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Abstract
1.	 Structured population models are among the most widely used tools in ecology 
and evolution. Integral projection models (IPMs) use continuous representations 
of how survival, reproduction and growth change as functions of state variables 
such as size, requiring fewer parameters to be estimated than projection matrix 
models (PPMs). Yet, almost all published IPMs make an important assumption 
that size‐dependent growth transitions are or can be transformed to be normally 
distributed. In fact, many organisms exhibit highly skewed size transitions. Small 
individuals can grow more than they can shrink, and large individuals may often 
shrink more dramatically than they can grow. Yet, the implications of such skew 
for inference from IPMs has not been explored, nor have general methods been 
developed to incorporate skewed size transitions into IPMs, or deal with other 
aspects of real growth rates, including bounds on possible growth or shrinkage.

2.	 Here, we develop a flexible approach to modelling skewed growth data using a 
modified beta regression model. We propose that sizes first be converted to a 
(0,1) interval by estimating size‐dependent minimum and maximum sizes through 
quantile regression. Transformed data can then be modelled using beta regression 
with widely available statistical tools. We demonstrate the utility of this approach 
using demographic data for a long‐lived plant, gorgonians and an epiphytic lichen. 
Specifically, we compare inferences of population parameters from discrete PPMs 
to those from IPMs that either assume normality or incorporate skew using beta 
regression or, alternatively, a skewed normal model.

3.	 The beta and skewed normal distributions accurately capture the mean, variance 
and skew of real growth distributions. Incorporating skewed growth into IPMs 
decreases population growth and estimated life span relative to IPMs that assume 
normally distributed growth, and more closely approximate the parameters of 
PPMs that do not assume a particular growth distribution. A bounded distribu-
tion, such as the beta, also avoids the eviction problem caused by predicting some 
growth outside the modelled size range.

4.	 Incorporating biologically relevant skew in growth data has important conse-
quences for inference from IPMs. The approaches we outline here are flexible and 
easy to implement with existing statistical tools.
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1  | INTRODUC TION

In most organisms, rates of survival, growth and reproduction are 
dependent on individual size. Size‐structured population models, 
which account for size effects on individual performance, are widely 
used in analyses of population dynamics, conservation biology and 
life‐history patterns. A critical component of size‐structured models 
is the set of growth transitions governing how individuals change in 
size over time.

When parameterizing classic population projection matrix mod-
els (PPMs; Caswell, 2001), the probabilities of individuals in a given 
size class shrinking or growing to join other size classes over a time 
step (often a year) has often been estimated directly from the ob-
served frequencies of size transitions in the data. However, devel-
opers of PPMs have increasingly employed continuous estimation of 
size‐based vital rates to estimate demographic rates (Doak & Morris, 
2010; Gross, Morris, Wolosin, & Doak, 2005). In addition, PPMs 
have progressively been supplanted by integral projection models 
(IPMs), a class of stage‐structured models that represent survival, 
reproduction and growth as continuous functions of state variables, 
frequently including size (Easterling, Ellner, & Dixon, 2000; Ellner & 
Rees, 2006). IPMs can be constructed using a diverse array of contin-
uous functions, and several authors have emphasized the need when 
building IPMs to critically compare multiple flexible models and dis-
tributions, including splines or generalized additive models (GAMs), 
that can describe a wide range of relationships between growth, 
survival or reproduction and size (Dahlgren, García, & Ehrlén, 2011; 
Ellner, Childs, & Rees, 2016; Rees, Childs, & Ellner, 2014). In practice, 
however, almost every study of which we are aware has assumed 
a normally distributed growth process on the scale at which size is 
modelled, with the probabilities of transitioning by a given amount 
above or below the average size next year being the same (but see 
Montero‐Serra et al., 2017; Needham, Merow, Chang‐Yang, Caswell, 
& McMahon, 2018; Shriver, Cutler, & Doak, 2012). This nearly ubiq-
uitous assumption appears to be due to the lack of clear guidance 
about alternative approaches, rather than any biological reason to 
assume this would be the case. Yet, the consequences for inference 
of population dynamics of how growth has been represented in most 
IPMs (assuming normality) versus PPMs (using the observed distri-
bution), or some other alternative, has not been investigated.

Many species will violate the assumption of normally distributed 
size transitions. While there are multiple aspects of growth distribu-
tions that could be substantially non‐normal, even with appropriate 
transformations of the state variable, two stand out. First are the 
bounds on possible shrinkage or growth. Unbounded distributions, 
such as the normal, will predict non‐zero probabilities of reaching 
sizes that exceed any biologically plausible outcome. For example, 

small individuals cannot have negative sizes on an absolute (e.g. not 
log‐transformed) scale and also are often unable to reach larger sizes 
for a species in a single transition, while large individuals cannot 
grow to sizes outside some biological upper bound and may also be 
unable to shrink to typical small sizes for a species without dying. The 
problem of unbounded distributions predicting sizes outside the size 
limits of an IPM (i.e. ‘eviction’) is well‐recognized (Williams, Miller, & 
Ellner, 2012) and usually dealt with by truncating the growth distri-
bution; however, this approach does not deal with unrealistic predic-
tions within the overall size envelope for a species.

A second violation of normality is the inherent skew in distribu-
tions of possible size transitions, expressed as probabilities of being 
different sizes after a time step. For example, organisms, particularly 
large ones, often shrink much more than they are able to grow in a sin-
gle time step, resulting in negatively skewed growth rates (Figure 1). 
Shrinkage due to die‐back, breakage or starvation has been docu-
mented in a wide range of organisms (Linares, Doak, Coma, Díaz, & 
Zabala, 2007; Montero‐Serra et al., 2017; Wikelski & Thom, 2000) and 
can have profound effects on population dynamics (Salguero‐Gómez 
& Casper, 2010). Previous studies have either included such shrink-
age within the estimation of normal growth distributions or modelled 
shrinkage as a distinct process. For example, Shriver et al. (2012) es-
timated a probability of extreme shrinkage and separate size distribu-
tions for ‘normally growing or shrinking’ versus ‘extreme shrinkage’ 
individuals of the lichen Vulpicida pinastri, an approach also taken by 
Montero‐Serra et al. (2017) to model die‐back of a slow‐growing pre-
cious red coral (Corallium rubrum). Conversely, some organisms such as 
trees may be incapable of meaningful shrinkage, resulting in positively 
skewed growth rates. Recently, Needham et al. (2018) used a mixture 
of two gamma distributions to model the positively skewed growth of 
slow‐growing trees along with the more normally distributed growth 
of fast‐growing trees. However, these mixed‐distribution solutions 
require a somewhat ad hoc approach in distinguishing normal growth 
from skewed growth that is not likely to be generally applicable.

Here, we propose a flexible approach to modelling skewed and 
bounded growth in continuous population models using a mod-
ified implementation of the beta‐distributed regression model. 
The beta distribution is a flexible, continuous distribution that 
can be symmetric or skewed (Figure S1), but in its usual form re-
quires data to be bounded between 0 and 1, although so‐called 
four‐parameter beta distributions can be used to convert vari-
ables with other distributional limits to (0,1) for analysis (Wang, 
2007). Here, we describe a workflow to convert size data to a 
(0,1) interval based on size‐dependent minimum and maximum 
thresholds, and then the use of beta regression methods to es-
timate the effects of size and other independent variables on the 
mean, variance and skew of the distribution. We first describe 
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the basic approach using growth data for the red gorgonian coral 
(Paramuricea clavata, hereafter ‘coral’), which grows slowly but can 
sometimes shrink dramatically due to breakage, mainly caused by 
human divers, and warming‐induced mortality (Figure 1) (Linares & 
Doak, 2010; Linares et al., 2007). We then contrast results of our 
method (hereafter ‘beta approach’) with those from the standard 
method assuming normally distributed growth rates (hereafter 
‘normal approach’) as well as an alternative approach based on the 
skewed normal distribution, which is able to model skewed, but 
still unbounded, growth and shrinkage. Finally, we compare the 
impact of assuming normally distributed growth versus relaxing 
this assumption for three population outputs – population growth 

rate, life span and reactivity – using data from three diverse and 
well‐studied species: the red gorgonian coral, an epiphytic lichen 
and a perennial arctic/alpine plant.

2  | BACKGROUND AND METHODS

2.1 | The normal approach

The standard approach to modelling growth in an IPM is to fit two 
separate models to predict the mean and variance of the size distri-
bution at the end of a time step as a function of starting size and any 
other influencing variables (Easterling et al., 2000). In this process, 

F I G U R E  1  Many species exhibit skewed size distributions. We show three examples from extensive demographic studies: (Left) a long‐
lived gorgonian coral (Paramuricea clavata), (Centre) an arctic/alpine plant (alpine bistort, Polygonum viviparum), and (Right) an epiphytic 
boreal lichen (Vulpicida pinastri). Top panels show the relationship between size at time t + 1 and size at time t. Middle panels show the 
distribution of growth increments (size t + 1 − size t), cantered on zero. Bottom panels show the skew in size at time t + 1 (grey lines), 
computed for a sliding window of 50 data points, against the mean size at time t. Solid black lines indicate a symmetric distribution with 0 
skew; dashed black lines show a smoothing spline fit to the sliding skew estimates. See Supporting Methods for details of the demographic 
datasets
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the first model is generally a regression of size at time t + 1 on size at 
time t (and other independent variables, such as climate, habitat or 
herbivory) to estimate the mean ending size as a function of starting 
size (Figure 2c). The second model takes the squared residuals from 
the first model as point estimates of the variance in size t + 1, again as 
a function of starting size plus other variables (Figure 2d). There are 

a variety of approaches to flexibly model how the mean and/or vari-
ance may change with size, including simultaneously estimating both 
parameters by maximum likelihood (reviewed in Ellner et al., 2016; 
Rees et al., 2014), but the most common approach is to use sepa-
rate linear regressions for both parameters (e.g. Metcalf, McMahon, 
Salguero‐Gómez, Jongejans, & Rees, 2013). Many implementations of 

(a) (c)

(b) (d)

(e) (f)
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this approach use Akaike information criterion (AIC) or similar criteria 
to judge the support for quadratic size effects or the influence of cli-
mate or other variables on the mean and variance of growth rates. For 
a given starting size, the estimated mean and variance are then used 
to compute the normal probability density function (pdf) for ending 
size, which is used to compute the probability of transitioning into 
a given size bin at the next time step in IPMs. Typically, this is done 
using the point estimate of the pdf for a given starting size multiplied 
by the bin width (i.e. the midpoint rule; Ellner & Rees, 2006; Merow et 
al., 2014; Metcalf et al., 2013); however, we have found this approach 
to be less stable (M. Peterson and D. Doak, pers. obs.) so here we in-
tegrate the pdf across size bins by taking the difference in the cumu-
lative density function of each bin edge. Absolute size measurements 
are often log‐transformed to improve normality of size and other vital 
rate relationships, but this approach can only address positive skew 
in growth whereas many species may show negative skew or shifts in 
skew from positive to negative with increasing size.

This method works well for size transitions that are reasonably 
approximated by a normal distribution. However, although the 
normal distribution is able to capture the mean and variance of 
skewed distributions, it will badly misestimate the mode, resulting 
in a distribution that will under‐ or overestimate the probability of 
reaching certain sizes depending on the direction of skew (Figure 
S2). In addition, the normal distribution, or any other unbounded 
distribution, will predict non‐zero (albeit generally small) probabil-
ities of growth and shrinkage to unrealistic sizes. This latter prob-
lem has been recognized when predicting sizes outside any seen 
in a study (Williams et al., 2012), and is usually dealt with by trun-
cating the pdf for each starting size to be within the modelled size 
range, typically by either renormalizing growth probabilities within 
the modelled size range to sum to 1, or by assigning the probability 
density falling outside the modelled size range to the most ex-
treme size class within the range. These approaches typically alter 
the pdfs for the smallest and largest individuals most strongly. 
However, unbounded distributions are also problematic when 
they predict an unreasonable subsequent size given the starting 
size of an individual (e.g. allowing a small fraction of individuals 
to make unrealistic jumps in size), and this problem may be more 
difficult to diagnose and correct. As we argue in the Introduction, 
both these issues are likely to be common. An additional problem 
that arises when regressing squared residuals against size is that 
the best‐fit regression model may predict negative variances over 
some size ranges, which is dealt with in various ad hoc ways in the 

literature. For example, it is common for authors to set negative 
estimates to small positive values or use zero‐intercept or expo-
nential models for variance estimation (Ellner & Rees, 2006).

2.2 | The beta approach

To address these problems, we developed a modified beta regres-
sion approach that provides a highly flexible alternative for mod-
elling growth rates. The beta distribution describes continuous 
data on a (0,1) interval, and has been most commonly used in the 
analysis of proportions. Note that some implementations of beta 
regression are for beta‐binomial data, with successes and failures 
as discrete events and the probability of a success being chosen 
from a continuous distribution, but the beta distribution itself is 
continuous. It is straightforward to convert any continuous vari-
able y to a (0,1) interval when there is a minimum and maximum 
value, as:

where y′ is the transformed data. Previous implementations of beta 
regression with transformed data have used a constant minimum and 
maximum value to describe processes that represent a proportion of 
some whole, such as test scores or concentrations of environmental 
contaminants (Gray & Alava, 2018; Kim & Wolt, 2011; Smithson & 
Verkuilen, 2006).

Setting a constant minimum and maximum value for possible 
sizes irrespective of starting size could be used to model growth, 
but does not work well in most cases, largely because it enforces 
unrealistic patterns of skew into the model fit (M. Peterson, pers. 
obs.). Instead, to apply this method to size data, we suggest allow-
ing the minimum and maximum values to vary as functions of start-
ing size (yt), transforming each value of size at time t + 1 (yt+1) thus:

where ymax|yt and ymin|yt are the maximum and minimum sizes at time 
t + 1 conditional on starting size yt. This transformation serves two 
purposes. First, for most organisms, it is more biologically realistic 
to allow minimum and maximum potential sizes to be size‐depen-
dent. Second, the beta distribution for the transformed sizes is only 
symmetric when the mean is equal to 

(
ymax|yt −ymin|yt

)
∕2, or 0.5 on 

the (0,1) interval; it is positively skewed with smaller mean values 
and negatively skewed with larger mean values (Figure S1). Using a 

(1)y� =
(
y−ymin

)
∕
(
ymax−ymin

)
,

(2)y�
t+1

=
(
yt+1−ymin|yt

)
∕
(
ymax|yt −ymin|yt

)
,

F I G U R E  2  Comparison of the workflows using the beta versus normal approach to model skewed growth data in red gorgonian coral 
(Paramuricea clavata). (a) Quantile regression estimates minimum and maximum size values in the next time step as functions of current size. 
Lines show the 0.1 and 99.9 percentiles of size. (b) The beta regression fitted median (solid lines) and 99% prediction intervals (dashed lines) 
fit to size t + 1 transformed to a (0,1) interval using Equation 2. (c) The linear regression fit (solid line) of the mean size t + 1. (d) The linear 
regression fit (solid line) of the squared residuals in size t + 1. (e) Lines give the fitted medians (solid) and 99% prediction intervals (dashed) 
for beta (red), normal (blue) and skewed normal (green) models on the original data scale. (f) The estimated beta (red) and skewed normal 
(green) distributions better capture the left skewness of the observed size distribution compared to the estimated normal distributions 
(blue), as illustrated here by predictions for individuals with size 45 at time t against data for individuals with sizes 44–46. Note that 
predictions and AIC are given for both parametric and nonparametric beta and normal models, as well as a nonparametric skewed normal 
model. R code used for each of these steps and to generate figures is given in Appendix S1
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constant maximum and minimum value, as with Equation 1, would 
enforce a flip from positive to negative skew at (ymax  −  ymin)/2, 
whereas allowing the maximum and minimum values to change with 
starting size greatly increases the flexibility to model variable skew, 
including symmetry, in the predicted distributions of sizes.

Ideally, we would know the theoretical bounds on the sizes that 
an individual of a given starting size could achieve in one time step. 
However, most often, these bounds will have to be estimated from 
the data. Here, we use quantile regression to estimate the 0.1 and 
99.9 quantiles as functions of starting size (Figure 2a), which we 
use as the minimum and maximum values when transforming each 
observation. We found that using the 0.1 and 99.9 quantiles pro-
duced better estimates than using more extreme values (e.g. the 0 
and 1 quantiles), which are highly subject to the influence of outli-
ers. However, this approach will leave a small fraction of individuals 
outside the (0,1) interval, which can then be excluded as outliers, 
adjusted to values just within this range (e.g. 0.01 or 0.99), or ac-
commodated by adjusting the minimum and maximum values slightly 
to create bounds that are wider than any observed values. In many 
cases, outliers in growth and shrinkage are likely to be the result of 
measurement errors, so tighter quantiles could represent more rea-
sonable estimates of the minimum and maximum boundaries. Here, 
we found that cubic quantile regressions for these bounds performed 
well, but there are also even more flexible spline‐based methods 
available (Koenker, 2009) if the minimum and maximum values vary 
as complex functions of starting size, as well as methods to incorpo-
rate random effects into quantile models (Geraci, 2014). Using size‐
dependent minimum and maximum values produces a transformed 
dataset in the (0,1) interval with mean values that are not strongly 
tied to starting size (Figure 2b).

Once the size data have been suitably transformed, existing 
methods can be used to fit models with beta‐distributed errors. In 
particular, Ferrari and Cribari‐Neto (2004) suggested a maximum‐
likelihood model based on an alternative parameterization of the 
beta distribution that uses mean and precision (ϕ) instead of the 
alpha and beta shape parameters. This model was extended by 
Simas, Barreto‐Souza, and Rocha (2010) to allow both the mean and 
precision parameters to vary with different sets of independent vari-
ables. In these models, the precision parameter is:

where μ is the mean and σ2 is the variance. Since μ(1 − μ) is the max-
imum variance, ϕ is a measure of the reduction in variance below the 
theoretical maximum, given the mean. Importantly for its implementa-
tion, the mean and precision parameters are estimated simultaneously 
using maximum likelihood. These methods can be implemented using 
the bETaREg package (Cribari‐Neto & Zeileis, 2010) or the gamlSS pack-
age (Stasinopoulos & Rigby, 2007) in R (R Core Development Team, 
2015) and models can be compared with AIC. Once the best‐sup-
ported model is found, it is straightforward to convert the estimated 
mean and precision for any given starting size into the alpha and beta 
shape parameters to compute the beta pdf, as:

where �y�
t+1

|yt is the mean and �y�
t+1

|yt is the precision of the fitted beta 
distribution for y′t+1 conditional on starting size yt. The beta pdf is used 
just like the normal pdf to get the probability of transitioning into any 
given size bin in the IPM. It is also easy to back‐transform the model 
predictions onto the original data scale to use them in a demographic 
model or to visualize the model fit (Figure 2e), as:

where �yt+1|yt and �2
yt+1|yt are the mean and variance of yt+1, conditional 

on starting size yt.

2.3 | The skewed normal approach

An alternative approach to modelling skewed growth is to use the 
skewed normal distribution (Azzalini, 1985). This is a simpler solution 
to represent skew, but does not address the problem of modelling 
appropriately bounded growth and shrinkage rates. The skewed nor-
mal is a three‐parameter distribution that is equivalent to the normal 
distribution when the skewness parameter is 0.

2.4 | Illustration of different methods

We compared the fit of each approach using previously published 
data on the growth of corals (Paramuricea clavata) (Linares et al., 
2007). For this test, we used data on 4,110 growth events (Appendix 
S1). This slow‐growing octocoral occasionally suffers severe break-
age due to diving activity and warming‐induced ‘partial mortality’ 
(death of part but not all of a colony), leading to highly skewed 
growth rates (Figure 1).

We used three approaches to model growth of this species: the 
beta approach, the normal approach and the skewed normal approach. 
We modelled the size‐dependent mean and precision of the beta dis-
tribution, the mean and variance of the normal distribution, and the 
location, scale and skewness parameters of the skewed normal distri-
bution. For each of the three approaches, we fit sets of models that 
considered each of the parameters as constant, linear, quadratic or 
nonparametric cubic spline functions of size and used AIC to identify 
the best‐supported models. We fit parametric beta models using the 
bETaREg package (Cribari‐Neto & Zeileis, 2010), parametric normal mod-
els using separate linear regressions for the mean and variance with 
the lm function, and all other models (nonparametric beta, nonpara-
metric normal and all skewed normal models) using the gamlSS package 
(Stasinopoulos & Rigby, 2007), which fits the functions for all parame-
ters simultaneously using maximum penalized likelihood. For the beta 
approach, we also used quantile regression to estimate the 0.1 and 
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99.9 quantiles of size as linear, quadratic or cubic functions of starting 
size using the quaNTREg package (Koenker, 2009). We then used these 
values, from the best‐supported model based on AIC, as the minimum 
and maximum values, respectively, to transform size t + 1 to a (0,1) 
interval, setting any values ≤0 to 0.01 and any values ≥1 to 0.99.

Finally, we compared the fit of each approach to the data with 
AIC and visualized the predicted means and 99% prediction intervals 
on the original scale. We calculated AIC values using the total num-
ber of parameters in all models for a given approach (e.g. the quantile 
and beta models for the beta approach, the mean and variance mod-
els for the parametric normal approach or the mean, variance and 
skew functions for the skewed normal approach). We also compared 
the predicted pdfs of each approach to the observed distribution 
of size t + 1 for individuals across a range of starting sizes. Example 
code for each of these steps in R v.3.4.3 is given in Appendix S1.

2.5 | Comparison of each method's fit to real 
growth distributions

We next tested the relative performance of the beta, normal and 
skewed normal approaches using previously published demographic 
data for three biologically diverse species with varying degrees of 
skewness in growth rates (Figure 1). Alpine bistort (Polygonum vivipa‐
rum, hereafter ‘bistort’) is a long‐lived arctic/alpine perennial plant for 
which demographic data were collected annually from 2001 to 2011 in 
four populations at Niwot Ridge, CO (Doak & Morris, 2010). Individual 
plants can sometimes shrink dramatically due to herbivory or frost 
damage. As described above, the red gorgonian (Paramuricea clavata) 
is a slow‐growing and long‐lived arborescent octocoral. Demographic 
data for individual colonies were collected annually at three sites for 
3–5 years each from 1999 to 2004 (Linares & Doak, 2010; Linares 
et al., 2007). Vulpicida pinastri (hereafter ‘lichen’) is a short‐lived epi-
phytic lichen that was studied on bush alder (Alnus sp.) stems. Data for 
this species were collected annually from 2004 to 2009 in Kennicott 
Valley, AK. Extreme shrinkage in this species occurs due to mechanical 
damage from falling branches or mammal activity (Shriver et al., 2012).

We tested the ability of each approach to accurately capture the 
mean, variance and skewness of these real growth datasets. In fitting 
the models to each dataset, we followed the steps outlined above, con-
sidering both parametric and nonparametric beta, normal and skewed 
normal models and using AIC to identify the best‐supported models 
for each approach. For each of the three species, we fit models to 200 
bootstrap replicates obtained by randomly resampling the data with 
replacement to generate a distribution of estimates. We compared the 
estimated size‐dependent means, variances and skews predicted from 
the best‐supported models to the moments of each dataset, estimated 
for a sliding window of 50 data points and fit with a smoothing spline. 
Code for these analyses with gorgonian coral is given in Appendix S2.

2.6 | Consequences for population model inferences

Failing to account for skewness in growth may have substantial 
consequences for the inferences drawn from population models. 

When large changes in size tend to be in a downward direction, 
then the assumption of normally distributed size transitions tra-
ditionally used in IPMs will overestimate the probability of high 
growth (Figure S2). Since survival and reproductive rates often 
increase with size, these biased estimates of high growth could 
inflate estimates of the population growth rate by allowing some 
individuals to reach large sizes more quickly than is biologically 
realistic. Similarly, if extreme shrinkage is more common than ex-
treme growth (even if still rare), then the normal distribution will 
underestimate its probability (Figure S2), potentially inflating pre-
dictions of the average life span.

We explored the potential consequences of failing to account 
for skewness in growth data using previously published demo-
graphic data for the same three species as above. For each of 
these species, we constructed IPMs using either the beta, nor-
mal or skewed normal approaches outlined above, and compared 
their outputs to those from a high‐dimension PPM that uses the 
observed size transitions directly (i.e. without fitting a statistical 
model to growth, see Supporting Methods for details). While es-
timates of population behaviour from the PPM are not necessar-
ily correct, they do represent a model‐free estimate that is not 
subject to distributional assumptions. We fit PPMs with 50 size 
classes and estimated transition rates based on their observed 
frequencies in the dataset, pooling across years, populations and 
plots to ensure sufficient sample sizes in each class. Population 
growth rate, life span and damping ratio values converge for PPMs 
with 20 or more classes (Figure S3), suggesting that a 50 × 50 PPM 
is of sufficiently high dimension to yield accurate results. IPMs 
were fit to the same pooled datasets using either the beta, normal 
or skewed normal approaches to modelling growth, and keeping 
all other size‐dependent vital rates constant. We renormalized 
all growth predictions to prevent eviction. IPMs were discretized 
using the midpoint rule (Morris & Doak, 2002) into matrices with 
>100 size classes (N  =  118–125) chosen to evenly divide the 50 
size classes used for PPMs. We compared three metrics of pop-
ulation dynamics inferred from each IPM or PPM: the population 
growth rate (λ), the life span (defined here as the time steps until 
a newborn has <1% probability of still being alive) and the reactiv-
ity (Neubert & Caswell, 1997; Stott, Townley, & Hodgson, 2011). 
Reactivity is inherently tied to the definition of size classes or bins, 
so to compare values from the IPMs to the PPM we used a popu-
lation vector giving the proportional abundance of each of the size 
classes in the IPM represented by the largest size class in the PPM 
(see Supporting Methods). We obtained distributions of each met-
ric by refitting all models across 200 bootstrap replicates obtained 
by randomly resampling the data for each species with replace-
ment. Code for each of these steps is given in Appendices S2–S4.

2.7 | Dissecting the fit of each growth model to 
different segments of the growth distribution

If extreme shrinkage or other skewed growth transitions are suf-
ficiently rare (e.g. Figure 1), standard statistical measures of model 
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fit, such as AIC, may support a normal distribution over a beta or 
skewed normal distribution if the normal is a better fit to most of 
the data, especially since the beta approach requires fitting func-
tions for the minimum and maximum bounds as well as the mean 
and variance in growth. However, failing to capture rare but bio-
logically important transitions, such as extreme shrinkage, could 
bias estimates of population growth even if it has relatively little 
effect on the likelihood of the individual growth models. To further 
explore this issue, we first compared the AIC of the beta, normal 
and skewed normal growth models described previously, when fit 
to the growth data for each of the three species. We also compared 
the log likelihood of each data point for the three approaches to 
determine where in the growth distribution each approach pro-
vided a better fit. Finally, we examined the impacts for population 
models of better or worse fits to different segments of the growth 
distribution. For each transition from a size bin at time t to a size bin 
at time t + 1, we calculated the difference in its probability as pre-
dicted by each of the three growth models and its sensitivity (i.e. 
effect on population growth). We compared these values for each 
observation to its log likelihood under each of the three growth 
models, to ask whether differences in fit were associated with large 
changes in predicted growth probabilities and/or transitions with 
high sensitivity.

3  | RESULTS

3.1 | Illustration of different methods with growth 
of red gorgonian coral

Methods that allow skew, including the beta approach and the 
skewed normal, are better able to capture the asymmetry in growth 
of gorgonian corals relative to the symmetric prediction intervals 
given by linear regressions of the mean and normal variance in 
growth (Figure 2e). In particular, the assumption of symmetry causes 
the normal variance model to overestimate the probability of high 
growth and underestimate the probability of extreme shrinkage. 
This is most obvious when comparing the predicted pdf for a given 
starting size (Figure 2f). The parametric and nonparametric normal 
models produced very similar predictions, whereas the nonparamet-
ric beta model differed from and outperformed the parametric beta 
model. AIC strongly supported the skewed normal model over either 
the normal or beta approaches.

3.2 | Comparison of each method's fit to real 
growth distributions

All three approaches closely approximated the mean of the ob-
served growth distributions, although the normal approach tended 
to underestimate the mean relative to either the beta or skewed nor-
mal models (Figure 3). Estimates of the variance were more variable 
between approaches. For corals, the beta and skewed normal most 
closely approximated the variance, although all approaches under-
estimated the variance at large sizes. For bistort, the beta approach 

tended to overestimate the variance. For lichen, the variance was 
best captured by the skewed normal at smaller sizes and by the beta 
approach at larger sizes, while the normal approach always under-
estimated the variance. The methods also differed strongly in their 
estimates of the skew. The beta approach most closely captured the 
high positive skew at small sizes and the low negative skew at large 
sizes for all three species, although the skewed normal more closely 
matched the skew for the bulk of the data points at intermediate 
sizes for coral and lichen. The normal approach assumes 0 skew.

3.3 | Consequences for population model inferences

We found that assuming growth was normally distributed altered in-
ferred population dynamics and life‐history patterns relative to mod-
els using either a beta or skewed normal distribution to accommodate 
skewed growth rates (Figure 4). For all three species, IPMs based on 
normally distributed growth models overestimated the population 
growth rate and life span relative to PPMs that do not rely on a statis-
tical growth model but instead use the observed transition frequen-
cies in the data. IPMs based on either beta or skewed normal models 
of growth yielded very similar predictions of population growth for 
both coral and lichen, and very similar predictions of life span for coral. 
However, IPMs based on the beta approach more closely approxi-
mated the results from PPMs for population growth of bistort and for 
life span of both bistort and lichen. There were no clear differences 
among approaches for the reactivity, except that IPMs tended to un-
derestimate the reactivity compared to PPMs for both coral and lichen.

3.4 | Dissecting the fit of each growth model to 
different segments of the growth distribution

For the three datasets examined here, we found no support for the 
beta approach over either the normal or skewed normal approaches as 
measured by AIC of growth model fits. Instead, AIC strongly supported 
the skewed normal model for all three species. This was largely due to 
both the normal and skewed normal models providing slightly better 
fits to the majority of data points close to the mean growth rate, as 
well as to extreme outliers in growth or shrinkage (Figures 5 and S4). In 
spite of these results for overall model fit, the beta approach provided 
better fits to the spread of individuals around the mean, better approx-
imating the bands of moderate negative or positive skew in growth. It 
is not surprising that unbounded distributions such as the normal and 
skewed normal would best predict the extreme size outliers relative to 
a bounded distribution such as the beta. However, despite the strong 
log‐likelihood support for the normal and skewed normal models at 
these data points, the probability of these size transitions tended to be 
similarly predicted across all models, suggesting little effect on model 
inference. Conversely, the data points for which the beta approach had 
the strongest log‐likelihood support tended to be for size transitions 
with high sensitivity and/or substantial differences in the predictions 
between the two approaches. These results indicate that for species 
with realistic levels of skewness in growth rates, the assumption of 
normality in growth can have wide‐ranging impacts on the inference 
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about dynamics and life‐history traits that are commonly of interest to 
population biologists.

4  | DISCUSSION

In many organisms, the distribution of growth from one size to the 
next will be skewed even after transformations meant to improve 
normality. We have outlined a highly flexible approach for modelling 
skewed growth rates by combining two widely available statistical 

tools: quantile regression and beta regression. We demonstrate that 
both this approach and a rarely utilized alternative, the skewed nor-
mal, are able to more accurately capture the moments of real growth 
distributions for three biologically diverse species. Furthermore, we 
show that ignoring skew by assuming normally distributed growth, as 
is done in most published IPMs, can lead to overestimation of popula-
tion growth rates and life span. Incorporating skew in growth transi-
tions can be easily accomplished with existing statistical tools and is 
important for accurately capturing population dynamics, life‐history 
attributes and population structure.

F I G U R E  3  Comparison of the ability of the beta, skewed normal and normal distributions to capture the moments of the distribution of 
size at time t + 1. Box plots give the median (black lines), interquartile range (boxes) and the most extreme data points within 1.5 times the 
interquartile range (whiskers) of the distribution of estimated moments. (Left) mean, (Centre) variance and (Right) skew of size at time t + 1 
for various starting sizes at time t for (Top) coral (Paramuricea clavata), (Centre) bistort (Polygonum viviparum) and (Bottom) lichen (Vulpicida 
pinastri). Estimates are from the best‐supported models using the beta (red), skewed normal (green) or normal (blue) distributions, fit to 
200 bootstrapped replicates drawn with replacement from the original datasets. Grey lines show the true moments of the original dataset, 
shown as a smoothing spline fit to moments calculated from a sliding window of 50 data points. Note that the normal distribution assumes 0 
skew (blue line in right panels)



1440  |    Methods in Ecology and Evolu
on PETERSON et al.

We have shown that IPMs built with normally distributed versus 
skewed growth transitions produce different conclusions about key 
population parameters, but which approach is more correct? There 
are two ways in which this could be assessed. The first is to com-
pare the statistical fit of each model to the data and to test whether 
the additional parameters required by either the beta approach or a 
skewed normal model are justified using AIC (see Appendix S1 for an 
example). Across the three datasets here, AIC strongly supports the 
skewed normal, but not the beta approach, relative to normal mod-
els. However, there are several considerations when using AIC to 
evaluate growth models for use in IPMs. The first is whether a given 
growth model has been fit by simultaneously estimating all parame-
ters by maximum likelihood, or whether it combines parameters fit 
separately by multiple models. For example, the beta approach is 
fit by separately estimating the minimum and maximum sizes with 
quantile regression followed by estimation of the mean and preci-
sion; the AIC for such a model will be an upper bound compared to a 
joint estimation approach. The same is true of the normal approach 
when fit with separate regressions for the mean and variance. While 
it is straightforward to estimate the normal mean and variance simul-
taneously with maximum likelihood, this is more difficult to accom-
plish for the beta approach we outline here. Although it is possible 
to extend the four‐parameter beta distribution likelihood function 

to enable size‐dependent values of the mean, precision, minimum 
and maximum to be estimated simultaneously (Wang, 2007), it is not 
straightforward to implement as the minimum and maximum val-
ues must be constrained within some biologically plausible range. 
However, a first exploratory attempt to do this does suggest that it 
can improve the likelihood of the entire model to the point where 
beta models outperform normal models (see Figure S5 and Appendix 
S3 for example).

A second consideration is that, in practice, unbounded growth 
distributions are truncated for use in IPMs to avoid prediction out-
side the modelled size range. The two common solutions to this 
problem – adding probability density that falls outside the size 
bounds to the most extreme size class or renormalizing the trun-
cated probabilities to sum to 1 – could either increase or decrease 
the likelihood of an unbounded model, depending on the fit of the 
truncated distribution to the data.

The final and perhaps most important consideration is that 
statistical measures of fit such as AIC weight the prediction of all 
data points (and equivalently, all parts of the predicted growth 
distributions) equally. However, errors in different portions of the 
growth distribution can have very different effects on the popula-
tion growth rate and other parameters of interest from IPMs. For 
example, likelihood‐based measures may support models that best 

F I G U R E  4  Comparison of population parameters inferred from a high‐dimension PPM (Discrete) to those from IPMs assuming beta, 
skewed normal or normal‐distributed growth. Values are (Left) population growth rate λ, (Centre) life span or (Right) reactivity estimated 
from PPMs or IPMs fit to 200 bootstrap replicates drawn with replacement from the original datasets for (Top) coral (Paramuricea clavata), 
(Centre) bistort (Polygonum viviparum) or Bottom) lichen (Vulpicida pinastri). The IPMs were fit with the best‐supported models based on 
either a beta, skewed normal or normal distribution, and all other vital rate models were identical. The PPMs estimated discrete vital rates 
for each of 50 size bins (see Supporting Methods for details). Box plots give the median (black lines), interquartile range (boxes) and the 
most extreme data points within 1.5 times the interquartile range (whiskers) of the distribution of each parameter. Horizontal lines show the 
median value from the PPMs for comparison. Abbreviation: IPMs, integral projection models; PPMs, projection matrix models
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explain the majority of the data points, potentially at the expense 
of capturing rarer but biologically important transitions, such as ex-
treme shrinkage. Indeed, we found that the beta approach better ex-
plained the majority of skewed size transitions, to which population 
growth is sensitive, relative to either the normal or skewed normal 
models, suggesting that the beta approach may better capture the 
aspects of growth that most strongly impact population dynamics. 

Another method to assess which approach is more accurate is 
to compare the outputs from each IPM to those from a high‐dimen-
sion PPM that uses the observed size transitions directly. Although 
a PPM is also an approximation of the ‘true’ population dynamics, 
there are several aspects of this study that makes the PPM out-
puts a reasonable benchmark for comparison. First, we used large 
demographic datasets (N  =  1,621–11,882 individual transitions) to 
minimize the potential for substantial influences of sampling er-
rors in the observed transition frequencies and, second, we used 
a bootstrapping approach to compare model outputs across many 

randomly sampled datasets. Under these conditions and in the 
absence of independent knowledge, we can roughly assume that 
IPMs that more closely approximate the results of a high‐dimension 
PPM are also more accurately representing the underlying popula-
tion. By this measure, IPMs assuming normally distributed growth 
consistently overestimated population growth rates and life spans, 
whereas IPMs using the beta approach performed equivalently or 
better than those using a skewed normal model of growth. Thus, the 
beta models’ predictions of growth better match behaviour inferred 
without recourse to assumptions about the distributional properties 
of the vital rates. This suggests that the beta approach better cap-
tures population‐level outputs when growth transitions are skewed, 
even if it is not supported by likelihood‐based measures of model fit 
such as AIC.

Structured population models are used to address a wide range 
of ecological and evolutionary questions, including quantifying popu-
lation growth and extinction risk (Crouse, Crowder, & Caswell, 1987; 

F I G U R E  5  Fit of the beta versus skewed normal models to different segments of the growth distribution. Top row: size at time t + 1 
against size at time t, with each data point coloured by the difference in its log‐likelihood under the skewed normal approach versus the beta 
approach (bluer values indicate greater log likelihood of the skewed normal model and redder values indicate greater log likelihood of the 
beta model). In all three cases, greater statistical support for the skewed normal stems from its ability to better predict extreme outliers, as 
well as to slightly better predict the majority of data points close to the mean growth, whereas the beta approach is a better fit to the bands 
of moderate negative or positive skew relative to the mean. Bottom row: For each observed growth transition, the difference in its predicted 
probability from the skewed normal versus beta approach (positive values indicate greater probability under the skewed normal model and 
negative values indicate greater probability under the beta model) against the sensitivity of lambda to that transition. Points are coloured by 
the difference in their log‐likelihood, as in the top row. The strongest log‐likelihood support for the skewed normal approach (bluer values) 
comes from data points for which the methods produce similar predictions, whereas the beta approach has log‐likelihood support (redder 
values) for data points that are predicted to have very different probabilities under the two methods. From left to right, columns show 
results for coral (Paramuricea clavata), bistort (Polygonum viviparum) and lichen (Vulpicida pinastri)
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Lande, 1988), describing basic aspects of species’ life history (Franco 
& Silvertown, 1996), and predicting transient dynamics following dis-
turbance or management interventions (Ezard et al., 2010; Stott et 
al., 2011). Here, we show that incorporating versus ignoring skew in 
growth rates has strong and consistent effects on estimates of popula-
tion growth and life span, with implications for both basic inference as 
well as management decisions. For example, extreme shrinkage in the 
coral we examine here is largely caused by diving activity and warming‐
induced die‐back. Importantly for species like this, assuming normally 
distributed growth will tend to underestimate the severity of human 
impacts, with potentially severe consequences for management. 
Interestingly, we did not find consistent effects of skewed growth on 
transient dynamics, as measured by the reactivity. However, the impact 
on transient dynamics could vary depending on the life history of a par-
ticular organism, and should be tested across a wider range of species.

The main statistical cost of the beta approach relative to ei-
ther the normal or skewed normal approaches is the estimation of 
minimum and maximum size bounds. While this requires additional 
parameter estimates, we argue that this statistical cost is simply ac-
counting for a very real aspect of the demographic process: the ex-
istence of biological bounds on potential size transitions. However, 
identifying the best size bounds is likely to be a compromise between 
statistical fit and biological realism; as our example in Appendix S3 
shows, widening the size bounds can often improve the likelihood 
and AIC of the model, but will also allow some non‐zero probability 
of unobserved – and unlikely to occur – growth transitions (Figure 
S5). For this reason, we have proposed using quantile regression to 
estimate size‐dependent minimum and maximum values that are 
close to the observed range of growth transitions. However, it is 
important to note that this approach will always yield size ranges 
that are slightly less than or equal to those observed in the data, and 
therefore could slightly shrink the variance when back‐transformed 
to the original data scale. Although we did not find this to be an issue 
in our datasets, with the fitted variance closely matching the ob-
served variance, it is possible that this could be more problematic 
for sparser or noisier datasets for which estimating size‐dependent 
minima and maxima would be more difficult. For this reason, we rec-
ommend comparing the fitted moments, especially the variance and 
skew, to those observed in the data, and potentially adjusting the 
minimum and maximum values slightly if necessary.

Although we argue that a bounded distribution is biologically 
preferable for modelling growth, the skewed normal model could be a 
good alternative in some cases, such as for sparser datasets, as it does 
not require estimates of the minimum or maximum sizes. We found 
that IPMs based on the skewed normal distribution performed as well 
as the beta approach in some cases, although it overestimated popula-
tion growth in one species and overestimated life span in two species. 
The relative performance of the beta approach versus skewed normal 
may depend on the details of a particular dataset. Interestingly, we 
observed the biggest differences in bistorts, for which we had the 
most data (N = 11,882 individual transitions). Since both approaches 
are easy to implement with existing statistical tools, it may often be 
preferable to simply fit both growth models to compare their results.

Finally, as with any other approach to continuous vital rate esti-
mation, it is important to carefully consider the fit of models to the 
data. This is even more critical for growth because the entire distribu-
tion of size transitions, not merely the mean, is used to parameterize 
size‐structured population models. When assessing model fit, particu-
lar attention should be paid to the tails of the data range, where data 
are often sparse, as well as to rare but biologically important transi-
tions, such as extreme growth or shrinkage. Several population ecol-
ogists have advocated the use of more flexible spline or GAM‐based 
approaches to modelling vital rates (Dahlgren et al., 2011; Ellner et al., 
2016), and this can be extended to the beta and skewed normal ap-
proaches we outline here. For example, the gamlSS package in R enables 
both the mean and dispersion of beta‐distributed data, as well as all 
three parameters of the skewed normal distribution, to be modelled 
as nonparametric functions of explanatory variables, such as cubic 
splines (Stasinopoulos & Rigby, 2007). Across all three species, non-
parametric models were supported over parametric models, indicating 
that nonparametric models may be better able to capture shifts in the 
location, scale and skewness of growth distributions relative to para-
metric approaches. Finally, it is important to note that other aspects of 
growth distributions, such as kurtosis, will also violate assumptions of 
normality and can be addressed with several other distributions (e.g. 
the t distribution; Rees et al., 2014). A wide range of distributions can 
be easily fit by maximum likelihood or with the gamlSS package, yet the 
normal distribution remains a pervasive default for modelling growth 
(Merow et al., 2014; Metcalf et al., 2013). Size transformations, such as 
taking the log, are often assumed to yield normally distributed growth. 
However, this can still leave substantial skew or other aspects of non‐
normality, as shown by the three species we examine here, all of which 
were transformed to improve the normality of size prior to our analyses 
but still produced biased IPM outputs under assumptions of normally 
distributed growth. For these reasons, we reiterate prior calls (e.g. 
Easterling et al., 2000; Ellner et al., 2016; Rees et al., 2014) to carefully 
compare multiple alternative growth distributions for a given dataset.

Many organisms will have patterns of growth that violate as-
sumptions of normality. In such cases, the beta distribution offers 
a flexible alternative that can be easily implemented with existing 
statistical software and incorporated into IPMs. Given the need for 
accuracy in the predictions of population models, we suggest that 
testing of alternative distributions for growth, such as the beta ap-
proach we outline here, become standard in the construction of size‐
structured population models.
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