, and 2) these layers incorporate the label information
to increase the class separability by leveraging a contrastive
loss function during the exploration of the subspaces.

Note that in the self-expressive layers, coarse concepts
can be represented by samples from the fine categories.
However, fine concepts may not be represented by coarse
samples. For example, consider the coarse category of big
cats including cheetah, leopard and jaguar subcategories.
When we want to represent the ”spots” which is a coarse
and common concept among all of the samples from the big
cats category, we use samples from all of the fine categories
and other samples which are only labeled by big cat as all
have this property. However, if we want to represent the
“tear line on the face”, which is a fine concept, we use the
samples from the cheetah class, not samples from the leop-
ard or jaguar classes, since the cheetahs have this property
while leopards and jaguar do not. For this reason, we sep-
arate the CNN outputs into two different branches, where
one of them is used for classifying the coarse concepts and
the other one is used for classifying the fine concepts.

4.1. Supervised Low Rank Self-Expressive Layer

The main goal of the low rank self-expressive layer in
our framework is to explore the subspaces that represent the
global and coarse structures of the CNN outputs. Assume
that g(ws, x;) indicates the feature vector obtained by our
CNN for sample z; (i.e., output of fully connected layer in
Fig. 2 for sample z;), where w; is parameters of the CNN.
Let G(ws, X ) represent the feature matrix constructed by
stacking [g(ws, 1), g(ws, 22), ..., g(ws, T, )] column-wise.
The cost function SLR(w,, Cr, X)), used to train the super-
vised low rank self-expressive layer is as follows:

A
1Cells + SNIGws, X) = Gws, X)Crl 7+

S50 - yi)llg(ws w) — glw, @)+ O

i=1 j=1
yij ma/x{()? (m - ||g(wsaxi) - g(wsax_])H)}Q?

where, C is a low rank affinity matrix. The first two
terms in (5) are the loss terms which are used to ex-
plore the low rank subspaces underlying the data matrix
G(ws, X). Cr in (5) forces G(ws, X) to be projected into
the low rank subspaces. In other words, C regularizes
ws to learn the low rank structures of features. This is
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Figure 2. indicates our deep framework, the CNN output is fanned out into two separate branches for fine and coarse image classification.

because, based on the rank inequality of multiplying two
matrices (i.e., rank(AB) < min{rank(A),rank(B)}),
we can conclude that, by minimizing (5) with respect
to ws, G(ws,X) is projected into subspaces such that
rank(G(ws, X)) < rank(C). Note that we simultane-
ously minimize rank(Cy) by using the term ||C||. in (5)
which causes to be reduced the rank of G(ws, X).

The third term in (5) is a contrastive loss, the goal of
which is to bring g(ws,x;) and g(ws,z;) close to each
other if x; and x; samples belong to the same coarse cat-
egory, while pushing them away from each other if they be-
long to the different coarse categories. y;; = 0 if ; and z;
have the same coarse label, otherwise, y;; = 1. Here, m is
the margin used in the contrastive loss.

4.2. Supervised Sparse Self-Expressive Layer

The goal of the sparse self-expressive layer in our frame-
work is to explore the subpaces which represent the local
and fine structures of the CNN outputs. In the sparse self-
expressive layer, we put a sparsity constraint on the num-
ber of similar data points which are used to express a given
sample (z) from a fine category. The sparsity constraint pre-
vents the samples (Z) within the same coarse category, but
belonging to the different fine categories, from contribut-
ing to the expression of sample x. This is because we want
to express the fine concept of x, and Z may not have the
same fine concept. Indeed, we choose the sparse subspace
as a solution to express the fine concepts because the dif-
ferences between images in a fine category are very small,
so we want any given data point from a fine category to be
expressed as a linear combination of a very small number
of similar data points. Eq. (6) shows the loss used to learn
the sparse self-expressive layer. The first and second terms
in (6) are the loss terms used to explore sparse subspaces,
while the third term is the supervised loss used to increase
the separability of the fine classes. Minimizing (6) with re-
spect to w; forces the feature matrix G(ws, X) to be pro-
jected in subspaces such that each sample g(ws, x;) can be
expressed by the minimum possible number of other sam-

ples from the same subspace. This is obtained by putting a
constraint on the affinity matrix C's so that it has a small ¢;
norm. y, ; = 0if z; and z; belong to the same fine category,
otherwise yl’-j = 1. Our supervised sparse self-expressive
layer cost function, SS(ws, Cs, X), is defined as follows:

A
1Cslh + S1IG ws, X) = Glws, X)Csl [+

>3 (= yi)llg(ws, z:) — g(ws, z) P+ ©)

i=1 j=1
yi; maz{0, (m —||g(ws, ;) — g(ws, z;)|)}?,

where, Cg is a sparse affinity matrix. Note that in the sparse
subspaces of our model, the structural assumption (i.e., low
rankness) among the data points is preserved as well. This
is because the two branches of the framework are trained
jointly by sharing the parameters (w;) during the training
such that the rank of G(ws, X) is attempted to be mini-
mized in the low rank self-expressive layer.

5. Fine-Coarse Label Classifier Framework

Fig. 2 illustrates our complete architecture. This archi-
tecture is an end-to-end framework consisting of a CNN
whose output is fanned out into two separate branches. The
first branch projects the CNN outputs into the low rank sub-
spaces by using a supervised low rank self-expressive layer.
The data points projected into the low rank subspaces are
then classified into the coarse categories by using a softmax
layer (w, in Fig. 2). The second branch, however, projects
the CNN outputs into the sparse subspaces by using a su-
pervised sparse self-expressive layer. The data points pro-
jected into the sparse subspaces are then classified into the
fine classes by using a softmax layer (w in Fig. 2).

Eq. (7) indicates the total loss function that our deep
model uses for joint fine and coarse image classification.
In this loss function, both the fine and coarse classification
tasks share the parameters (w;) to jointly explore the sparse
and low rank subspaces by optimizing the Eq. (5) and Eq.
(6) simultaneously during the training phase. In this frame-
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work, coarse images contribute to the fine classification be-
cause images with the same coarse label, but belonging to
different fine categories, still have a common global struc-
ture that can be used in conjunction with fine images to bet-
ter tune the parameters of our model (w;) during the training
phase. In such a case, the coarse images affect the parame-
ters such that the CNN outputs are well-projected into both
low rank and sparse subspaces which contributes to the fine
classification. The parameters which are optimized in our
architecture are {w., w¢,ws, Cr, Cs}. The total loss of the
framework, £(.), is formulated as follows:

L(ws, we,ws,Cr,Cs, X) =
¢(SS(wSaCSaX)+7(SLR(wSaCC7X))+ (7)
Le(w.G(ws, X), L) + Lo(wrG(ws, X), Ly),

where, L.(.) is the softmax cross entropy loss function used
for classification. The SLR and SS are the supervised
sparse and low rank self-expressive layer loss functions de-
fined in (5) and (6), respectively. L. and L are the coarse
and fine ground truth labels, respectively. w.G(ws, X) and
wyG(ws, X) are the predicted coarse and fine labels by our
model, respectively. ¢ and ~ are the hyper-parameters that
balance different loss terms during the training.

6. Experiments and Implementation Details
6.1. CNN Architecture

We use a VGG [30] architecture as shown in Fig. 2.
We apply batch normalization [ 7] after each convolutional
layer, and before performing the Rectified Linear Units
(ReLU) activation function [20]. We use an Adam opti-
mizer [19] with the default hyper-parameters values ( € =
1073, By = 0.9, B2 = 0.999) to train the parameters of the
CNN. The batch size in all experiments is fixed to 128 and
the framework is implemented in TensorFlow.

6.2. Training the Framework

We arrange a strategy which has two steps to train the pa-
rameters of the entire network: pre-training and fine-tuning.
This strategy also prevents the trivial all-zero solution while
minimizing the losses defined in (5) and (6). In the pre-
training step, each component of the framework (i.e., CNN
network (wy), first branch (w., C'z) and second branch (wy,
Cys) is trained separately, while in the fine-tuning step, all
of the components of the framework are trained jointly.

6.2.1 Pre-training Step

In the pre-training step, we first initialize the CNN parame-
ters (ws) by a VGG-Net pre-trained on a subset of the Im-
ageNet 2010 [28]. In the next step of the pre-training step,
we train the parameters of each branch separately. In each
branch, there are two tasks that are learned successively: 1)

projecting the CNN outputs (i.e., G(ws, X)) into the low
rank and sparse subspaces, and 2) classifying the projected
data points into the coarse and fine categories. Therefore,
in the first branch, the first task updates C', and the second
task updates the coarse classifier parameters (w.). In the
second branch, however, the first task updates Cg, and the
second task updates the fine classifier parameters (wy).

Note that Cz in the first branch and Cs in the second
branch can be thought of as the parameters of an additional
network layer (i.e., self-expressive layer as it is shown in
Fig. 2 ), which allows us to find a solution for C, and
Cs in (5) and (6) by using back-propagation in the first
and second branch, respectively. We also note that the self-
expressive layers in our framework are not a fully connected
layer. In the low rank-self-expressive layer, each data point
(z; = g(ws,x;) in Fig. 2, where n is the number of train-
ing data) is only connected to all the data which belong
to the same coarse category. Thus, data within the same
coarse category construct a complete bipartite graph in the
low rank-self-expressive layer. In the sparse-self-expressive
layer, however, each data point attempts to be connected to
only the minimum possible number of data points which
belong to the same fine category. Thus, in this layer, data
points within the same fine category construct a bipartite
graph which is very sparse.

6.2.2 Fine-tuning Step

In the fine-tuning step, all parameters of the framework are
updated jointly. The parameters of the model in this step
have been initialized with a proper starting point obtained
from the pre-training step. In this step, we aim to minimize
the total loss function in (7), all at once. Since the frame-
work is trained in batch mode through several epochs, we
optimize (7) with respect to C'z and C's parameters only af-
ter each epoch is finished, where we have observed all the
training data, because C, and C's need to access all the data
points when they project the data points into the subspaces
with the self-expressive property. Therefore, we train the
framework in batch mode and optimize (7) with respect to
all the parameters excluding Cz and Cs. Then, at the end
of each epoch, we minimize the total loss with respect to
Cr and Cg (i.e., this step is similar to the alternative min-
imization algorithm, where we optimize one parameter al-
ternatively by fixing all other parameters). Note that during
the training, we store the CNN features of the images. This
process avoids the need to re-calculate those features (i.e.,
G(ws, X)), when we update C and Cg parameters.

6.3. Dataset and Experimental Setup

We arrange our experimental setup as described in [28]
and [13]. We perform our experiments on a subset of the
ImageNet 2010. This subset consists of the classes from the
ImageNet 2010 which have only one parent class. Among
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Figure 3. Hyper-parameters tuning: accuracy of the model on the validation set, where |Scoarse| = |Sfine| = 0.5]5]

these classes, the parent classes form the coarse categories,
Scoarse> While their corresponding children contain the fine
categories, Sfine. Using this setup, we have |Scoarse| =
143 coarse classes, and |S ;.| = 387 fine classes. Since in
this work, we consider fine image classification in a weakly
supervised fashion, the original training, validation, and test
sets of the ImageNet 2010 dataset are truncated to Syine.
The truncated training set contains 487K images in which
there are between 1.4K and 9.8K images for each coarse
category, and between 668 and 2.4K images for each fine
category. For the validation and the test sets, there are 50
and 150 images per fine category, respectively. In all of our
experiments, we report the performance of the model by
using the top-one average accuracy, as reported in [28] and
[13]. We randomly divide the truncated training set, .S, into
two disjoint subsets for each fine category. In this case, the
first subset of images, S¢oqrse, have only the coarse labels,
while the second subset of images, Sfine, have fine labels
as well. More details about the classes, training, validation
and test sets are found here !.

6.4. Hyper-parameters Tuning

We adjust the hyper-parameters of the model based on a
range of the values that provide the best accuracy on the
validation set. We set |Scoarse] = |Sfine] = 0.5[5] in
the training set during the tuning of the hyper-parameters.
The hyper-parameters of our model are {v,¢, A\,m} de-
fined in (7) in which m and X are used in the SS(.) and
SLR(.) functions. Fig. 3 indicates the accuracy of the
model on the validation set in tuning the hyper-parameters.
Fig. 3(a) indicates the performance of the model by set-
ting A = {1, 10, 100,500, 1000}, the results indicate that
A = 100 provides the best accuracy. When choosing
m to be {0.2,0.5,1,1.5}, as shown in Fig. 3(b), the
best value for the margin, m, is 1. When setting v to
be {0.01,0.1,1,5,10,100} and ¢ to be {1,5,10, 100}, as
shown in Fig. 3(c) and Fig. 3(d), values of v = 1 and
¢ = 10 provide the best accuracy.

'h:tp://www.vision.ee.ethz.ch/datasetsiextra/
mristin/ristin_et_al_cvprl5_data.zip

6.5. Evaluating the Model in Different Cases

In this section, we evaluate performance of our model-
Deep Fine Classifier (DFC), in five different cases. DFC-S
is the case where we train each component of the framework
’separately’ (pre-training step defined in the Section 6.2.1).
However, in this case we ignore the contrastive loss in (5)
and (6) during exploring the subspaces. DFC-S-CL is the
case where we add contrastive loss to the DFC-S case.

DFC- J is the case where we train the entire framework
“jointly’ by using the loss (7), but ignore the contrastive loss
in (5) and (6). DFC-J-CL is the case where we add con-
trastive loss to the DFC- J case, in which we train the en-
tire framework ’jointly’ by considering the contrastive loss
during the exploration of subspaces in (5) and (6). Finally,
Base-J-CL is the case where we remove the sparse and low
rank constraints (i.e., we remove the first two terms from
(5) and (6)) and then train the network using the loss (7).

6.5.1 Supervised Sparse and Low Rank Layers

In a supervised version of exploring low rank and sparse
subspaces, we incorporated the label by using a contrastive
loss function. To see the effectiveness of this process in our
model, we compare DFC on the testing set for two pairs
of different cases (i.e., {DFC-S, DFC-S-CL}, and {DFC-J,
DFC-J-CL} ). Table. 1 indicates the performance of the
model in different cases on the testing set where we fix
|Scoarse| = 0.5]S]| and set |S¢iy.| to be 0.1]S], 0.2].S| and
0.5]S|, respectively. Table. 2 shows the accuracy of the
model on the testing set where we fix |Stine| = 0.5|S] and
set |Scoarse| to be 0.1]S], 0.2|S] and 0.5]S|, respectively.
By comparing DFC-J with DFC-J-CL in Table. 1 and
Table. 2, we observe that including contrastive loss during
the exploration of the subspaces, in either configuration of
splitting training data to the coarse and fine labels, increases
our model performance. We can see that fine label classifier
performance in our model is improved by 1.05% on average
(Table. 1) when we fix |Scoarse] = 0.5|S| and vary the
size of |Sfine|, while it is improved by 0.83% on average
(Table. 2) when we fix |Stine| = 0.5]S| and vary the size
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(a) Separate-training

(b) Join-training

Methods | 0.1]S|  0.2[S| 0.55]

Base-J-CL | 69.19 70.51 72.64

DFC-S 72.84 74.46 T7.58

DFC-S-CL | 74.32 76.16 79.41

DFC-J 76.23 7739 80.12

DFC-J-CL | 76.89 78.83 81.17
Table 1. Comparing performance of our model in different sce-
narios, we fix |Scoarse| = 0.5|5], and we set |Stine| to be 0.1|S],

0.2|S] and 0.5|S5].

Methods | 0.1]S| 0.2[S| 0.5[9]

Base-J-CL | 71.12 7149 72.64

DEC-S 76.52  76.98  T77.58

DFC-S-CL | 7748 7781 79.41

DFC-J 78.63 78.91 80.12

DFC-J-CL | 79.15 79.84 81.17
Table 2. Comparing performance of our model in different sce-
narios, we fix |Syine| = 0.5]S|, and we set | Scoarse| to be 0.1[S],

0.2|S] and 0.5|5].

of [Scoarse|- Moreover, by comparing DFC-S with DFC-
S-CL, the average improvement of the model in Table. 1
and Table. 2 are 1.67% and 1.20%, respectively. Finally,
the comparison of results between Base-J-CL and DFC-J-
CL in Table. 1 and Table. 2 shows that the LR and sparse
constraints have a significant impact on our model.

6.5.2 Effectiveness of Joint Training

In this section, we show the effectiveness of joint-training
for our framework. The results reported in Table. 1 and
Table. 2 show that training the model jointly (i.e., DFC-J-
CL case) significantly improves the overall performance of
the framework in comparison to the case where we train our
model components separately (i.e., DFC-S-CL case). These
improvements, on average, are 2.33% and 1.82% in Table.
1 and Table. 2, respectively.

6.6. Impact of Fine and Coarse Samples in Training

Here we investigate the effect of fine images during the
training. Moreover, we demonstrate how coarse images im-
prove the model performance by fixing the fine image set
size during the training. Table. 1 shows the case in which
we fix the coarse image set size (i.e.,|Scoarse] = 0.5]S])
while we increase the fine image set size (|.S tine|) during
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(d) Low rank
Figure 4. Feature visualization (a) and (b); visualization of affinity matrices for coarse categories (c) and (d).

(c) Sparse

Size | 01]s| 0.2|S| 0.5S|
DFC-J-CL-Base | 73.92+£0.16 76.31 £0.21 79.06 +0.14
DFC-J-CL 76.804+0.24 78.834+0.18 81.17+0.11

Table 3. The model accuracy by using and not using coarse data.

the training. As shown in Table. 1, the overall perfor-
mance of our entire framework (i.e., DFC-J-CL) increases
by 1.94% and 2.34 % as we increase the size of | Syip. | from
0.1|S] — 0.2]S| and 0.2|S| — 0.5|.S], respectively. Table.
2 shows the effectiveness of the incorporation of coarse im-
ages into our model. Table. 2 shows the case where we fix
the fine images set size (i.e.,|Sfine| = 0.5]S|) while we in-
crease the coarse image set size (|Scoarse|) during the train-
ing. As shown in Table. I, the overall performance of our
model (i.e., DFC-J-CL) increases by 0.69% and 1.33 % as
we increase the size of |S¢oarse| from 0.1|S| — 0.2|S] and
0.2|S| — 0.5|S], respectively.

We also evaluated our entire model (i.e., DFC-J-CL) for
a naive baseline called (DFC-J-CL-Base) where we use two
branches, one for fine and the other one for coarse classifi-
cation. However, in this case during the training, we ignore
coarse images which are not tagged by fine labels and we
only use images which have both the fine and coarse labels.
We set |Stine| to be 0.1]S], 0.2|.S| and 0.5[5|, and ran this
baseline. By comparing this baseline with DFC-J-CL in Ta-
ble. 3, we observe that our model improves fine classifica-
tion on average by 2.97 %, 2.52 %, and 2.11 % when we
use coarse labeled images with missing fine labels. Note
that the DFC-J-CL-Base and DFC-J-CL will be the same
case if we use 100% of images with fine and coarse labels
and the accuracy of our model in this case is 85.67+0.26%.

6.7. Comparison

We compare our deep fine label classifier with NN-H-
RNCMF [28] and its baseline, RNCMF, and RNN [13],
which also attempt to enhance fine classification by leverag-
ing the coarse images in hierarchical structure. Moreover,
we compare our model with DMSC [ 1] as a baseline, where
a similar sparse and low-rank approach was employed for a
clustering task. For this method, we modified it to our task.
Specifically, the encoder in this model takes unimodal data
as the input data in our case are RGB images. All of the
hyper-parameters in these methods are chosen based on the
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(b) Low rank

(a) Sparse

Figure 5. Affinity matrices for fine categories.

Methods | 0.1]S| 0.2]S] 0.5]S]
RNCMF [28] 68.49 70.49 73.07
NN-H RNCMF [28] | 69.95 71.41 73.43
DMSC [1] 72.97 7449  76.72
RNN [13] 7426  75.64 77.12
DFC-J-CL 76.89 78.83 81.17

Table 4. Comparing our method with others by fixing | Scoarse| =
0.5|5], and setting |S¢ine| to be 0.1]S], 0.2|S]| and 0.5S].

authors suggestion. All of these methods use the features
extracted from the VGGNet pre-trained on the subset of Im-
ageNet dataset [28]. We are consistent with these methods
regarding the amount of coarsely and finely labeled images
during the training. We set |S¢oarse| = 0.5]5], and change
|Sfinel| to {0.1]5],0.2]5],0.5|S|}. The results in Table. 4
show that DFC-J-CL outperforms other methods in all con-
figurations, indicating its great potential to leverage coarse
images for improving fine image classification. In further
study, we compared our method in a case where all the fine
images are available during the training. In this configu-
ration, our model accuracy is 85.67 %, while the accuracy
of the methods including the baseline VGG fine-tuned on
the ImageNet2010, NN-H-RNCMF, and RNN are 76.01%,
74.18%, and 82%, respectively as reported in [28, 13].

6.8. Further Analysis

Inspired by [29], we use a Grad-CAM to expose the im-
plicit attention of our model on the images during the classi-
fication. We observe that our model is triggered by semantic
regions of the images for fine image classification. By using
the Grad-CAM, we can see that our fine label classifier pro-
vides a “’visual explanation” for the decision that it makes
during the classification. Fig. 6 indicates the Grad-CAM in
our model for "bear’, *fox’, *wolf” and ’spider’ species. It
shows that our model makes decisions by using the appro-
priate regions of the images to classify these species.

Furthermore, we used T-SNE [25] to visualize the CNN
features for training in two cases where we train the model
separately and jointly. Fig. 4(a) illustrates the case where
we train our model separately, while Fig. 4(b) shows the
case where we train the model jointly. Fig. 4(a) and Fig.
4(b) shows that the training data in joint-training are better
separated than separate-training case.

American Black Brown

Black and Gold  Black Widow Garden

™

Figure 6. Example of Grad-CAM for classifying different species.

Moreover, we visualized the affinity matrices of sparse
and low rank subspaces for coarse categories. We selected
100 samples of five classes including ’bear’, *fox’, *wolf” ,
’spider’ and ’grouse’ with the same coarse labels. Fig. 4(c)
shows the sparse affinity matrix, C's, and Fig. 4(d) indicates
the low rank affinity matrix, C, for the coarse categories.
Fig. 4(c) shows that affinity matrix, C's, is much sparser
than affinity matrix, C'z. This means that the fine data points
are expressed by few number of samples, while the coarse
data are expressed by more samples in the same subspace.

In further study, we visualized the affinity matrices of
sparse and low rank subspaces for fine categories. We
picked 100 samples from the *fox’ category by choosing 25
samples per each fine category including ’artic’, *grey’, ’kit’
, and 'red’. Fig. 5(a) shows the sparse affinity matrix, Cg,
and Fig. 5(b) indicates the low rank affinity matrix, C, for
the fine categories. Fig. 5(b) shows that almost all samples
contribute to express a given sample in the low rank sub-
space, while Fig. 5(a) shows that these samples are grouped
to four categories such that each sample can be expressed
by the other samples from the same group.

7. Conclusion

We proposed a novel CNN model that uses coarse im-
ages to improve weakly supervised fine image classification
performance. Our model represents coarse and fine con-
cepts of the images in low rank and sparse self-expressive
subspaces such that the sparse and low subspaces are used
to classify images at fine and coarse levels of abstraction, re-
spectively. In our model, the sparse and low rank subspaces
are explored jointly by sharing the parameters to use coarse
images in conjunction with fine images during the training,
which causes the data obtained by the CNN to be well-
projected into sparse and low rank subspaces for classifi-
cation. The experimental results show the great potential of
our model for using coarse images to improve weakly super-
vised fine classification. Moreover, the results indicate the
superiority of our model in comparison to the other methods
which also use coarse images for enhancing weakly super-
vised fine classification.
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