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Abstract
1.	 Structured	population	models	are	among	the	most	widely	used	tools	in	ecology	
and	evolution.	Integral	projection	models	(IPMs)	use	continuous	representations	
of	how	survival,	reproduction	and	growth	change	as	functions	of	state	variables	
such	as	size,	requiring	fewer	parameters	to	be	estimated	than	projection	matrix	
models	 (PPMs).	 Yet,	 almost	 all	 published	 IPMs	make	 an	 important	 assumption	
that	size‐dependent	growth	transitions	are	or	can	be	transformed	to	be	normally	
distributed.	In	fact,	many	organisms	exhibit	highly	skewed	size	transitions.	Small	
individuals	can	grow	more	than	they	can	shrink,	and	large	individuals	may	often	
shrink	more	dramatically	than	they	can	grow.	Yet,	the	implications	of	such	skew	
for	inference	from	IPMs	has	not	been	explored,	nor	have	general	methods	been	
developed	 to	 incorporate	 skewed	size	 transitions	 into	 IPMs,	or	deal	with	other	
aspects	of	real	growth	rates,	including	bounds	on	possible	growth	or	shrinkage.

2.	 Here,	we	develop	a	flexible	approach	to	modelling	skewed	growth	data	using	a	
modified	beta	 regression	model.	We	propose	 that	 sizes	 first	be	converted	 to	a	
(0,1)	interval	by	estimating	size‐dependent	minimum	and	maximum	sizes	through	
quantile	regression.	Transformed	data	can	then	be	modelled	using	beta	regression	
with	widely	available	statistical	tools.	We	demonstrate	the	utility	of	this	approach	
using	demographic	data	for	a	long‐lived	plant,	gorgonians	and	an	epiphytic	lichen.	
Specifically,	we	compare	inferences	of	population	parameters	from	discrete	PPMs	
to	those	from	IPMs	that	either	assume	normality	or	incorporate	skew	using	beta	
regression	or,	alternatively,	a	skewed	normal	model.

3.	 The	beta	and	skewed	normal	distributions	accurately	capture	the	mean,	variance	
and	 skew	of	 real	 growth	distributions.	 Incorporating	 skewed	growth	 into	 IPMs	
decreases	population	growth	and	estimated	life	span	relative	to	IPMs	that	assume	
normally	 distributed	 growth,	 and	more	 closely	 approximate	 the	 parameters	 of	
PPMs	that	do	not	assume	a	particular	growth	distribution.	A	bounded	distribu-
tion,	such	as	the	beta,	also	avoids	the	eviction	problem	caused	by	predicting	some	
growth	outside	the	modelled	size	range.

4.	 Incorporating	 biologically	 relevant	 skew	 in	 growth	 data	 has	 important	 conse-
quences	for	inference	from	IPMs.	The	approaches	we	outline	here	are	flexible	and	
easy	to	implement	with	existing	statistical	tools.
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1  | INTRODUC TION

In	most	organisms,	 rates	of	 survival,	 growth	and	 reproduction	are	
dependent	 on	 individual	 size.	 Size‐structured	 population	 models,	
which	account	for	size	effects	on	individual	performance,	are	widely	
used	in	analyses	of	population	dynamics,	conservation	biology	and	
life‐history	patterns.	A	critical	component	of	size‐structured	models	
is	the	set	of	growth	transitions	governing	how	individuals	change	in	
size	over	time.

When	parameterizing	classic	population	projection	matrix	mod-
els	(PPMs;	Caswell,	2001),	the	probabilities	of	individuals	in	a	given	
size	class	shrinking	or	growing	to	join	other	size	classes	over	a	time	
step	 (often	a	year)	has	often	been	estimated	directly	from	the	ob-
served	frequencies	of	size	transitions	 in	the	data.	However,	devel-
opers	of	PPMs	have	increasingly	employed	continuous	estimation	of	
size‐based	vital	rates	to	estimate	demographic	rates	(Doak	&	Morris,	
2010;	 Gross,	 Morris,	 Wolosin,	 &	 Doak,	 2005).	 In	 addition,	 PPMs	
have	 progressively	 been	 supplanted	 by	 integral	 projection	models	
(IPMs),	 a	 class	 of	 stage‐structured	models	 that	 represent	 survival,	
reproduction	and	growth	as	continuous	functions	of	state	variables,	
frequently	including	size	(Easterling,	Ellner,	&	Dixon,	2000;	Ellner	&	
Rees,	2006).	IPMs	can	be	constructed	using	a	diverse	array	of	contin-
uous	functions,	and	several	authors	have	emphasized	the	need	when	
building	IPMs	to	critically	compare	multiple	flexible	models	and	dis-
tributions,	including	splines	or	generalized	additive	models	(GAMs),	
that	 can	 describe	 a	 wide	 range	 of	 relationships	 between	 growth,	
survival	or	reproduction	and	size	(Dahlgren,	García,	&	Ehrlén,	2011;	
Ellner,	Childs,	&	Rees,	2016;	Rees,	Childs,	&	Ellner,	2014).	In	practice,	
however,	 almost	every	 study	of	which	we	are	aware	has	assumed	
a	normally	distributed	growth	process	on	the	scale	at	which	size	is	
modelled,	with	the	probabilities	of	transitioning	by	a	given	amount	
above	or	below	the	average	size	next	year	being	the	same	(but	see	
Montero‐Serra	et	al.,	2017;	Needham,	Merow,	Chang‐Yang,	Caswell,	
&	McMahon,	2018;	Shriver,	Cutler,	&	Doak,	2012).	This	nearly	ubiq-
uitous	assumption	appears	to	be	due	to	the	 lack	of	clear	guidance	
about	alternative	approaches,	 rather	 than	any	biological	 reason	 to	
assume	this	would	be	the	case.	Yet,	the	consequences	for	inference	
of	population	dynamics	of	how	growth	has	been	represented	in	most	
IPMs	(assuming	normality)	versus	PPMs	(using	the	observed	distri-
bution),	or	some	other	alternative,	has	not	been	investigated.

Many	species	will	violate	the	assumption	of	normally	distributed	
size	transitions.	While	there	are	multiple	aspects	of	growth	distribu-
tions	that	could	be	substantially	non‐normal,	even	with	appropriate	
transformations	of	 the	 state	variable,	 two	 stand	out.	First	 are	 the	
bounds	on	possible	shrinkage	or	growth.	Unbounded	distributions,	
such	 as	 the	normal,	will	 predict	 non‐zero	probabilities	of	 reaching	
sizes	 that	exceed	any	biologically	plausible	outcome.	For	example,	

small	individuals	cannot	have	negative	sizes	on	an	absolute	(e.g.	not	
log‐transformed)	scale	and	also	are	often	unable	to	reach	larger	sizes	
for	 a	 species	 in	 a	 single	 transition,	 while	 large	 individuals	 cannot	
grow	to	sizes	outside	some	biological	upper	bound	and	may	also	be	
unable	to	shrink	to	typical	small	sizes	for	a	species	without	dying.	The	
problem	of	unbounded	distributions	predicting	sizes	outside	the	size	
limits	of	an	IPM	(i.e.	‘eviction’)	is	well‐recognized	(Williams,	Miller,	&	
Ellner,	2012)	and	usually	dealt	with	by	truncating	the	growth	distri-
bution;	however,	this	approach	does	not	deal	with	unrealistic	predic-
tions	within	the	overall	size	envelope	for	a	species.

A	second	violation	of	normality	 is	the	inherent	skew	in	distribu-
tions	of	possible	size	transitions,	expressed	as	probabilities	of	being	
different	sizes	after	a	time	step.	For	example,	organisms,	particularly	
large	ones,	often	shrink	much	more	than	they	are	able	to	grow	in	a	sin-
gle	time	step,	resulting	in	negatively	skewed	growth	rates	(Figure	1).	
Shrinkage	 due	 to	 die‐back,	 breakage	 or	 starvation	 has	 been	 docu-
mented	in	a	wide	range	of	organisms	(Linares,	Doak,	Coma,	Díaz,	&	
Zabala,	2007;	Montero‐Serra	et	al.,	2017;	Wikelski	&	Thom,	2000)	and	
can	have	profound	effects	on	population	dynamics	(Salguero‐Gómez	
&	Casper,	2010).	Previous	studies	have	either	 included	such	shrink-
age	within	the	estimation	of	normal	growth	distributions	or	modelled	
shrinkage	as	a	distinct	process.	For	example,	Shriver	et	al.	(2012)	es-
timated	a	probability	of	extreme	shrinkage	and	separate	size	distribu-
tions	 for	 ‘normally	growing	or	 shrinking’	versus	 ‘extreme	shrinkage’	
individuals	of	the	lichen	Vulpicida pinastri,	an	approach	also	taken	by	
Montero‐Serra	et	al.	(2017)	to	model	die‐back	of	a	slow‐growing	pre-
cious	red	coral	(Corallium rubrum).	Conversely,	some	organisms	such	as	
trees	may	be	incapable	of	meaningful	shrinkage,	resulting	in	positively	
skewed	growth	rates.	Recently,	Needham	et	al.	(2018)	used	a	mixture	
of	two	gamma	distributions	to	model	the	positively	skewed	growth	of	
slow‐growing	trees	along	with	the	more	normally	distributed	growth	
of	 fast‐growing	 trees.	 However,	 these	 mixed‐distribution	 solutions	
require	a	somewhat	ad	hoc	approach	in	distinguishing	normal	growth	
from	skewed	growth	that	is	not	likely	to	be	generally	applicable.

Here,	we	propose	a	flexible	approach	to	modelling	skewed	and	
bounded	 growth	 in	 continuous	 population	models	 using	 a	mod-
ified	 implementation	 of	 the	 beta‐distributed	 regression	 model.	
The	 beta	 distribution	 is	 a	 flexible,	 continuous	 distribution	 that	
can	be	symmetric	or	skewed	(Figure	S1),	but	in	its	usual	form	re-
quires	data	 to	be	bounded	between	0	 and	1,	 although	 so‐called	
four‐parameter	 beta	 distributions	 can	 be	 used	 to	 convert	 vari-
ables	with	 other	 distributional	 limits	 to	 (0,1)	 for	 analysis	 (Wang,	
2007).	 Here,	 we	 describe	 a	 workflow	 to	 convert	 size	 data	 to	 a	
(0,1)	 interval	 based	 on	 size‐dependent	 minimum	 and	 maximum	
thresholds,	 and	 then	 the	 use	 of	 beta	 regression	methods	 to	 es-
timate	the	effects	of	size	and	other	independent	variables	on	the	
mean,	 variance	 and	 skew	 of	 the	 distribution.	 We	 first	 describe	
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the	basic	approach	using	growth	data	for	the	red	gorgonian	coral	
(Paramuricea clavata,	hereafter	‘coral’),	which	grows	slowly	but	can	
sometimes	shrink	dramatically	due	to	breakage,	mainly	caused	by	
human	divers,	and	warming‐induced	mortality	(Figure	1)	(Linares	&	
Doak,	2010;	Linares	et	al.,	2007).	We	then	contrast	results	of	our	
method	(hereafter	‘beta	approach’)	with	those	from	the	standard	
method	 assuming	 normally	 distributed	 growth	 rates	 (hereafter	
‘normal	approach’)	as	well	as	an	alternative	approach	based	on	the	
skewed	normal	 distribution,	which	 is	 able	 to	model	 skewed,	 but	
still	 unbounded,	 growth	 and	 shrinkage.	 Finally,	 we	 compare	 the	
impact	 of	 assuming	 normally	 distributed	 growth	 versus	 relaxing	
this	assumption	for	three	population	outputs	–	population	growth	

rate,	 life	span	and	reactivity	–	using	data	from	three	diverse	and	
well‐studied	species:	the	red	gorgonian	coral,	an	epiphytic	lichen	
and	a	perennial	arctic/alpine	plant.

2  | BACKGROUND AND METHODS

2.1 | The normal approach

The	standard	approach	to	modelling	growth	 in	an	IPM	is	to	fit	 two	
separate	models	to	predict	the	mean	and	variance	of	the	size	distri-
bution	at	the	end	of	a	time	step	as	a	function	of	starting	size	and	any	
other	 influencing	variables	 (Easterling	et	al.,	2000).	 In	 this	process,	

F I G U R E  1  Many	species	exhibit	skewed	size	distributions.	We	show	three	examples	from	extensive	demographic	studies:	(Left)	a	long‐
lived	gorgonian	coral	(Paramuricea clavata),	(Centre)	an	arctic/alpine	plant	(alpine	bistort,	Polygonum viviparum),	and	(Right)	an	epiphytic	
boreal lichen (Vulpicida pinastri).	Top	panels	show	the	relationship	between	size	at	time	t	+	1	and	size	at	time	t.	Middle	panels	show	the	
distribution	of	growth	increments	(size	t	+	1	−	size	t),	cantered	on	zero.	Bottom	panels	show	the	skew	in	size	at	time	t	+	1	(grey	lines),	
computed	for	a	sliding	window	of	50	data	points,	against	the	mean	size	at	time	t.	Solid	black	lines	indicate	a	symmetric	distribution	with	0	
skew;	dashed	black	lines	show	a	smoothing	spline	fit	to	the	sliding	skew	estimates.	See	Supporting	Methods	for	details	of	the	demographic	
datasets
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the	first	model	is	generally	a	regression	of	size	at	time	t	+	1	on	size	at	
time	t	 (and	other	 independent	variables,	such	as	climate,	habitat	or	
herbivory)	to	estimate	the	mean	ending	size	as	a	function	of	starting	
size	(Figure	2c).	The	second	model	takes	the	squared	residuals	from	
the	first	model	as	point	estimates	of	the	variance	in	size	t	+	1,	again	as	
a	function	of	starting	size	plus	other	variables	(Figure	2d).	There	are	

a	variety	of	approaches	to	flexibly	model	how	the	mean	and/or	vari-
ance	may	change	with	size,	including	simultaneously	estimating	both	
parameters	by	maximum	 likelihood	 (reviewed	 in	Ellner	et	al.,	2016;	
Rees	 et	 al.,	 2014),	 but	 the	most	 common	approach	 is	 to	use	 sepa-
rate	linear	regressions	for	both	parameters	(e.g.	Metcalf,	McMahon,	
Salguero‐Gómez,	Jongejans,	&	Rees,	2013).	Many	implementations	of	

(a) (c)

(b) (d)

(e) (f)
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this	approach	use	Akaike	information	criterion	(AIC)	or	similar	criteria	
to	judge	the	support	for	quadratic	size	effects	or	the	influence	of	cli-
mate	or	other	variables	on	the	mean	and	variance	of	growth	rates.	For	
a	given	starting	size,	the	estimated	mean	and	variance	are	then	used	
to	compute	the	normal	probability	density	function	(pdf)	for	ending	
size,	which	 is	used	 to	compute	 the	probability	of	 transitioning	 into	
a	given	size	bin	at	the	next	time	step	in	IPMs.	Typically,	this	is	done	
using	the	point	estimate	of	the	pdf	for	a	given	starting	size	multiplied	
by	the	bin	width	(i.e.	the	midpoint	rule;	Ellner	&	Rees,	2006;	Merow	et	
al.,	2014;	Metcalf	et	al.,	2013);	however,	we	have	found	this	approach	
to	be	less	stable	(M.	Peterson	and	D.	Doak,	pers.	obs.)	so	here	we	in-
tegrate	the	pdf	across	size	bins	by	taking	the	difference	in	the	cumu-
lative	density	function	of	each	bin	edge.	Absolute	size	measurements	
are	often	log‐transformed	to	improve	normality	of	size	and	other	vital	
rate	relationships,	but	this	approach	can	only	address	positive	skew	
in	growth	whereas	many	species	may	show	negative	skew	or	shifts	in	
skew	from	positive	to	negative	with	increasing	size.

This	method	works	well	for	size	transitions	that	are	reasonably	
approximated	 by	 a	 normal	 distribution.	 However,	 although	 the	
normal	 distribution	 is	 able	 to	 capture	 the	mean	 and	 variance	 of	
skewed	distributions,	it	will	badly	misestimate	the	mode,	resulting	
in	a	distribution	that	will	under‐	or	overestimate	the	probability	of	
reaching	certain	sizes	depending	on	the	direction	of	skew	(Figure	
S2).	In	addition,	the	normal	distribution,	or	any	other	unbounded	
distribution,	will	predict	non‐zero	(albeit	generally	small)	probabil-
ities	of	growth	and	shrinkage	to	unrealistic	sizes.	This	latter	prob-
lem	has	been	recognized	when	predicting	sizes	outside	any	seen	
in	a	study	(Williams	et	al.,	2012),	and	is	usually	dealt	with	by	trun-
cating	the	pdf	for	each	starting	size	to	be	within	the	modelled	size	
range,	typically	by	either	renormalizing	growth	probabilities	within	
the	modelled	size	range	to	sum	to	1,	or	by	assigning	the	probability	
density	 falling	 outside	 the	 modelled	 size	 range	 to	 the	 most	 ex-
treme	size	class	within	the	range.	These	approaches	typically	alter	
the	 pdfs	 for	 the	 smallest	 and	 largest	 individuals	 most	 strongly.	
However,	 unbounded	 distributions	 are	 also	 problematic	 when	
they	predict	an	unreasonable	 subsequent	 size	given	 the	 starting	
size	 of	 an	 individual	 (e.g.	 allowing	 a	 small	 fraction	 of	 individuals	
to	make	unrealistic	 jumps	in	size),	and	this	problem	may	be	more	
difficult	to	diagnose	and	correct.	As	we	argue	in	the	Introduction,	
both	these	issues	are	likely	to	be	common.	An	additional	problem	
that	arises	when	regressing	squared	residuals	against	size	 is	that	
the	best‐fit	regression	model	may	predict	negative	variances	over	
some	size	ranges,	which	is	dealt	with	in	various	ad	hoc	ways	in	the	

literature.	For	example,	 it	 is	common	for	authors	 to	set	negative	
estimates	to	small	positive	values	or	use	zero‐intercept	or	expo-
nential	models	for	variance	estimation	(Ellner	&	Rees,	2006).

2.2 | The beta approach

To	address	these	problems,	we	developed	a	modified	beta	regres-
sion	approach	that	provides	a	highly	flexible	alternative	for	mod-
elling	 growth	 rates.	 The	 beta	 distribution	 describes	 continuous	
data	on	a	(0,1)	interval,	and	has	been	most	commonly	used	in	the	
analysis	of	proportions.	Note	that	some	implementations	of	beta	
regression	are	for	beta‐binomial	data,	with	successes	and	failures	
as	discrete	events	and	the	probability	of	a	success	being	chosen	
from	a	continuous	distribution,	but	 the	beta	distribution	 itself	 is	
continuous.	 It	 is	straightforward	to	convert	any	continuous	vari-
able y	 to	a	 (0,1)	 interval	when	there	 is	a	minimum	and	maximum	
value,	as:

where y′	 is	 the	 transformed	data.	Previous	 implementations	of	beta	
regression	with	transformed	data	have	used	a	constant	minimum	and	
maximum	value	to	describe	processes	that	represent	a	proportion	of	
some	whole,	such	as	test	scores	or	concentrations	of	environmental	
contaminants	 (Gray	 &	 Alava,	 2018;	 Kim	&	Wolt,	 2011;	 Smithson	&	
Verkuilen,	2006).

Setting	a	 constant	minimum	and	maximum	value	 for	possible	
sizes	irrespective	of	starting	size	could	be	used	to	model	growth,	
but	does	not	work	well	in	most	cases,	largely	because	it	enforces	
unrealistic	patterns	of	skew	into	the	model	fit	(M.	Peterson,	pers.	
obs.).	Instead,	to	apply	this	method	to	size	data,	we	suggest	allow-
ing	the	minimum	and	maximum	values	to	vary	as	functions	of	start-
ing	size	(yt),	transforming	each	value	of	size	at	time	t + 1 (yt+1)	thus:

where ymax|yt and ymin|yt	are	the	maximum	and	minimum	sizes	at	time	
t	+	1	conditional	on	starting	size	yt.	This	transformation	serves	two	
purposes.	First,	 for	most	organisms,	 it	 is	more	biologically	realistic	
to	 allow	minimum	and	maximum	potential	 sizes	 to	 be	 size‐depen-
dent.	Second,	the	beta	distribution	for	the	transformed	sizes	is	only	
symmetric	when	the	mean	is	equal	to	

(
ymax|yt −ymin|yt

)
∕2,	or	0.5	on	

the	 (0,1)	 interval;	 it	 is	positively	 skewed	with	 smaller	mean	values	
and	negatively	skewed	with	larger	mean	values	(Figure	S1).	Using	a	

(1)y� =
(
y−ymin

)
∕
(
ymax−ymin

)
,

(2)y�
t+1

=
(
yt+1−ymin|yt

)
∕
(
ymax|yt −ymin|yt

)
,

F I G U R E  2  Comparison	of	the	workflows	using	the	beta	versus	normal	approach	to	model	skewed	growth	data	in	red	gorgonian	coral	
(Paramuricea clavata).	(a)	Quantile	regression	estimates	minimum	and	maximum	size	values	in	the	next	time	step	as	functions	of	current	size.	
Lines	show	the	0.1	and	99.9	percentiles	of	size.	(b)	The	beta	regression	fitted	median	(solid	lines)	and	99%	prediction	intervals	(dashed	lines)	
fit	to	size	t +	1	transformed	to	a	(0,1)	interval	using	Equation	2.	(c)	The	linear	regression	fit	(solid	line)	of	the	mean	size	t	+	1.	(d)	The	linear	
regression	fit	(solid	line)	of	the	squared	residuals	in	size	t	+	1.	(e)	Lines	give	the	fitted	medians	(solid)	and	99%	prediction	intervals	(dashed)	
for	beta	(red),	normal	(blue)	and	skewed	normal	(green)	models	on	the	original	data	scale.	(f)	The	estimated	beta	(red)	and	skewed	normal	
(green)	distributions	better	capture	the	left	skewness	of	the	observed	size	distribution	compared	to	the	estimated	normal	distributions	
(blue),	as	illustrated	here	by	predictions	for	individuals	with	size	45	at	time	t	against	data	for	individuals	with	sizes	44–46.	Note	that	
predictions	and	AIC	are	given	for	both	parametric	and	nonparametric	beta	and	normal	models,	as	well	as	a	nonparametric	skewed	normal	
model. R	code	used	for	each	of	these	steps	and	to	generate	figures	is	given	in	Appendix	S1
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constant	maximum	and	minimum	value,	as	with	Equation	1,	would	
enforce	 a	 flip	 from	 positive	 to	 negative	 skew	 at	 (ymax	 −	 ymin)/2,	
whereas	allowing	the	maximum	and	minimum	values	to	change	with	
starting	size	greatly	increases	the	flexibility	to	model	variable	skew,	
including	symmetry,	in	the	predicted	distributions	of	sizes.

Ideally,	we	would	know	the	theoretical	bounds	on	the	sizes	that	
an	individual	of	a	given	starting	size	could	achieve	in	one	time	step.	
However,	most	often,	these	bounds	will	have	to	be	estimated	from	
the	data.	Here,	we	use	quantile	 regression	to	estimate	the	0.1	and	
99.9	 quantiles	 as	 functions	 of	 starting	 size	 (Figure	 2a),	 which	 we	
use	as	 the	minimum	and	maximum	values	when	transforming	each	
observation.	We	 found	 that	 using	 the	 0.1	 and	 99.9	 quantiles	 pro-
duced	better	estimates	 than	using	more	extreme	values	 (e.g.	 the	0	
and	1	quantiles),	which	are	highly	subject	to	the	 influence	of	outli-
ers.	However,	this	approach	will	leave	a	small	fraction	of	individuals	
outside	 the	 (0,1)	 interval,	which	 can	 then	 be	 excluded	 as	 outliers,	
adjusted	 to	values	 just	within	 this	 range	 (e.g.	 0.01	or	 0.99),	 or	 ac-
commodated	by	adjusting	the	minimum	and	maximum	values	slightly	
to	create	bounds	that	are	wider	than	any	observed	values.	In	many	
cases,	outliers	in	growth	and	shrinkage	are	likely	to	be	the	result	of	
measurement	errors,	so	tighter	quantiles	could	represent	more	rea-
sonable	estimates	of	the	minimum	and	maximum	boundaries.	Here,	
we	found	that	cubic	quantile	regressions	for	these	bounds	performed	
well,	 but	 there	 are	 also	 even	 more	 flexible	 spline‐based	 methods	
available	(Koenker,	2009)	if	the	minimum	and	maximum	values	vary	
as	complex	functions	of	starting	size,	as	well	as	methods	to	incorpo-
rate	random	effects	into	quantile	models	(Geraci,	2014).	Using	size‐
dependent	minimum	and	maximum	values	produces	a	 transformed	
dataset	 in	 the	 (0,1)	 interval	with	mean	values	 that	are	not	strongly	
tied	to	starting	size	(Figure	2b).

Once	 the	 size	 data	 have	 been	 suitably	 transformed,	 existing	
methods	can	be	used	to	fit	models	with	beta‐distributed	errors.	In	
particular,	 Ferrari	 and	Cribari‐Neto	 (2004)	 suggested	 a	maximum‐
likelihood	 model	 based	 on	 an	 alternative	 parameterization	 of	 the	
beta	 distribution	 that	 uses	 mean	 and	 precision	 (ϕ)	 instead	 of	 the	
alpha	 and	 beta	 shape	 parameters.	 This	 model	 was	 extended	 by	
Simas,	Barreto‐Souza,	and	Rocha	(2010)	to	allow	both	the	mean	and	
precision	parameters	to	vary	with	different	sets	of	independent	vari-
ables.	In	these	models,	the	precision	parameter	is:

where μ	is	the	mean	and	σ2	is	the	variance.	Since	μ(1	−	μ)	is	the	max-
imum	variance,	ϕ	is	a	measure	of	the	reduction	in	variance	below	the	
theoretical	maximum,	given	the	mean.	Importantly	for	its	implementa-
tion,	the	mean	and	precision	parameters	are	estimated	simultaneously	
using	maximum	likelihood.	These	methods	can	be	implemented	using	
the	bETaREg	package	(Cribari‐Neto	&	Zeileis,	2010)	or	the	gamlSS	pack-
age	 (Stasinopoulos	&	Rigby,	2007)	 in	 R	 (R	Core	Development	Team,	
2015)	 and	models	 can	 be	 compared	with	AIC.	 Once	 the	 best‐sup-
ported	model	is	found,	it	is	straightforward	to	convert	the	estimated	
mean	and	precision	for	any	given	starting	size	into	the	alpha	and	beta	
shape	parameters	to	compute	the	beta	pdf,	as:

where �y�
t+1

|yt	is	the	mean	and	�y�
t+1

|yt	is	the	precision	of	the	fitted	beta	
distribution	for	y′t+1	conditional	on	starting	size	yt.	The	beta	pdf	is	used	
just	like	the	normal	pdf	to	get	the	probability	of	transitioning	into	any	
given	size	bin	in	the	IPM.	It	is	also	easy	to	back‐transform	the	model	
predictions	onto	the	original	data	scale	to	use	them	in	a	demographic	
model	or	to	visualize	the	model	fit	(Figure	2e),	as:

where �yt+1|yt and �2
yt+1|yt	are	the	mean	and	variance	of	yt+1,	conditional	

on	starting	size	yt.

2.3 | The skewed normal approach

An	alternative	approach	to	modelling	skewed	growth	 is	to	use	the	
skewed	normal	distribution	(Azzalini,	1985).	This	is	a	simpler	solution	
to	represent	skew,	but	does	not	address	the	problem	of	modelling	
appropriately	bounded	growth	and	shrinkage	rates.	The	skewed	nor-
mal	is	a	three‐parameter	distribution	that	is	equivalent	to	the	normal	
distribution	when	the	skewness	parameter	is	0.

2.4 | Illustration of different methods

We	compared	 the	 fit	of	each	approach	using	previously	published	
data	 on	 the	 growth	 of	 corals	 (Paramuricea clavata)	 (Linares	 et	 al.,	
2007).	For	this	test,	we	used	data	on	4,110	growth	events	(Appendix	
S1).	This	slow‐growing	octocoral	occasionally	suffers	severe	break-
age	 due	 to	 diving	 activity	 and	warming‐induced	 ‘partial	mortality’	
(death	 of	 part	 but	 not	 all	 of	 a	 colony),	 leading	 to	 highly	 skewed	
growth	rates	(Figure	1).

We	used	 three	approaches	 to	model	growth	of	 this	 species:	 the	
beta	approach,	the	normal	approach	and	the	skewed	normal	approach.	
We	modelled	the	size‐dependent	mean	and	precision	of	the	beta	dis-
tribution,	 the	mean	and	variance	of	 the	normal	distribution,	and	the	
location,	scale	and	skewness	parameters	of	the	skewed	normal	distri-
bution.	For	each	of	the	three	approaches,	we	fit	sets	of	models	that	
considered	 each	 of	 the	 parameters	 as	 constant,	 linear,	 quadratic	 or	
nonparametric	cubic	spline	functions	of	size	and	used	AIC	to	identify	
the	best‐supported	models.	We	fit	parametric	beta	models	using	the	
bETaREg	package	(Cribari‐Neto	&	Zeileis,	2010),	parametric	normal	mod-
els	using	separate	 linear	regressions	for	the	mean	and	variance	with	
the	 lm	function,	and	all	other	models	 (nonparametric	beta,	nonpara-
metric	normal	and	all	skewed	normal	models)	using	the	gamlSS	package	
(Stasinopoulos	&	Rigby,	2007),	which	fits	the	functions	for	all	parame-
ters	simultaneously	using	maximum	penalized	likelihood.	For	the	beta	
approach,	we	 also	 used	quantile	 regression	 to	 estimate	 the	0.1	 and	
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99.9	quantiles	of	size	as	linear,	quadratic	or	cubic	functions	of	starting	
size	using	the	quaNTREg	package	(Koenker,	2009).	We	then	used	these	
values,	from	the	best‐supported	model	based	on	AIC,	as	the	minimum	
and	maximum	values,	 respectively,	 to	 transform	size	 t	+	1	 to	a	 (0,1)	
interval,	setting	any	values	≤0	to	0.01	and	any	values	≥1	to	0.99.

Finally,	we	compared	the	fit	of	each	approach	to	the	data	with	
AIC	and	visualized	the	predicted	means	and	99%	prediction	intervals	
on	the	original	scale.	We	calculated	AIC	values	using	the	total	num-
ber	of	parameters	in	all	models	for	a	given	approach	(e.g.	the	quantile	
and	beta	models	for	the	beta	approach,	the	mean	and	variance	mod-
els	 for	 the	parametric	normal	approach	or	 the	mean,	variance	and	
skew	functions	for	the	skewed	normal	approach).	We	also	compared	
the	 predicted	 pdfs	 of	 each	 approach	 to	 the	 observed	 distribution	
of	size	t	+	1	for	individuals	across	a	range	of	starting	sizes.	Example	
code	for	each	of	these	steps	in	R	v.3.4.3	is	given	in	Appendix	S1.

2.5 | Comparison of each method's fit to real 
growth distributions

We	 next	 tested	 the	 relative	 performance	 of	 the	 beta,	 normal	 and	
skewed	normal	approaches	using	previously	published	demographic	
data	 for	 three	 biologically	 diverse	 species	 with	 varying	 degrees	 of	
skewness	in	growth	rates	(Figure	1).	Alpine	bistort	(Polygonum vivipa‐
rum,	hereafter	‘bistort’)	is	a	long‐lived	arctic/alpine	perennial	plant	for	
which	demographic	data	were	collected	annually	from	2001	to	2011	in	
four	populations	at	Niwot	Ridge,	CO	(Doak	&	Morris,	2010).	Individual	
plants	 can	 sometimes	 shrink	 dramatically	 due	 to	 herbivory	 or	 frost	
damage.	As	described	above,	the	red	gorgonian	(Paramuricea clavata) 
is	a	slow‐growing	and	long‐lived	arborescent	octocoral.	Demographic	
data	for	individual	colonies	were	collected	annually	at	three	sites	for	
3–5	years	 each	 from	1999	 to	2004	 (Linares	&	Doak,	 2010;	 Linares	
et	al.,	2007).	Vulpicida pinastri	 (hereafter	 ‘lichen’)	 is	a	short‐lived	epi-
phytic	lichen	that	was	studied	on	bush	alder	(Alnus	sp.)	stems.	Data	for	
this	species	were	collected	annually	from	2004	to	2009	in	Kennicott	
Valley,	AK.	Extreme	shrinkage	in	this	species	occurs	due	to	mechanical	
damage	from	falling	branches	or	mammal	activity	(Shriver	et	al.,	2012).

We	tested	the	ability	of	each	approach	to	accurately	capture	the	
mean,	variance	and	skewness	of	these	real	growth	datasets.	In	fitting	
the	models	to	each	dataset,	we	followed	the	steps	outlined	above,	con-
sidering	both	parametric	and	nonparametric	beta,	normal	and	skewed	
normal	models	and	using	AIC	to	identify	the	best‐supported	models	
for	each	approach.	For	each	of	the	three	species,	we	fit	models	to	200	
bootstrap	replicates	obtained	by	randomly	resampling	the	data	with	
replacement	to	generate	a	distribution	of	estimates.	We	compared	the	
estimated	size‐dependent	means,	variances	and	skews	predicted	from	
the	best‐supported	models	to	the	moments	of	each	dataset,	estimated	
for	a	sliding	window	of	50	data	points	and	fit	with	a	smoothing	spline.	
Code	for	these	analyses	with	gorgonian	coral	is	given	in	Appendix	S2.

2.6 | Consequences for population model inferences

Failing	 to	 account	 for	 skewness	 in	 growth	may	 have	 substantial	
consequences	for	the	 inferences	drawn	from	population	models.	

When	 large	changes	 in	 size	 tend	 to	be	 in	a	downward	direction,	
then	 the	assumption	of	normally	distributed	 size	 transitions	 tra-
ditionally	 used	 in	 IPMs	will	 overestimate	 the	 probability	 of	 high	
growth	 (Figure	 S2).	 Since	 survival	 and	 reproductive	 rates	 often	
increase	with	 size,	 these	 biased	 estimates	 of	 high	 growth	 could	
inflate	estimates	of	the	population	growth	rate	by	allowing	some	
individuals	 to	 reach	 large	 sizes	more	 quickly	 than	 is	 biologically	
realistic.	Similarly,	if	extreme	shrinkage	is	more	common	than	ex-
treme	growth	(even	if	still	rare),	then	the	normal	distribution	will	
underestimate	its	probability	(Figure	S2),	potentially	inflating	pre-
dictions	of	the	average	life	span.

We	explored	the	potential	consequences	of	failing	to	account	
for	 skewness	 in	 growth	 data	 using	 previously	 published	 demo-
graphic	 data	 for	 the	 same	 three	 species	 as	 above.	 For	 each	 of	
these	 species,	 we	 constructed	 IPMs	 using	 either	 the	 beta,	 nor-
mal	or	skewed	normal	approaches	outlined	above,	and	compared	
their	outputs	to	those	from	a	high‐dimension	PPM	that	uses	the	
observed	size	transitions	directly	 (i.e.	without	fitting	a	statistical	
model	to	growth,	see	Supporting	Methods	for	details).	While	es-
timates	of	population	behaviour	from	the	PPM	are	not	necessar-
ily	 correct,	 they	 do	 represent	 a	model‐free	 estimate	 that	 is	 not	
subject	 to	 distributional	 assumptions.	We	 fit	 PPMs	with	 50	 size	
classes	 and	 estimated	 transition	 rates	 based	 on	 their	 observed	
frequencies	in	the	dataset,	pooling	across	years,	populations	and	
plots	 to	 ensure	 sufficient	 sample	 sizes	 in	 each	 class.	 Population	
growth	rate,	life	span	and	damping	ratio	values	converge	for	PPMs	
with	20	or	more	classes	(Figure	S3),	suggesting	that	a	50	×	50	PPM	
is	 of	 sufficiently	 high	 dimension	 to	 yield	 accurate	 results.	 IPMs	
were	fit	to	the	same	pooled	datasets	using	either	the	beta,	normal	
or	 skewed	normal	approaches	 to	modelling	growth,	and	keeping	
all	 other	 size‐dependent	 vital	 rates	 constant.	 We	 renormalized	
all	growth	predictions	to	prevent	eviction.	IPMs	were	discretized	
using	the	midpoint	rule	(Morris	&	Doak,	2002)	into	matrices	with	
>100	 size	 classes	 (N	 =	 118–125)	 chosen	 to	 evenly	 divide	 the	50	
size	classes	used	 for	PPMs.	We	compared	 three	metrics	of	pop-
ulation	dynamics	inferred	from	each	IPM	or	PPM:	the	population	
growth	rate	(λ),	the	life	span	(defined	here	as	the	time	steps	until	
a	newborn	has	<1%	probability	of	still	being	alive)	and	the	reactiv-
ity	 (Neubert	&	Caswell,	1997;	Stott,	Townley,	&	Hodgson,	2011).	
Reactivity	is	inherently	tied	to	the	definition	of	size	classes	or	bins,	
so	to	compare	values	from	the	IPMs	to	the	PPM	we	used	a	popu-
lation	vector	giving	the	proportional	abundance	of	each	of	the	size	
classes	in	the	IPM	represented	by	the	largest	size	class	in	the	PPM	
(see	Supporting	Methods).	We	obtained	distributions	of	each	met-
ric	by	refitting	all	models	across	200	bootstrap	replicates	obtained	
by	 randomly	 resampling	 the	 data	 for	 each	 species	with	 replace-
ment.	Code	for	each	of	these	steps	is	given	in	Appendices	S2–S4.

2.7 | Dissecting the fit of each growth model to 
different segments of the growth distribution

If	extreme	shrinkage	or	other	 skewed	growth	 transitions	are	suf-
ficiently	rare	(e.g.	Figure	1),	standard	statistical	measures	of	model	
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fit,	such	as	AIC,	may	support	a	normal	distribution	over	a	beta	or	
skewed	normal	distribution	if	the	normal	is	a	better	fit	to	most	of	
the	data,	especially	since	the	beta	approach	requires	fitting	func-
tions	for	the	minimum	and	maximum	bounds	as	well	as	the	mean	
and	variance	 in	growth.	However,	 failing	 to	capture	 rare	but	bio-
logically	 important	 transitions,	 such	 as	 extreme	 shrinkage,	 could	
bias	estimates	of	population	growth	even	 if	 it	has	 relatively	 little	
effect	on	the	likelihood	of	the	individual	growth	models.	To	further	
explore	this	 issue,	we	first	compared	the	AIC	of	the	beta,	normal	
and	skewed	normal	growth	models	described	previously,	when	fit	
to	the	growth	data	for	each	of	the	three	species.	We	also	compared	
the	 log	 likelihood	of	each	data	point	 for	 the	 three	approaches	 to	
determine	 where	 in	 the	 growth	 distribution	 each	 approach	 pro-
vided	a	better	fit.	Finally,	we	examined	the	impacts	for	population	
models	of	better	or	worse	fits	to	different	segments	of	the	growth	
distribution.	For	each	transition	from	a	size	bin	at	time t to	a	size	bin	
at	time	t	+	1,	we	calculated	the	difference	in	its	probability	as	pre-
dicted	by	each	of	the	three	growth	models	and	its	sensitivity	(i.e.	
effect	on	population	growth).	We	compared	these	values	for	each	
observation	 to	 its	 log	 likelihood	 under	 each	 of	 the	 three	 growth	
models,	to	ask	whether	differences	in	fit	were	associated	with	large	
changes	 in	predicted	growth	probabilities	and/or	 transitions	with	
high	sensitivity.

3  | RESULTS

3.1 | Illustration of different methods with growth 
of red gorgonian coral

Methods	 that	 allow	 skew,	 including	 the	 beta	 approach	 and	 the	
skewed	normal,	are	better	able	to	capture	the	asymmetry	in	growth	
of	 gorgonian	 corals	 relative	 to	 the	 symmetric	 prediction	 intervals	
given	 by	 linear	 regressions	 of	 the	 mean	 and	 normal	 variance	 in	
growth	(Figure	2e).	In	particular,	the	assumption	of	symmetry	causes	
the	normal	variance	model	 to	overestimate	the	probability	of	high	
growth	 and	 underestimate	 the	 probability	 of	 extreme	 shrinkage.	
This	is	most	obvious	when	comparing	the	predicted	pdf	for	a	given	
starting	size	(Figure	2f).	The	parametric	and	nonparametric	normal	
models	produced	very	similar	predictions,	whereas	the	nonparamet-
ric	beta	model	differed	from	and	outperformed	the	parametric	beta	
model.	AIC	strongly	supported	the	skewed	normal	model	over	either	
the	normal	or	beta	approaches.

3.2 | Comparison of each method's fit to real 
growth distributions

All	 three	 approaches	 closely	 approximated	 the	 mean	 of	 the	 ob-
served	growth	distributions,	although	the	normal	approach	tended	
to	underestimate	the	mean	relative	to	either	the	beta	or	skewed	nor-
mal	models	(Figure	3).	Estimates	of	the	variance	were	more	variable	
between	approaches.	For	corals,	the	beta	and	skewed	normal	most	
closely	approximated	the	variance,	although	all	approaches	under-
estimated	the	variance	at	large	sizes.	For	bistort,	the	beta	approach	

tended	 to	overestimate	 the	variance.	 For	 lichen,	 the	variance	was	
best	captured	by	the	skewed	normal	at	smaller	sizes	and	by	the	beta	
approach	at	 larger	sizes,	while	the	normal	approach	always	under-
estimated	the	variance.	The	methods	also	differed	strongly	in	their	
estimates	of	the	skew.	The	beta	approach	most	closely	captured	the	
high	positive	skew	at	small	sizes	and	the	low	negative	skew	at	large	
sizes	for	all	three	species,	although	the	skewed	normal	more	closely	
matched	 the	 skew	 for	 the	bulk	 of	 the	data	points	 at	 intermediate	
sizes	for	coral	and	lichen.	The	normal	approach	assumes	0	skew.

3.3 | Consequences for population model inferences

We	found	that	assuming	growth	was	normally	distributed	altered	in-
ferred	population	dynamics	and	life‐history	patterns	relative	to	mod-
els	using	either	a	beta	or	skewed	normal	distribution	to	accommodate	
skewed	growth	rates	(Figure	4).	For	all	three	species,	IPMs	based	on	
normally	 distributed	 growth	 models	 overestimated	 the	 population	
growth	rate	and	life	span	relative	to	PPMs	that	do	not	rely	on	a	statis-
tical	growth	model	but	 instead	use	the	observed	transition	frequen-
cies	in	the	data.	IPMs	based	on	either	beta	or	skewed	normal	models	
of	 growth	 yielded	 very	 similar	 predictions	 of	 population	 growth	 for	
both	coral	and	lichen,	and	very	similar	predictions	of	life	span	for	coral.	
However,	 IPMs	 based	 on	 the	 beta	 approach	 more	 closely	 approxi-
mated	the	results	from	PPMs	for	population	growth	of	bistort	and	for	
life	span	of	both	bistort	and	 lichen.	There	were	no	clear	differences	
among	approaches	for	the	reactivity,	except	that	IPMs	tended	to	un-
derestimate	the	reactivity	compared	to	PPMs	for	both	coral	and	lichen.

3.4 | Dissecting the fit of each growth model to 
different segments of the growth distribution

For	the	three	datasets	examined	here,	we	found	no	support	 for	 the	
beta	approach	over	either	the	normal	or	skewed	normal	approaches	as	
measured	by	AIC	of	growth	model	fits.	Instead,	AIC	strongly	supported	
the	skewed	normal	model	for	all	three	species.	This	was	largely	due	to	
both	the	normal	and	skewed	normal	models	providing	slightly	better	
fits	to	the	majority	of	data	points	close	to	the	mean	growth	rate,	as	
well	as	to	extreme	outliers	in	growth	or	shrinkage	(Figures	5	and	S4).	In	
spite	of	these	results	for	overall	model	fit,	the	beta	approach	provided	
better	fits	to	the	spread	of	individuals	around	the	mean,	better	approx-
imating	the	bands	of	moderate	negative	or	positive	skew	in	growth.	It	
is	not	surprising	that	unbounded	distributions	such	as	the	normal	and	
skewed	normal	would	best	predict	the	extreme	size	outliers	relative	to	
a	bounded	distribution	such	as	the	beta.	However,	despite	the	strong	
log‐likelihood	 support	 for	 the	normal	 and	 skewed	normal	models	 at	
these	data	points,	the	probability	of	these	size	transitions	tended	to	be	
similarly	predicted	across	all	models,	suggesting	little	effect	on	model	
inference.	Conversely,	the	data	points	for	which	the	beta	approach	had	
the	strongest	log‐likelihood	support	tended	to	be	for	size	transitions	
with	high	sensitivity	and/or	substantial	differences	in	the	predictions	
between	the	two	approaches.	These	results	indicate	that	for	species	
with	 realistic	 levels	 of	 skewness	 in	 growth	 rates,	 the	 assumption	of	
normality	in	growth	can	have	wide‐ranging	impacts	on	the	inference	
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about	dynamics	and	life‐history	traits	that	are	commonly	of	interest	to	
population	biologists.

4  | DISCUSSION

In	many	organisms,	 the	distribution	of	 growth	 from	one	 size	 to	 the	
next	 will	 be	 skewed	 even	 after	 transformations	 meant	 to	 improve	
normality.	We	have	outlined	a	highly	flexible	approach	for	modelling	
skewed	 growth	 rates	 by	 combining	 two	 widely	 available	 statistical	

tools:	quantile	regression	and	beta	regression.	We	demonstrate	that	
both	this	approach	and	a	rarely	utilized	alternative,	the	skewed	nor-
mal,	are	able	to	more	accurately	capture	the	moments	of	real	growth	
distributions	 for	 three	 biologically	 diverse	 species.	 Furthermore,	we	
show	that	ignoring	skew	by	assuming	normally	distributed	growth,	as	
is	done	in	most	published	IPMs,	can	lead	to	overestimation	of	popula-
tion	growth	rates	and	life	span.	Incorporating	skew	in	growth	transi-
tions	can	be	easily	accomplished	with	existing	statistical	tools	and	is	
important	 for	 accurately	 capturing	 population	 dynamics,	 life‐history	
attributes	and	population	structure.

F I G U R E  3  Comparison	of	the	ability	of	the	beta,	skewed	normal	and	normal	distributions	to	capture	the	moments	of	the	distribution	of	
size	at	time	t	+	1.	Box	plots	give	the	median	(black	lines),	interquartile	range	(boxes)	and	the	most	extreme	data	points	within	1.5	times	the	
interquartile	range	(whiskers)	of	the	distribution	of	estimated	moments.	(Left)	mean,	(Centre)	variance	and	(Right)	skew	of	size	at	time	t + 1 
for	various	starting	sizes	at	time	t	for	(Top)	coral	(Paramuricea clavata),	(Centre)	bistort	(Polygonum viviparum)	and	(Bottom)	lichen	(Vulpicida 
pinastri).	Estimates	are	from	the	best‐supported	models	using	the	beta	(red),	skewed	normal	(green)	or	normal	(blue)	distributions,	fit	to	
200	bootstrapped	replicates	drawn	with	replacement	from	the	original	datasets.	Grey	lines	show	the	true	moments	of	the	original	dataset,	
shown	as	a	smoothing	spline	fit	to	moments	calculated	from	a	sliding	window	of	50	data	points.	Note	that	the	normal	distribution	assumes	0	
skew	(blue	line	in	right	panels)
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We	have	shown	that	IPMs	built	with	normally	distributed	versus	
skewed	growth	transitions	produce	different	conclusions	about	key	
population	parameters,	but	which	approach	is	more	correct?	There	
are	two	ways	 in	which	this	could	be	assessed.	The	first	 is	 to	com-
pare	the	statistical	fit	of	each	model	to	the	data	and	to	test	whether	
the	additional	parameters	required	by	either	the	beta	approach	or	a	
skewed	normal	model	are	justified	using	AIC	(see	Appendix	S1	for	an	
example).	Across	the	three	datasets	here,	AIC	strongly	supports	the	
skewed	normal,	but	not	the	beta	approach,	relative	to	normal	mod-
els.	However,	 there	 are	 several	 considerations	when	 using	AIC	 to	
evaluate	growth	models	for	use	in	IPMs.	The	first	is	whether	a	given	
growth	model	has	been	fit	by	simultaneously	estimating	all	parame-
ters	by	maximum	likelihood,	or	whether	it	combines	parameters	fit	
separately	 by	multiple	models.	 For	 example,	 the	 beta	 approach	 is	
fit	by	separately	estimating	the	minimum	and	maximum	sizes	with	
quantile	 regression	followed	by	estimation	of	 the	mean	and	preci-
sion;	the	AIC	for	such	a	model	will	be	an	upper	bound	compared	to	a	
joint	estimation	approach.	The	same	is	true	of	the	normal	approach	
when	fit	with	separate	regressions	for	the	mean	and	variance.	While	
it	is	straightforward	to	estimate	the	normal	mean	and	variance	simul-
taneously	with	maximum	likelihood,	this	is	more	difficult	to	accom-
plish	for	the	beta	approach	we	outline	here.	Although	it	is	possible	
to	extend	 the	 four‐parameter	beta	distribution	 likelihood	 function	

to	 enable	 size‐dependent	 values	of	 the	mean,	 precision,	minimum	
and	maximum	to	be	estimated	simultaneously	(Wang,	2007),	it	is	not	
straightforward	 to	 implement	 as	 the	minimum	 and	maximum	 val-
ues	must	 be	 constrained	within	 some	biologically	 plausible	 range.	
However,	a	first	exploratory	attempt	to	do	this	does	suggest	that	it	
can	 improve	the	 likelihood	of	the	entire	model	to	the	point	where	
beta	models	outperform	normal	models	(see	Figure	S5	and	Appendix	
S3	for	example).

A	second	consideration	 is	 that,	 in	practice,	unbounded	growth	
distributions	are	truncated	for	use	in	IPMs	to	avoid	prediction	out-
side	 the	 modelled	 size	 range.	 The	 two	 common	 solutions	 to	 this	
problem	 –	 adding	 probability	 density	 that	 falls	 outside	 the	 size	
bounds	 to	 the	most	 extreme	 size	 class	 or	 renormalizing	 the	 trun-
cated	probabilities	to	sum	to	1	–	could	either	increase	or	decrease	
the	likelihood	of	an	unbounded	model,	depending	on	the	fit	of	the	
truncated	distribution	to	the	data.

The	 final	 and	 perhaps	 most	 important	 consideration	 is	 that	
statistical	measures	of	 fit	 such	as	AIC	weight	 the	prediction	of	 all	
data	 points	 (and	 equivalently,	 all	 parts	 of	 the	 predicted	 growth	
distributions)	 equally.	However,	 errors	 in	different	portions	of	 the	
growth	distribution	can	have	very	different	effects	on	the	popula-
tion	growth	 rate	 and	other	parameters	of	 interest	 from	 IPMs.	For	
example,	 likelihood‐based	measures	may	support	models	that	best	

F I G U R E  4  Comparison	of	population	parameters	inferred	from	a	high‐dimension	PPM	(Discrete)	to	those	from	IPMs	assuming	beta,	
skewed	normal	or	normal‐distributed	growth.	Values	are	(Left)	population	growth	rate	λ,	(Centre)	life	span	or	(Right)	reactivity	estimated	
from	PPMs	or	IPMs	fit	to	200	bootstrap	replicates	drawn	with	replacement	from	the	original	datasets	for	(Top)	coral	(Paramuricea clavata),	
(Centre)	bistort	(Polygonum viviparum)	or	Bottom)	lichen	(Vulpicida pinastri).	The	IPMs	were	fit	with	the	best‐supported	models	based	on	
either	a	beta,	skewed	normal	or	normal	distribution,	and	all	other	vital	rate	models	were	identical.	The	PPMs	estimated	discrete	vital	rates	
for	each	of	50	size	bins	(see	Supporting	Methods	for	details).	Box	plots	give	the	median	(black	lines),	interquartile	range	(boxes)	and	the	
most	extreme	data	points	within	1.5	times	the	interquartile	range	(whiskers)	of	the	distribution	of	each	parameter.	Horizontal	lines	show	the	
median	value	from	the	PPMs	for	comparison.	Abbreviation:	IPMs,	integral	projection	models;	PPMs,	projection	matrix	models
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explain	 the	majority	of	 the	data	points,	potentially	at	 the	expense	
of	capturing	rarer	but	biologically	important	transitions,	such	as	ex-
treme	shrinkage.	Indeed,	we	found	that	the	beta	approach	better	ex-
plained	the	majority	of	skewed	size	transitions,	to	which	population	
growth	is	sensitive,	relative	to	either	the	normal	or	skewed	normal	
models,	suggesting	that	the	beta	approach	may	better	capture	the	
aspects	of	growth	that	most	strongly	impact	population	dynamics.	

Another	method	 to	assess	which	approach	 is	more	accurate	 is	
to	compare	the	outputs	from	each	IPM	to	those	from	a	high‐dimen-
sion	PPM	that	uses	the	observed	size	transitions	directly.	Although	
a	PPM	 is	also	an	approximation	of	 the	 ‘true’	population	dynamics,	
there	 are	 several	 aspects	 of	 this	 study	 that	 makes	 the	 PPM	 out-
puts	a	 reasonable	benchmark	 for	comparison.	First,	we	used	 large	
demographic	 datasets	 (N	 =	 1,621–11,882	 individual	 transitions)	 to	
minimize	 the	 potential	 for	 substantial	 influences	 of	 sampling	 er-
rors	 in	 the	 observed	 transition	 frequencies	 and,	 second,	we	 used	
a	bootstrapping	approach	 to	compare	model	outputs	across	many	

randomly	 sampled	 datasets.	 Under	 these	 conditions	 and	 in	 the	
absence	 of	 independent	 knowledge,	 we	 can	 roughly	 assume	 that	
IPMs	that	more	closely	approximate	the	results	of	a	high‐dimension	
PPM	are	also	more	accurately	representing	the	underlying	popula-
tion.	By	 this	measure,	 IPMs	assuming	normally	distributed	growth	
consistently	overestimated	population	growth	rates	and	life	spans,	
whereas	 IPMs	using	 the	beta	approach	performed	equivalently	or	
better	than	those	using	a	skewed	normal	model	of	growth.	Thus,	the	
beta	models’	predictions	of	growth	better	match	behaviour	inferred	
without	recourse	to	assumptions	about	the	distributional	properties	
of	the	vital	rates.	This	suggests	that	the	beta	approach	better	cap-
tures	population‐level	outputs	when	growth	transitions	are	skewed,	
even	if	it	is	not	supported	by	likelihood‐based	measures	of	model	fit	
such	as	AIC.

Structured	 population	models	 are	 used	 to	 address	 a	wide	 range	
of	ecological	and	evolutionary	questions,	including	quantifying	popu-
lation	growth	and	extinction	risk	 (Crouse,	Crowder,	&	Caswell,	1987;	

F I G U R E  5  Fit	of	the	beta	versus	skewed	normal	models	to	different	segments	of	the	growth	distribution.	Top	row:	size	at	time	t + 1 
against	size	at	time	t,	with	each	data	point	coloured	by	the	difference	in	its	log‐likelihood	under	the	skewed	normal	approach	versus	the	beta	
approach	(bluer	values	indicate	greater	log	likelihood	of	the	skewed	normal	model	and	redder	values	indicate	greater	log	likelihood	of	the	
beta	model).	In	all	three	cases,	greater	statistical	support	for	the	skewed	normal	stems	from	its	ability	to	better	predict	extreme	outliers,	as	
well	as	to	slightly	better	predict	the	majority	of	data	points	close	to	the	mean	growth,	whereas	the	beta	approach	is	a	better	fit	to	the	bands	
of	moderate	negative	or	positive	skew	relative	to	the	mean.	Bottom	row:	For	each	observed	growth	transition,	the	difference	in	its	predicted	
probability	from	the	skewed	normal	versus	beta	approach	(positive	values	indicate	greater	probability	under	the	skewed	normal	model	and	
negative	values	indicate	greater	probability	under	the	beta	model)	against	the	sensitivity	of	lambda	to	that	transition.	Points	are	coloured	by	
the	difference	in	their	log‐likelihood,	as	in	the	top	row.	The	strongest	log‐likelihood	support	for	the	skewed	normal	approach	(bluer	values)	
comes	from	data	points	for	which	the	methods	produce	similar	predictions,	whereas	the	beta	approach	has	log‐likelihood	support	(redder	
values)	for	data	points	that	are	predicted	to	have	very	different	probabilities	under	the	two	methods.	From	left	to	right,	columns	show	
results	for	coral	(Paramuricea clavata),	bistort	(Polygonum viviparum) and lichen (Vulpicida pinastri)
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Lande,	1988),	describing	basic	aspects	of	species’	 life	history	(Franco	
&	Silvertown,	1996),	and	predicting	transient	dynamics	following	dis-
turbance	 or	 management	 interventions	 (Ezard	 et	 al.,	 2010;	 Stott	 et	
al.,	2011).	Here,	we	show	that	 incorporating	versus	 ignoring	skew	 in	
growth	rates	has	strong	and	consistent	effects	on	estimates	of	popula-
tion	growth	and	life	span,	with	implications	for	both	basic	inference	as	
well	as	management	decisions.	For	example,	extreme	shrinkage	in	the	
coral	we	examine	here	is	largely	caused	by	diving	activity	and	warming‐
induced	die‐back.	Importantly	for	species	like	this,	assuming	normally	
distributed	growth	will	 tend	to	underestimate	the	severity	of	human	
impacts,	 with	 potentially	 severe	 consequences	 for	 management.	
Interestingly,	we	did	not	find	consistent	effects	of	skewed	growth	on	
transient	dynamics,	as	measured	by	the	reactivity.	However,	the	impact	
on	transient	dynamics	could	vary	depending	on	the	life	history	of	a	par-
ticular	organism,	and	should	be	tested	across	a	wider	range	of	species.

The	 main	 statistical	 cost	 of	 the	 beta	 approach	 relative	 to	 ei-
ther	the	normal	or	skewed	normal	approaches	is	the	estimation	of	
minimum	and	maximum	size	bounds.	While	this	requires	additional	
parameter	estimates,	we	argue	that	this	statistical	cost	is	simply	ac-
counting	for	a	very	real	aspect	of	the	demographic	process:	the	ex-
istence	of	biological	bounds	on	potential	size	transitions.	However,	
identifying	the	best	size	bounds	is	likely	to	be	a	compromise	between	
statistical	fit	and	biological	realism;	as	our	example	in	Appendix	S3	
shows,	widening	the	size	bounds	can	often	 improve	the	 likelihood	
and	AIC	of	the	model,	but	will	also	allow	some	non‐zero	probability	
of	unobserved	–	and	unlikely	to	occur	–	growth	transitions	(Figure	
S5).	For	this	reason,	we	have	proposed	using	quantile	regression	to	
estimate	 size‐dependent	 minimum	 and	 maximum	 values	 that	 are	
close	 to	 the	 observed	 range	 of	 growth	 transitions.	 However,	 it	 is	
important	 to	 note	 that	 this	 approach	will	 always	 yield	 size	 ranges	
that	are	slightly	less	than	or	equal	to	those	observed	in	the	data,	and	
therefore	could	slightly	shrink	the	variance	when	back‐transformed	
to	the	original	data	scale.	Although	we	did	not	find	this	to	be	an	issue	
in	 our	 datasets,	with	 the	 fitted	 variance	 closely	matching	 the	 ob-
served	variance,	 it	 is	possible	 that	 this	could	be	more	problematic	
for	sparser	or	noisier	datasets	for	which	estimating	size‐dependent	
minima	and	maxima	would	be	more	difficult.	For	this	reason,	we	rec-
ommend	comparing	the	fitted	moments,	especially	the	variance	and	
skew,	 to	 those	observed	 in	 the	data,	 and	potentially	 adjusting	 the	
minimum	and	maximum	values	slightly	if	necessary.

Although	 we	 argue	 that	 a	 bounded	 distribution	 is	 biologically	
preferable	for	modelling	growth,	the	skewed	normal	model	could	be	a	
good	alternative	in	some	cases,	such	as	for	sparser	datasets,	as	it	does	
not	require	estimates	of	the	minimum	or	maximum	sizes.	We	found	
that	IPMs	based	on	the	skewed	normal	distribution	performed	as	well	
as	the	beta	approach	in	some	cases,	although	it	overestimated	popula-
tion	growth	in	one	species	and	overestimated	life	span	in	two	species.	
The	relative	performance	of	the	beta	approach	versus	skewed	normal	
may	depend	on	the	details	of	a	particular	dataset.	 Interestingly,	we	
observed	 the	biggest	 differences	 in	 bistorts,	 for	which	we	had	 the	
most	data	(N	=	11,882	individual	transitions).	Since	both	approaches	
are	easy	to	implement	with	existing	statistical	tools,	it	may	often	be	
preferable	to	simply	fit	both	growth	models	to	compare	their	results.

Finally,	 as	with	any	other	approach	 to	continuous	vital	 rate	esti-
mation,	 it	 is	 important	 to	carefully	 consider	 the	 fit	of	models	 to	 the	
data.	This	is	even	more	critical	for	growth	because	the	entire	distribu-
tion	of	size	transitions,	not	merely	the	mean,	is	used	to	parameterize	
size‐structured	population	models.	When	assessing	model	fit,	particu-
lar	attention	should	be	paid	to	the	tails	of	the	data	range,	where	data	
are	often	sparse,	as	well	as	 to	 rare	but	biologically	 important	 transi-
tions,	such	as	extreme	growth	or	shrinkage.	Several	population	ecol-
ogists	have	advocated	the	use	of	more	flexible	spline	or	GAM‐based	
approaches	to	modelling	vital	rates	(Dahlgren	et	al.,	2011;	Ellner	et	al.,	
2016),	and	this	can	be	extended	to	the	beta	and	skewed	normal	ap-
proaches	we	outline	here.	For	example,	the	gamlSS	package	in	R	enables	
both	the	mean	and	dispersion	of	beta‐distributed	data,	as	well	as	all	
three	parameters	of	 the	skewed	normal	distribution,	 to	be	modelled	
as	 nonparametric	 functions	 of	 explanatory	 variables,	 such	 as	 cubic	
splines	 (Stasinopoulos	&	Rigby,	2007).	Across	all	 three	species,	non-
parametric	models	were	supported	over	parametric	models,	indicating	
that	nonparametric	models	may	be	better	able	to	capture	shifts	in	the	
location,	scale	and	skewness	of	growth	distributions	relative	to	para-
metric	approaches.	Finally,	it	is	important	to	note	that	other	aspects	of	
growth	distributions,	such	as	kurtosis,	will	also	violate	assumptions	of	
normality	and	can	be	addressed	with	several	other	distributions	 (e.g.	
the	t	distribution;	Rees	et	al.,	2014).	A	wide	range	of	distributions	can	
be	easily	fit	by	maximum	likelihood	or	with	the	gamlSS	package,	yet	the	
normal	distribution	remains	a	pervasive	default	for	modelling	growth	
(Merow	et	al.,	2014;	Metcalf	et	al.,	2013).	Size	transformations,	such	as	
taking	the	log,	are	often	assumed	to	yield	normally	distributed	growth.	
However,	this	can	still	leave	substantial	skew	or	other	aspects	of	non‐
normality,	as	shown	by	the	three	species	we	examine	here,	all	of	which	
were	transformed	to	improve	the	normality	of	size	prior	to	our	analyses	
but	still	produced	biased	IPM	outputs	under	assumptions	of	normally	
distributed	 growth.	 For	 these	 reasons,	 we	 reiterate	 prior	 calls	 (e.g.	
Easterling	et	al.,	2000;	Ellner	et	al.,	2016;	Rees	et	al.,	2014)	to	carefully	
compare	multiple	alternative	growth	distributions	for	a	given	dataset.

Many	 organisms	 will	 have	 patterns	 of	 growth	 that	 violate	 as-
sumptions	of	normality.	 In	 such	cases,	 the	beta	distribution	offers	
a	 flexible	 alternative	 that	 can	be	easily	 implemented	with	existing	
statistical	software	and	incorporated	into	IPMs.	Given	the	need	for	
accuracy	 in	 the	predictions	of	population	models,	we	suggest	 that	
testing	of	alternative	distributions	for	growth,	such	as	the	beta	ap-
proach	we	outline	here,	become	standard	in	the	construction	of	size‐
structured	population	models.
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