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A novel approach to tire parameter
identification

Hojong Lee and Saied Taheri

Abstract
Since they are believed to provide more reliable and accurate tire contact parameters, intelligent tires have been widely
studied for the purpose of the performance enhancement of the vehicle control systems such as anti-lock breaking sys-
tem and the electronic stability program. Moreover, it is also expected that intelligent tires can be utilized to analyze tire
dynamic response, taking into consideration that the measurements from the sensors inside the tire would contain con-
siderable information on tire behavior in real driving scenarios. In this work, the tire physical characteristics related to
in-plane dynamics of the tire, such as stiffness of the belt and sidewall and contact pressure distribution, were identified
based on the combination of strain measurements and a flexible ring tire model. The radial deformation of the tread
band was directly obtained from strain measurements based on the strain-deformation relationship. Tire parameters
were identified by fitting the radial deformations from the flexible ring model to those derived from strain measure-
ments. This approach removed the complex and repeated procedure to satisfy the contact constraints between the
tread and the road surface in the traditional ring model. For validation purposes, circumferential strains were measured
for three different tires on a Flat-Trac indoor test rig. And then, circumferential contact pressures and tire parameters
were estimated based on these measurements. Identification using only model-based methods was conducted and com-
parison was made to the measured contact patch shapes. The comparison among identification methods and measure-
ments shows good agreement. The proposed method of utilizing intelligent tire fused with physical tire model is
expected to provide another tool to investigate tire characteristics. Moreover, tire properties identified using intelligent
tires could be more closely linked to vehicle performance.
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Introduction

Sensor embedded tires, the so-called intelligent tires,
have been widely researched in the tire and automotive
industries because they are believed to provide more
reliable and exact tire information to vehicle active con-
trol systems like anti-lock braking system (ABS) and
Electronic Stability Program (ESP) (), than traditional
indirect estimation methods. Thus, the improvement of
control performance is expected with the help of intelli-
gent tire system. In intelligent tire systems, deforma-
tions, and accelerations are measured at locations of
interest with corresponding sensors. For these measure-
ments to contain abundant information about the tire
contact characteristics, the measured locations are
determined as close to the contact area as possible. To
secure the durability of sensors, they are usually
attached to the innerliner over the tread portion than
inserted into the tire layers.

To obtain meaningful tire parameters from sensor
measurements, different sorts of estimation algorithms
have been tried in previous research. Most of them are
based on the simple regression methods, where tire
parameters are considered as estimated outputs and
features of the measured signals serve as the inputs.

Table 1 lists the literature showing the estimated tire
parameters and corresponding predictors. Details can
be found in the referred literature. These methods are
expected to provide more reliable tire parameters using
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advanced statistical methods or machine learning
algorithms.

Besides the main applications of intelligent tire men-
tioned previously, it is also promising to use sensed
measurements from intelligent tire for the analysis of
tire from the point of view of the tire design engineer.
This is because the accelerations or strains measured
near the contact patch have ample information on tire
characteristics. To achieve this goal, well-established
theories in tire models can be incorporated into the pro-
cess of identification of tire characteristics. A few previ-
ous researchers have adopted this approach to estimate
tire parameters. Erdogan et al.11 obtained the carcass
lateral profile by double integrating the acceleration in
the lateral direction measured at the innerliner and
introduced the lateral carcass deflection model12 to esti-
mate the lateral force and the self-aligning moment.
These estimated parameters were finally used as inputs
to the brush type tire model to obtain the friction coeffi-
cient. This work was advanced further by Hong et al.,13

who applied this method to real-world scenarios by tak-
ing the tire deformation effects on measured accelera-
tion into consideration. Matsuzaki et al.8 also used the
double integral of lateral acceleration to obtain the lat-
eral profile of carcass line, which was correlated with
lateral force. In these works, identification of the lateral
deformation was used for the estimation of the lateral
force with the assumption that the lateral stiffness of
tire is known.

In this article, a modified flexible ring model is intro-
duced to identify the characteristics related to in-plane
dynamics of the tire. As the name of ‘‘flexible ring’’
implies, this model represents the tread band of the tire
as a flexible ring, which is supported by the viscoelastic
sidewall elements (between the ring and the wheel).
Flexible ring models are widely used to analyze the
vibration properties as well as to solve the circumferen-
tial contact problems between the tire and the road sur-
face. As to the contact problem, tread elements should
be included to account for the boundary conditions
between the tire and the road surface. Figure 1 illus-
trates a general flexible ring model of a tire-wheel sys-
tem, which include almost every model parameter of
this model concept and tread elements as well. Model

parameters are listed with description at the right hand
side in the figure.

Yamagishi and Jenkins14,15 and Jenkins16 studied the
circumferential contact problem of the belted radial tire
by taking into account the tread rubber as distributed
springs along the outer layer of the circular ring. In
their study, they assumed the contact angles to be
known, whereas they are usually unknown in real appli-
cations. The ring was separated into the free region and
the contact region. Governing equations are solved sep-
arately for each region by finding numerical solutions
of differential equations. The arbitrary constants were
determined by symmetry conditions of the static tire
and continuity conditions at contact edges. There were
convergence issues, so they used a singular perturbation
method to get the approximate solution. Gong17 used
the same boundary conditions but solved the contact
problem with a more advanced ring model which
includes the circumferential stiffness and damping of
the sidewall, and dynamic effects of a free rolling tire
on the flat road. Rather than solving the equation using
conventional methods, modal expansion method was
used considering the flexible ring as one unit. After con-
siderable numerical manipulations, he calculated the
ring deformation and the contact pressure distribution
under the assumption that the contact angles were
known. For the case of unknown contact angles, other
information such as the vertical deformations or loads
were used instead and the solution process was repeated
until one of the contact angles met the required bound-
ary condition at the corresponding edge. And then,
another iteration process was conducted to find the
other contact angle while keeping the previously found
contact angle as constant. It needs to be pointed out
that finding contact angles sequentially is likely to make
some error because the fixed contact angle from the
first iteration should be affected when the other contact
angle varies through the second iteration process. In
other words, they need to be determined simultane-
ously. Kim and Savkoor18 introduced a more realistic
compatibility condition for the tread elements for the
circumferential contact problems of the free rolling tire
on the flat surface. He introduced the shear deforma-
tion of the tread and distributed moments along the

Table 1. Review of the previous work on intelligent tires.

Estimated tire parameter Predictor extracted from sensor measurement

Contact length Peak-to-peak distance of acceleration or strain rate1,2

Vertical force (Fz) Estimated Contact length1–6

Compressive peak or tensile peak of strains6–8

Integral of circumferential strains within contact9

Slip angle and lateral forces (Fy) Differences in contact length or strains at inner and outer part of cornering contact patch
(more than a pair of sensors were used).1–6

Longitudinal force (Fx) Difference between the leading and trailing contact angle. (Wheel encoder sensor is
required).10

Difference in compressive peaks of lateral strain, between before and after contact patch.6
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beam axes due to the shear deformation of the tread.
Therefore, the boundary condition became complex
and nonlinear, making it impossible to find an analyti-
cal solution. So, he introduced a two-step solution: first,
the boundary conditions were linearized and approxi-
mate solutions were found similar to Gong’s approach.
Second, exact solutions were obtained through iterative
process from the approximate solutions using the exact,
non-linear compatibility conditions of the tread.

As was shown, solving the equations of the motion
for the flexible ring model while satisfying the bound-
ary conditions simultaneously is complex with numeri-
cal difficulties. Also, it is difficult to obtain some of the
model parameters for flexible ring such as the bending
stiffness of tread band and sidewall stiffness. Modal
analysis has often been used to get the tire parameters
and static test results on indoor test rigs are also used.
However, conducting the modal tests and interpreting
the results for the purpose of parameterization of the
tire are challenging especially for the contact problems
where the tire is rolling with a finite contact with the
road. Also, model parameters obtained from the static-
indoor test results may not reflect tire characteristics in
the real driving scenario. Moreover, when tread ele-
ments are introduced, the tread stiffness should be esti-
mated, which does not exactly correspond to the
modulus of the tread rubber but a synthetic value
determined by the bending stiffness of the tread band,
the rubber modulus as well as some geometrical values
such as the tread thickness and the beam width as dis-
cussed in Yamagishi and Jenkins.14

In this article, the contact problem was solved based
on the combination of strain gage measurements, finite
element modeling (FEM), and the flexible ring model.
The rest of the article is organized as follows: Testing
method is discussed in the next section, which is fol-
lowed by the simulation method of the circumferential
strains. And then, circumferential contact problems
were solved for three different tires by using both of

the suggested method and conventional method for the
validation purpose. Discussions and conclusions are
given at the end.

Experimental tire testing and data
processing

A strain-based intelligent tire was utilized in this
research. Types of strain gages are classified into foil
strain gages, wire strain gages, semiconductor strain
gages, and so on. In this study, foil strain gages were
used and their structure is shown in Figure 2.

The foil strain gage has a metal foil on the electric
insulator of a thin resin, and gage leads are attached to
this foil, as shown in the figure. The strain gage is
bonded to the measuring object (tire innerliner in this
study) with a dedicated adhesive. Strain occurring on
the measuring site is transferred to the strain sensing
element via adhesive and the resin base. For accurate
measurement, the strain gage and adhesive should be
compatible with the measuring material and operating
conditions such as temperature, and so on. If an exter-
nal tensile force or compressive force applied to tire

Figure 1. General flexible ring model of a tire-wheel system.

Figure 2. Structure of a foil strain gage.
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increases or decreases, the resistance of the sensing part
inside the sensor proportionally increases or decreases.
If the resistance R changes by DR because of strain e,
the following equation can be written

DR

R
=Kse ð1Þ

The intelligent tire system for this study has five foil
strain gages attached to the innerliner, which are
equally spaced along the tire axial direction as shown
in Figure 3.

All strain gages were oriented in the wheel heading
direction to measure circumferential strains. One of the
five strain gages should be located at the equator line,
because it was revealed that the strain measured at the
center can be used to estimate basic tire parameters,
especially related to in-plane dynamics of tire. Two
pairs of strain gages were attached to off-center posi-
tions of the tread to investigate tire parameters for out-
of-plane dynamics such as lateral forces and slip angles.
However, this research focuses on the identification of
in-plane dynamic properties of tires and utilized mea-
surements from the center-located strain gage only.
(Study on out-of-plane dynamic features using the same
intelligent tire will be published separately.)

Loaded rolling tests were performed with this intelli-
gent tire system on a Flat-Trac test rig. Slip angle sweep
tests were conducted; slip angles varies from 25� to
;5� under five different loads ranging from 25% of the
reference load (5669N) to 175% to measure the force
and moment. Since this study aims at characterization
of in-plane dynamics, experimental data at zero slip
angle was chosen. The inflation pressure and test speed
were set to 2.3 bar and 65km/h, respectively, for all
tests. Strain measurements were performed for three
different P235/55R19 passenger tires with different belt
structures. Since this tire was developed to be provided
for original equipment (OE) maker, the reference test
load and inflation pressure were set according to OE
requirement.

The strains were measured at a fixed frequency of
4800Hz and measured signals are wirelessly transferred
to receivers outside the tire using a transmitter

developed in-house. The measured raw signals showed
a wide range of frequencies. High-frequency compo-
nents above 1 kHz are usually generated by the vibra-
tion behavior of tires. This vibration can be caused by
the stick-slip motion of the tread while in contact with
the road. Thus, these high-frequency components of
signals can give information on the level of friction and
the type of road surface as discussed in literatures.1,2

However, this research focuses on the estimation of
overall tire deflections rather than frictional phenom-
ena in micro scale. Therefore, the signals were filtered
using a low pass filter with a frequency of 400 Hz. This
low pass filter makes sure signals have predominant
peak while preserving information as much as possible.

Figure 4 shows the filtered strain time history of
the straight rolling tire at the reference test load. Since
the circumferential strains typically have two succes-
sive compressive peaks before and after the contact
region, they can be used to identify one rotation of
the tire. The peak identification algorithm was devel-
oped and maximum compressive and tension peaks
were marked as solid circles in the graph shown in
Figure 4.

Since the wheel rotational speed and the test speed
are known, strain histories can be obtained as a func-
tion of rotation angle. This conversion is only possible
when there is no longitudinal slip as in the case of
this test. Figure 5 shows strain measurements as a func-
tion of rotation angle for different test loads ((a) of
Figure 4) and strain rates, i.e. the time rate of change of
strain ((b) of Figure 4). The first and second peaks of
strain rate are known to correspond to contact angles
at the leading and trailing edges of the contact patch,
respectively.2 When the tread elements enter and exit
the contact region, they undergo sudden deformation
which features maximum and minimum peaks in the
strain rate. Thus, the peak-to-peak distance in the
strain rate is indicative of contact length. Peaks of
strain rate and corresponding points in the strain are
marked as solid circles in both graphs. It can be seen
from the graphs that as test load increases, the contact
length, that is, peak-to-peak distance in the strain rate,
also increases.

Figure 3. Intelligent tire system with five strain gage: sensor arrangement in the cross section of tire (left) and sensor attachment
on the inner liner (right).
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Estimation of radial deformation of the
tread band using strain measurements

An analytical model is required to simulate the strain
at the innerliner of the loaded rolling tire to find theo-
retical meanings of measured strains. In this research,
the flexible ring model is used because it can deliver the
in-plane deformation of the tread band. As the name
implies, it represents tire tread band as a homogeneous
curved beam, where, the tread band consists of steel
belts, the carcass, the innerliner, and a part of the tread
base. Even though the relationship between the strains

and the deformation in the homogeneous curved beam
is well defined, its validity needs to be confirmed when
it is applied to the tread band of a real tire, which is
composed of different composite layers. Once, the
equation for the deformation–strain relationship is con-
firmed, the radial deformation of the tread band can be
estimated by solving this equation with proper bound-
ary conditions.

The relationship between deformations of tread band
and strains at inner liner

Figure 6 illustrates the flexible circular ring. The radius
from the center to the neutral axis of the beam is R.
During deformation, Point P on the neutral axis at (R,
u) in polar coordinate system moves to P’ by ub and vb
in the radial and tangential directions, respectively. At
the same time, two neighboring points A and B located
off of the neutral axis move to A# and B#,’ respectively.
The location of A and B before deformation is (u, r)
and (u + du, r + dr), respectively, and A is apart
from the neutral axis by y, that is, r=R + y. The
deformation of A is defined as U and V in the radial
and tangential directions, respectively.

With these definitions, the strains in the element AB
can be written as the following equation referring17,19

eu =
1

r
U+

∂V

∂u

� �
+

1

2r2
V� ∂U

∂u

� �
ð2Þ

er =
∂U

∂r
ð3Þ

gru =
1

r

∂U

∂u
+

∂V

∂r
� V

r
ð4Þ

Because a thin beam is considered, Bernoulli–Euler
assumption is valid and the cross-section of the beam

Figure 4. Time history of the measured circumferential strain
at innerliner center.

Figure 5. (a) Strain and (b) strain rate versus rotational angle
under different test loads measured at center innerliner.

Figure 6. The location of two neighboring points before and
after ring deformation.
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remains plane and normal to the neutral axis, which
can be written as

V u, yð Þ= vb uð Þ+ yb uð Þ ð5Þ

where b is the rotation angle of the neutral axis.
The radial deformation, U can be approximated by

that of neutral axis, ub. (U’ub). Using this assumption
and equation (5), the shear strain, Yru would be
expressed in terms of vb and ub referring to equation
(4). Based on the thin beam assumption, shear strain,
Yru can be neglected (equating equation (4) to zero)
giving following relationship for rotation angle, b

b=
1

R
vb �

∂ub
∂u

� �
ð6Þ

Combining equations (2), (5) and (6) gives the final
equation for 2u in terms of vb and ub as written is equa-
tion (7) (details would be referred to Gong17)

Eu =
1

R
ub +

∂vb
∂u

� �
+

y

R2

∂vb
∂u

� ∂2ub
∂u2

� �

+
1

2R2

∂ub
∂u

� v

� �2
ð7Þ

To validate equation (7), FEM simulation was con-
ducted and the graphical deformation is shown in
Figure 7.

This simulation was carried out for a 215/60R16 size
tire pushed against a flat road surface. The inflation
pressure was 2.14 bars and the vertical load of 4765N
was applied. In order to generate the three-dimensional
tire model shown in Figure 7, 8-node linear brick,
hybrid with constant pressure element was used for rub-
ber and 4-node quadrilateral membrane element with
reduced integration is used for carcass and steel belt.
The total number of elements of the model is about
120,000, and the circumferential directional element size
is varied intentionally in order to reduce the number of
element. That is, the finer mesh was adopted at the
region of contact with the road surface (bottom part),
whereas the mesh was gradually coarsened toward the

top part. Moreover, a linear elastic material model was
applied to steel components such as bead ring and steel
belt because these components show a linear elastic
behavior under loading, and a linear viscoelastic mate-
rial model was applied to all types of rubber parts in
order to simulate the behavior of rubber more precisely.
On the other hand, since textile cords used for the tire
show totally different behavior under tension and com-
pression, the tensile and compressive moduli of each
textile cord are applied independently for preventing
overestimation of textile stiffness under compression.

Figure 7. Cross section of (a) FE model and FEM simulation results for circumferential strain when tire is subjected to vertical
force on the flat road (b).

Figure 8. (a) Radial and (b) tangential deformations of each
tire layer at center line.
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As simulation results, the deformation of each layer
was extracted and was converted to corresponding
radial-tangential displacements (U, V). Figure 8 shows
the radial and tangential deformations of each layer
(IL: innerliner, BT1, 2: steel belt 1 and 2, JFC1, 2: rein-
forcement layer 1 and 2). The radial deformations are
identical but tangential deformations differ slightly
among layers; inside layers, for example, innerliner,
tend to deform more in the contact region.

Figure 9 compares circumferential strains obtained
by different methods: one is simulated using FEM and
the other is calculated using equation (2) using the
deformation of the innerliner (U, V). Though the strain
from FEM shows a slightly higher tension in the con-
tact, the calculated one shows almost identical results.
So, modeling the tire tread band as a homogeneous
ring can represent the circumferential strain of the tire.

Strains at each layer are calculated using their defor-
mations and are shown in Figure 10. The strain at
innerliner (IL) shows the high tension within the con-
tact patch and compression arising just before and after
contact patch is the same as in the experimental mea-
surements shown in Figure 5. The second reinforce-
ment layer, JFC2 (relatively in the outer part) shows
opposite trends. The first and second belts (BT1, BT2,
respectively), show the smallest strains overall, which
means that they hardly shorten or elongate during the
tire deformation. So, their positions can be regarded as
the neutral axis of the ring as was also suggested in
Yamagishi and Jenkins.14 In this article, the first belt is
chosen as the neutral axis and its deformations are rep-
resented by ub, vb (the radial and tangential deforma-
tion), respectively.

Using these values and to check the validity of
Bernoulli–Euler assumption, the innerliner strain was

calculated using equation (7) and the results are shown
in Figure 11. The strain calculated using the deforma-
tion of the belt (ub, vb) is nearly the same as the one
using the deformation of the innerliner (U, V).

Thus, the position of the neutral axis is determined
as the location of the first belt line and Bernoulli–Euler
assumption is confirmed to be valid for the belted radial
tire.

Due to the inflation pressure and the centrifugal
force for the rolling tire, usually, tire layers have a
small amount of pretension even when they are not in
contact with the road surface. This pretension causes

Figure 10. Strains at each layer of tire.
Figure 9. Strains directly from FEM simulation and by
calculating from U, V.

Figure 11. Strains calculated from IL deformations (U, V) and
from BT1 deformations (ub, vb).
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the offset in the strain measurement as shown in
Figure 4. However, this offset in the measurement is
also affected by test sequence, temperature, and sensor
drift. Thus, when analyzing strain measurements, this
offset is usually removed, which means the circumfer-
ential elongation of the tire is not used.

The first and third terms in equation (7) correspond
to the circumferential elongation of the ring and second
term is induced by its bending motion. So, if just the
bending-induced strain is of interest, equation (7) can
be reduced to

Eu =
y

R2

∂vb
∂u

� ∂2ub
∂u2

� �
ð8Þ

For most of the steel belted radial passenger tires,
the inextensibility assumption is also valid, which says
that the length of the neutral plane of the ring is con-
stant during deformation. This assumption can be writ-
ten as

∂vb
∂u

= � ub ð9Þ

Substituting equation (9) into equation (8) gives the
final form of the circumferential strain equation

Eu = � y

R2
ub +

∂2ub
∂u2

� �
ð10Þ

Figure 12 compares strains using three different
equations. The first strain was calculated by using full
strain equation, equation (7), then was shifted such that
strain in the free region (opposite to the contact region)
is zero and marked as ‘‘equation (7) + shift’’ in the
chart. Other strains were calculated using reduced
strain equations, equations (8) and (10), and named as
corresponding equation numbers in the chart. Some
discrepancies are observed in the compression region

when comparing original strain and approximated
ones. However, since this region will not be directly
used in the identification process proposed in this arti-
cle, reduced equations are still considered to be valid.
There is no difference between equations (8) and (10)
confirming the inextensibility assumption. In this arti-
cle, equation (8) will be used for the identification of
the radial deformation of the belt in the Section 3.2.

Estimation of radial deformation from strain
measurement

One of outputs of the flexible ring model is the radial
deformation of the tread band especially at the neutral
axis. So, if it is possible to estimate the radial deforma-
tion of the belt (or neutral axis) from the strains mea-
sured at the innerliner, the strain-based intelligent tire
can be successfully integrated into the contact problem
using the flexible ring model.

The simplest form of the strain-deformation rela-
tionship, equation (10), is an ordinary differential equa-
tion for the spatial variable u. This can be simply
solved if we know the strain measurement by using
finite difference method (FDM) and strain measure-
ments as input. This ordinary differential equation
(ODE) can be discretized using FDM such that

y

DuRð Þ2
ubi�1 +

y

R2
1� 2

Du2

� �
ubi

+
y

DuRð Þ2
ubi+1 = � Eui

ð11Þ

In this equation, each point ‘‘i’’ corresponds to a
measurement point and Du is the incremental step of u
for discretization. Because equation (10) is a second-
order ODE, two boundary conditions are required. In
this article, these boundary conditions are determined
based on the compatibility conditions for tread to con-
tact the flat road, which is suggested by Yamagishi and
Jenkins14 and shown in Figure 13.

Figure 12. Comparison of strains calculated by using different
equations.

Figure 13. Flexible ring model including tread elements,
adapted from Yamagishi and Jenkins.14
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In this concept, the deformed tire against the flat
surface is considered and tread elements are modeled as
radial springs of which stiffness is kt. R0 is the overall
radius of the undeformed tire and Rl is the loaded
radius. The pressure distribution can be obtained by
multiplying tread deformation and tread stiffness (kt).
The tread deformation can be determined by the differ-
ence between the radial deformation of tread band (ub)
and the total deformation of the tire (ur), that is, ub-ur
where ur is obtained from the loaded tire geometry as
shown in the following equation

ur uð Þ= � d0
cos p � uð Þ +R0

d0
cos p � uð Þ � 1

� �
ð12Þ

where d0=R0– Rl.
This relationship can be approximated in the linear-

ized form with a high accuracy when d0 is much smaller
than R0

14

ur fð Þ= � d0 +R0 1� cos p � fð Þð Þ ð13Þ

From the strain rate peak values (refer to Figure 5),
the leading and trailing contact angles (uc, l, uc,t) were
identified and the corresponding total radial deforma-
tions (ur) were calculated using equation (13). At both
edges of the contact patch, the pressure should be zero,
which means the amount of ring deflection (ub) becomes
the same as the total radial deformation of the tire (ur).
Thus, the boundary conditions can be written as shown
in equation (14)

ub uc, l

� �
= ur uc, l

� �
= � d0 +R0(1� cos p � uc, l

� �
ub uc, t

� �
= ur uc, t

� �
= � d0 +R0(1� cos p � uc, t

� �
ð14Þ

As was mentioned previously, in this research, a sim-
ple flexible ring model was considered for the static tire
subjected to vertical force only. Thus, tread band defor-
mation is symmetrical with respect to the center point
of contact patch, and the strain profile at the innerliner
should also be symmetrical. However, the pressure dis-
tribution of the loaded rolling tire is asymmetrical due
to rolling resistance. Thus, the radial deformation and
the circumferential strain become asymmetrical, espe-
cially in the contact region. To obtain meaningful
information on tire characteristics from strains using
this static ring model, symmetrical shaped strains are
preferred. Therefore, measured strains were approxi-
mated to become symmetric using Fourier cosine series
expansion.

Equation (15) is the matrix form of the set of linear
equations from FDM (equation (11)) for unknown
variables, ubi (i=2 ... n–1)

b c 0 0 0 . . . 0

a b c 0 0 . . . 0

0 a b c 0 . . . 0

0 . . . . . . . . . . . . . . . 0

0 . . . . . . a b c 0

0 . . . . . . 0 a b c

0 . . . . . . 0 0 a b

2
666666666664

3
777777777775

ub2

ub3

ub4

. . .

ubn�4

ubn�3

ubn�2

2
666666666664

3
777777777775

=

Eu2 � aub1

Eu2

Eu4

. . .

Eun�4

Eun�3

Eun�2 � aubn

2
666666666664

3
777777777775

ð15Þ

where ubi are radial deformations of the contact patch
corresponding to each measured strain data point. a, b,
and c coefficients are determined as

a=
y

DuRð Þ2
, b=

y

R2
1� 2

Du2

� �
, c=

y

DuRð Þ2
ð16Þ

ub1 and ubn of equation (15) are pre-determined from
boundary conditions given by equation (14). This dis-
cretization concept is illustrated in Figure 14.

This set of linear equations, equation (15) can be
easily solved to find ubi by using a linear solver. The
estimated radial deformations are plotted in Figure 15.
Notice that the deformation is estimated only within
the contact patch since boundary conditions were
defined at both contact edges. As test load increases,
the radial deformation and the contact length increase
as well.

To check the accuracy of the solution, strains were
recalculated from the solution (ui) and compared with
Fourier approximations of real measurements. This is
shown in Figure 16. Both methods are in agreement
with high accuracy.

Figure 14. Discretization of radial deformation based at strain-
measurement points.
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Application of strain measurement for
circumferential contact problems

A simple flexible ring model was introduced to be used
with the strain measurement and the conventional
method for contact problems was reviewed briefly.
And then, a newly suggested method for solving the cir-
cumferential contact problem is described.

Flexible ring model

In the current study, a simple flexible ring model pre-
sented in Kim20 was used to obtain the deformation of
the tread band. Figure 17 illustrates a tire model com-
prising a circular beam and series of radial springs. The
circular beam, with radius R, represents the tread band
and the radial spring models the sidewall and air pres-
sure. EIb is the bending stiffness of the circular beam in
unit of Nm2 and Ku is the stiffness per unit length of a
radial spring in unit of N/m2. A point load P is applied
at the bottom of the ring. ub(u) is the radial deforma-
tion and positive sign means a radial-outward deforma-
tion. Tread elements were modeled as radial springs
with stiffness kt attached along the ring circumference
to deal with the contact problems. Compared with the
general flexible ring model shown in Figure 1, this
model is limited to a static tire subjected to radial forces
only. Moreover, damping effects of sidewall (cu, cv in
Figure 1) and tangential stiffness of sidewall (kv) were
neglected. These assumptions resulted in the analytical
solution without much sacrifice of accuracy in the
radial ring deformation.

The force equilibrium diagram is shown in Figure 18
for an infinitesimal element of the ring where Q, N, and
M are shear force, normal force and moment, respec-
tively, applied to this beam element.

The relationship between bending moment and
radial deformation of radial arc says

M= � EIb
R2

∂2ub
∂u2

+ ub

� �
ð17Þ

With assuming static equilibrium for an infinitesimal
element of the circular beam in combined with equation
(17), the equation for the tread band deformation can
be written as the following equations referring to20

d5ub
du5

+
2d3ub
du3

+ lb
dub
du

=0 ð18Þ

Figure 16. Convergence of FDM solution at Fz= 5666N.
Figure 15. Radial deformations at different vertical loads
estimated from strain measurements.

Figure 17. Flexible ring model subjected to a point load,
adapted from Kim.20
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where

lb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4ku
EIb

+1

s
ð19Þ

Equation (20) is the analytical solution to equation
(18) with the boundary conditions: zero slopes at u=0,
u=p, equilibriums of shear forces and external forces at
u=0, u=p, and no rotational movement of the ring

uðbÞruðuÞ=Pð �C0 + �C1 coshðauÞ cosðbuÞ
+ �C4sinh auð Þsin buð ÞÞ

ð20Þ

in which

�C0 =
R3

2EIbpl
2
b

ð21Þ

�C1 =
R3 a cosh pað Þ sin pbð Þ+b cos pbð Þa sinh pað Þð Þ

2EIbab a2 +b2
� �

cos 2pbð Þ � cosh 2pað Þð Þ
ð22Þ

�C4 =
R3 b cosh pað Þ sin pbð Þ � a cos pbð Þa sinh pað Þð Þ

2EIbab a2 +b2
� �

cos 2pbð Þ � cosh 2pað Þð Þ
ð23Þ

where

a=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lb � 1

2

r
,b=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lb +1

2

r

For the deflection of the tire subjected to distributed
contact pressure, ub(u) is determined by integrating
equation (15)

ub uð Þ=
ðp+uc

p�uc

p up

� �
�ub u;up

� �
Rdup ð24Þ

in which p(up) is the contact pressure distribution
along the contact length, uc is contact angle, and
�ub u;up

� �
is the radial deformation of the ring at u con-

tributed by p(up), which can easily be obtained by shift-
ing the solution function, equation (20), by up. Thus,
since tire parameters and pressure distribution are
known, the radial deformation of the tread band can
be calculated analytically.

To solve the contact problem using the ring model,
the same contact model as presented in Section 3.2 was
used. The pressure distribution was calculated by multi-
plying the tread deformation (ub-ur) by its stiffness (kt)
(refer to Figure 13)

p uð Þ= kt ub uð Þ � ur uð Þð Þ ð25Þ

By substituting equation (25) into equation (24) and
integrating, ub(u) can be found. To solve this equation,
it was discretized as is shown in equation (26)

ub uð Þ=
XNu

j=1

kt ub uð Þ � ur uð Þð Þ½ ��ub u;upj

� �
RDu ð26Þ

where Nu is the number of elements within the contact
patch and Du is the incremental angle for discretization.
Simplifying, equation (21) is expressed as

kt �U ub � urð ÞRDu= ub ð27Þ

In this expression, u ranging between [0 2p] is discre-
tized into u1, u2, ..., uNt, where Nt is number of discre-
tized points and is determined by dividing 2p by Du. ub
and ur are Nt X 1 vectors for tread band and total tire
deformation, respectively. U has NT3Nf dimension
and its (i, j) element is �ub ui;upj

� �
.

By collecting equation (27) for ub, the following
equation is obtained

ub = �U� 1

ktRDu
I

� ��1

�Uur ð28Þ

Using equation (28), ring deformation can be
obtained. However, the contact angle uc is still
unknown. This is determined through the iterative pro-
cedure until the two tread deformation constraints are
satisfied. First, the tread rubber cannot be stretched, in
other words, the pressure from equation (25) must be
positive. Second, the tread rubber cannot be com-
pressed into zero or negative thickness as discussed in
Gong.17 This constraint can be mathematically written
as

0\ ub uð Þ � ur uð Þ\ t ð29Þ

where, t is the tread thickness and
ur uð Þ= d0 � R0 1� cos p � uð Þð Þ from equation (13).

Usually, the second constraint is satisfied when rea-
listic tire parameters are used. Therefore, first con-
straint is the only one which must be satisfied through
the iterative process. This iterative process continues
until all of the points in the contact patch meet this
constraint and contact angles are found. The stiffness
parameters, EI, ku, and kt are determined by using the
error minimization method between estimated vertical
load and the applied vertical load, which is the same
approach suggested by Kim.20

Solving the contact problem using strain
measurement

The shape of the radial deformation of the ring is dom-
inated by the applied pressure distribution. In this sug-
gested method, the profile of contact pressure was
adjusted so that the radial deformation from the flex-
ible ring model (which doesn’t have tread elements) can
be fitted to that estimated from strain measurements.
On the contrary, in the conventional contact problem,
the pressure distribution is identified using the tire-road
contact model during the numerical solution. For the
purpose of representing arbitrary shapes of pressure
profiles, a numerical model was proposed as shown in
equation (30)
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p xð Þ= p0 1+S x
a1 + a2

2

� �� �

x� a1ð Þ x� a2ð Þ Sf

5000
+ x� a1 + a2

2

� �2
 ! ! 1

np

ð30Þ

where a1 and a2 are contact length in (m) from the cen-
ter to leading and trailing edges, respectively; S is the
shape factor for the asymmetric distribution; and Sf

and np are shape factors for diverse curvatures in the
pressure distribution

p0 =Fz

,ða2
a1

1+S u� a1 + a2
2

� �� �

x� a1ð Þ x� a2ð Þ Sf

A
+ x� a1 + a2

2

� �2
 ! ! 1

np

In this study, only symmetric pressure distributions
are assumed, so the shape factor S is set to zero.
Figure 19 illustrates the effects of np and sf on pres-
sure distribution shapes. a1 and a2 are known form
the peak-to-peak values of the strain rates and p0
can also be calculated once other shape parameters
are set under known load, Fz. Thus, only Sf and np
need to be determined through the optimization pro-
cess which tries to minimize the difference between
the radial deformations identified from the strain
measurements and calculated by the flexible ring
model.

The stiffness parameters for this ring model cannot
be directly measured since they are pressure and load
dependent and have different layers. Identifying these
values is a challenging task. In this article, these para-
meters were determined through the optimization

process. The optimization formula to identify the pres-
sure distribution and model parameters is written as
follows

FindEIb, ku, np, sf, such thatMin:
X5
i=1

�u
ið Þ
Sim � �u

ið Þ
FDM2

where �uFDM is known value from strain measurements
by FDM, �uSim can be calculated by using equation (28),
and i represents the different test loads. The tire para-
meters and shape factors, (EIu, ku, np, sf), are design
variables in this optimization scheme. EIu is assumed to
be constant over the entire load range, whereas ku has
the load dependency as suggested in21

ku =AeBd0 ð31Þ

Therefore, using this methodology, the pressure dis-
tribution and tire parameters can be estimated based on
the combination of the flexible ring model and strain
measurements.

Simulation results and validation

To validate the proposed method based on strain mea-
surements, strains at the tire innerliner for three

Figure 19. Realization of one dimensional pressure distribution
for diverse shape factors: (a) effects of np and (b) effects of Sf.

Figure 18. Force equilibrium diagram for infinitesimal element
of curved beam.
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different tires were measured. These tires had the same
specifications except for the belt constructions: LTR
belt with 27� belt angle (spec A), PCR belt with 27� belt
angle (spec B), and PCR belt with 30� belt angle (Spec
D). Geometrical parameters (R, R0, Rl) and stiffness
parameters (EIb, ku, kt) were needed for this simulation.
Loaded rolling radius, Rl, was measured on the Flat-
Trac test rig. Unloaded radius of tire, R0, was deter-
mined by extrapolating the loaded rolling radius at zero
test load. The radius of the ring, R, is the distance
between wheel center and neutral plane of the circular
bream. R0, R, and y are shown in Figure 20. y is deter-
mined such that the position of the neutral axis is
located at the first belt position as discussed in Section
3.1 but slightly adjusted for different tests in order to
match the simulated strain to the measured strain,
which slightly varies among test runs, even for the same
tire. The parameter values used are shown in Table 2.

Figure 21 compares the radial deformations from
the proposed method using optimization (shown as

‘‘from opti.’’ in Figure 21), from the conventional
method using the flexible ring model (shown as ‘‘from
model’’ in Figure 21) and identified from real strain
measurements using FDM (shown as ‘‘from strain’’ in
Figure 21).

The proposed method results agree well with the
conventional method. However, they both show discre-
pancies when compared to the one estimated from mea-
surement at the highest load. The new and conventional
methods use the same flexible ring model, and it might
not represent the tire deformation properly under
higher loads, that is, the deflection becomes large. The
tire models used in simple and static methods did not
include the circumferential elements of the sidewall,
frictional effects between the tire and the road, nor the
shear tread deformation. More discussions on this will
be delivered later.

Figure 22 presents the contact length obtained
from various methods. Static footprints (‘‘F/P test’’ in

Figure 20. Geometrical parameters of tire for simulation.

Table 2. Geometrical tire parameters.

Spec A Spec B Spec D
R0 (m) 0.374 0.374 0.375
R (m) 0.362 0.362 0.363

Figure 21. Radial deformations estimated by different
methodologies: based on flexible ring model, strain
measurement, and optimization.

Figure 22. Comparison of contact lengths obtained from different methodologies.
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Figure 22) were measured on the indoor static test rig
at somewhat different test loads but the entire range
of test loads overlap with those of the Flat-Trac test
making comparisons possible. The center contact
length from the foot print test was chosen for the
comparison with the other methods.

The measured contact lengths are always longer
than the estimated ones. When it comes to the flexible
ring model simulation (‘‘Model’’ in Figure 22), the
main input parameter is the vertical deformation of the
loaded tire. This deformation was measured on the
Flat-Trac test rig at 65 km/h. The vertical stiffness of
the rolling tire is expected to be higher than that of the
static tire because the dynamic modulus of the rubber
is higher, making the rolling tire stiffer. Figure 23 com-
pares the vertical deformations as a function of the test
load; one was measured on the static test rig; the other
on the Flat Trac test rig.

The shorter contact length due to higher vertical
stiffness of the rolling tire would be compensated by
the slippery road surface assumed in the model (no fric-
tional force), since the slippery road surface tends to
contribute to longer contact lengths. It is observed
that the contact length from simulation (‘‘Model’’ in
Figure 22) increases rapidly as the test load is increased.
As the test load increases, the frictional force also
increases which makes the contact length increase less
as observed in the other cases (‘‘FP test’’ and ‘‘Strain’’
in Figure 22). The contact length estimated from the
strain measurement (‘‘Strain’’ in Figure 22) shows simi-
lar load dependency to the footprint measurements.
The shorter contact length from this method can be
explained by the dynamic stiffening effect since strain

was also measured inside the rolling tire. Moreover, the
centrifugal effect of the rolling tire causes the tire to
‘‘lift’’ vertically away from the road surface at higher
speeds.

Figure 24 compares the contact lengths of different
tires obtained from different methods. Center contact
lengths at the reference load are compared. For all
cases, Spec D has the longest contact length, whereas
Spec A has the shortest. All methods demonstrate the
expected trend when the belt stiffness varies from stron-
ger (Spec A) to weaker (Spec D). However, the contact
length for Spec D is slightly longer than other specs
when contact lengths are measured on the static foot
print test rig, whereas it is much longer when estimated
from strain measurements. This phenomenon could be
due to the difference in contact features between the
rolling and static tires, especially when the tire has
lower belt stiffness (Spec D).

Figure 25 shows the estimated stiffness parameters
from the flexible ring model which includes the optimi-
zation with strain measurements. Both identification
methods deliver the same ranking for EIb: Spec
A . Spec B . Spec D. This can be expected based on
the belt construction of each tire. However, sidewall
stiffness is almost the same regardless of estimation
methods and tire specs because the tires only differ in
the belt construction. However, it was noticed that the
sidewall stiffness seems less influential in the objective
function because it varied less from the initial value
during the optimization process. The validity of the
sidewall stiffness estimation should be repeated using
tires with sufficiently different sidewall stiffness.

One dimensional pressure distribution for both
methods are shown in Figure 26: Figure 26(a) is the
result of the flexible ring model and Figure 26(b) from
the optimization method based on strain measure-
ments. Both of them show typical tendency that the
pressure distribution changes from convex to concave
shape as test load increases, which was also discussed
in Kim.20 The strain-based method showed more dra-
matic curvature change.

Figure 27 compares the pressure distribution of each
tire estimated from both methods at the reference test

Figure 23. Vertical deformations versus test load for rolling
and static tire.

Figure 24. Comparison of contact lengths at reference test
load for different tire specifications.
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load. As observed from the comparison of contact
lengths, Spec A shows the highest pressure distribution,
whereas the lowest one is observed for Spec D, regard-
less of the estimation method used.

Further validation is needed to secure the strain-
based estimation method for contact lengths and con-
tact pressure distribution with a specially designed test

device or FEM simulation, which can deliver the con-
tact features of the rolling tire at high speeds.

Discussion

Figure 28(a) presents measured strains and Figure
28(b) and (c) show the calculated strains based on
radial deformations using conventional method and the

Figure 25. Estimated stiffness parameters for different tire specifications using different methodologies.

Figure 26. Estimated one dimensional pressure distribution
under different test loads: (a) based on flexible ring model only
and (b) based on optimization results (flexible ring
model + strain measurements).

Figure 27. Estimated pressure distributions at reference test
load for different tire specifications: (a) based on flexible ring
model only and (b) based on optimization results (flexible ring
model + strain measurements).
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proposed method, respectively. Comparing the experi-
mental measurements with the simulated strains from
both methods, they share the same features as the
experimental data when test load increases. The peak
compression and the width of strain response curve
increase consistently as the test load increase. However,
discrepancy is observed when it comes to the tension in
the contact region. In the experimental data, the ten-
sion in the contact area monotonically decreases as the
test load increases, whereas simulation results present
increasing tension when test load increases, specifically
from 1416N to 5562N. Diverse factors can contribute
to this disagreement, but the most likely cause is the
nonexistence of friction between the tread and the road
surface in the simulation.

Figure 29 shows FEM simulation results of circum-
ferential strains calculated at the innerliner for a 215/
60R16 size tire. Although the tire of FEM model is dif-
ferent from the tires used in this study, simulation
results show the general effects of the frictional force
on circumferential strains. The upper chart shows the
simulation results when the static tire is subjected to a
vertical load on the frictional surface with the friction
coefficient of 0.5. The same simulation is repeated with
the coefficient of zero, and the results are shown in the
lower chart. Comparing both, it is clear that the results
which includes friction have more similar features to
experimental data; as the test load increases, the ten-
sion in the contact region decreases

Figure 30 explains the effects of frictional force on
circumferential strains.9 The frictional force causes tips
of the tread elements adhering to the road surface to
move outward in the circumferential direction. This
leads to bending deformation of tread elements indu-
cing compressive horizontal forces in the tire inner
layers. As a result, the tension induced from the bend-
ing motion of the ring is slightly reduced in the contact
region.

It should also be mentioned that even though the
optimization results of the suggested method for the
radial deformation are very close to those estimated
from strain measurements as presented in Figure 21,
there are still considerable differences in the case of
strains. This indicates that the strains are very sensitive

Figure 28. Circumferential strains from simulation and measurements: (a) measured strain, (b) simulated strain from conventional
flexible ring contact model, and (c) simulated strain from new method using strain measurements.

Figure 29. FEM simulation results for circumferential strains.
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to the shape of the radial deformation because they
depend on the first and second derivative of the radial
deformation on u. Thus, if the model is not complete
enough to describe the real strains of the tire, utilizing
the radial deformation is a more effective way to iden-
tify tire characteristics as presented here rather than
trying to fit the simulated strains directly to the mea-
sured ones.

Conclusion

In this study, a new methodology is proposed in order
to solve the circumferential tire-road contact problem
and estimate related tire parameters by use of the
strain-based intelligent tire, where strains are measured
at the innerliner.

This study demonstrated the possibility of identify-
ing the tire characteristics using the strain-based intelli-
gent tire. By using the suggested method, it is possible
to remove the tread-road contact model of the flexible
ring, which cause numerical difficulties and conver-
gence problems. Also, it is expected that tire parameters
estimated based on the strain measurement represent
real tire characteristics better because strains can be
measured inside the rolling tire on the real road surface.

However, the flexible ring model needs to be devel-
oped further to include the frictional effects to explain
the features of measured strains more closely especially
for higher test loads. Also, experimental measurements
of the footprint features of a rolling tire at high speeds
are required to confirm the validity of the proposed
identification method.

This approach can be further advanced by including
the braking/acceleration force effects into the model.
Strain measurements of the braking/accelerating tire
can be understood better using the upgraded flexible
ring model. And then, a similar approach as suggested
here can be used to characterize tire properties related
to the longitudinal forces.
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Appendix 1

Notation

d0 Overall tire deflection (m)

EIb Bending stiffness of flexible ring (Nm2)
Fz Test load (N)
ku Sidewall stiffness in the radial direction

(N/m2)
kt Tread stiffness in the radial direction (N/m2)
p(u) One dimensional pressure distribution

along u (N/m)
P Point load applied to the tire in the radial

direction (N)
R Radius of undeformed flexible ring (tread

band) (m)
R0 Overall radius of tire. R0=R + t (m)
Rl Loaded radius of tire (m)
ub(u) Radial deformation of flexible ring at

natural axis (m)
ur(u) Total tire deformation along u (m)
y Radial distance from the neutral axes to a

particular point (m)
t Tread thickness (m)
eu Circumferential strain at an arbitrary

point of flexible ring
u Wheel rotation angle (rad)
uc,(uc,l,
uc, t)

Contact angle (rad), (Leading and trailing
contact angle (rad))
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