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ABSTRACT ARTICLE HISTORY
Most modern day automotive chassis control systems employ a feed- Received 16 December 2017
back control structure. Therefore, real-time estimates of the vehi- Revised 28 September 2018

cle dynamic states and tire-road contact parameters are invaluable Accepted 17 October 2018
for enhancing the performance of vehicle control systems, such as KEYWORDS

anti-lock brake system (ABS) and electronic stability program (ESP). State estimation; vehicle
Today'’s production vehicles are equipped with onboard sensors (e.g. dynamics; sliding mode
a 3-axis accelerometer, 3-axis gyroscope, steering wheel angle sen- observer; Kalman filter;

sor, and wheel speed sensors), which when used in conjunction with recursive least squares
certain model-based or kinematics-based observers can be used to

identify relevant tire and vehicle states for optimal control of com-

fort, stability and handling. Vehicle state estimation is becoming

ever more relevant with the increased sophistication of chassis con-

trol systems. This paper presents a comprehensive overview of the

state-of-the-art in the field of vehicle and tire state estimation. It is

expected to serve as a resource for researchers interested in develop-

ing vehicle state estimation algorithms for usage in advanced vehicle

control and safety systems.

Nomenclature

In this section, all symbols used in this work are listed.

r yaw rate

ay lateral body acceleration

ax longitudinal body acceleration
1) steering angle

Ssus suspension deflection

Uy vehicle velocity

vy vehicle lateral velocity

A wheel slip

T, driveline torque

Ty brake torque
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o wheel speed

p roll rate

Ty wheel torque

O wheel rotational speed
F, lateral axle force

1. Introduction

Accurate information about critical tire-vehicle dynamic states is crucial for the successful
implementation of advanced chassis control systems, e.g. online computation of the opti-
mised active longitudinal and lateral tire forces to be commanded by the electronic stability
control module (Figure 1).

Key attributes such as the vehicle sideslip angle or absolute vehicle speed are difficult
to measure within the desired accuracy level because of high costs and other associ-
ated impracticalities. Therefore, vehicle control systems currently available on production
cars rely on available inexpensive measurements, such as wheel speeds, vehicle accelera-
tions and yaw-rate. There is also unanimous agreement that knowledge about additional
states of a vehicle (e.g. vehicle roll angle, tire-road grip level, etc.) can significantly reduce
the risk of accidents through effective design and implementation of advanced chas-
sis control systems. As a result, the problem of vehicle state estimation has attracted
the considerable attention of many researchers (see Figure 2). Numerous studies have
been conducted to estimate vehicle states using both model-based and kinematics-based
estimation techniques.
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Figure 1. Block diagram representation of an integrated chassis control system.
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Figure 2. Publication trends — Google Scholar search result frequency by year: (a) keyword: vehicle
sideslip estimation; (b) keyword: vehicle mass estimation.

This paper presents a state-of-the-art review of estimation techniques utilised in auto-
motive applications. The basic organisation of this paper is as follows: Section 2.1 contains
information about the different techniques proposed in the literature for estimating the tire
forces. Section 2.2 summarises techniques for road profile estimation. Section 2.3 describes
methods for estimating the vehicle lateral velocity, which subsequently is used for estimat-
ing the vehicle body sideslip angle. Section 2.4 focuses on the techniques proposed for
vehicle roll estimation. Section 2.5 presents a summary of methods for estimating the tire
cornering stiffness. Section 2.6 presents a summary of the different applications enabled
thorough time and frequency domain analysis of wheel speed signals. Section 2.7 presents
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a state-of-the-art-review of the different strategies and algorithms used for real-time esti-
mation of the tire-road friction coefficient. Section 2.8 summarises the advancement in
the estimation vehicle motion states for active suspension control applications. Section
2.9 presents a comprehensive overview of the different signal processing techniques pro-
posed by researchers to extract meaningful information from tire mounted accelerometers.
Section 2.10 covers details about another novel sensor technology, the load sensing bearing,
and conclusions are finally given in Section 3.

2. Literature review

A summary description of the state-of-the-art in the field of vehicle state estimation is given
in Table 1.

2.1. Tire force estimation

Considering the cross coupling between different vehicle states, a cascaded observer struc-
ture has been employed by numerous researchers. One of the well-used approaches is
presented in [1-3], which cascades two estimation blocks sequentially (see Figure 3). The
first block provides as inputs the estimated tire forces to the second block, which then
utilises these inputs to estimate the dynamic states of the vehicle motion, such as the vehi-
cle sideslip angle. Both sliding mode observer (SMO) and Extended Kalman filter (EKF)
methods are tested and evaluated within the cascaded blocks, and in-situ experiments indi-
cate both methods converge close to laboratory measurements. Additionally, authors of [2]
conducted a comparative study to investigate the use of different tire models to estimate the
vehicle sideslip angle. They reported that an adaptive nonlinear tire model yields to con-
siderably improved results. Adaptation is achieved by updating the tire cornering stiftness.
These studies, however, do not assess the observer performance on low friction surfaces or
on banked roads.

Road grade and bank angle pose a challenge in the estimation of vehicle states, primarily
due to the bias they cause in conventional on-board sensors. In another series of studies,
the same authors address the issue of road bank angle by investigating estimation of lateral
load transfer and tire normal force [4-6] and methods of correction for such bias. Like
their earlier results, their experimental evaluations emerge promisingly close to instru-
mented measurements. As for the road grade, most of the previous efforts have been based
on vehicle longitudinal dynamics models due to the many common driving scenarios for
which such models apply. The recursive least squares (RLS) algorithm with multiple forget-
ting factors has been the most cited method [7,8]. In more recent studies [52], an estimate
of road grade is calculated by comparing the acceleration as measured by an on-board lon-
gitudinal accelerometer with that obtained by differentiation of the undriven wheel speeds.
Knowledge of road grade also enables accurate real-time estimates of vehicle mass using
the longitudinal vehicle model and a general recursive least squares (RLS) estimator [53].

There are numerous studies focused on the problem of tire force estimation. A com-
prehensive example is given in [9], which presents a scheme for simultaneous longitudinal
and lateral tire-force estimation using a random-walk Kalman filter. From the simulation
results, it is confirmed that the tire-force estimator performs well under various driv-
ing situations given that there is sufficient steering wheel excitation. Studies in [10-14]
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Estimation
Measurements used Estimated states Model used methodology Reference
r,ay, dy, 8 Tire forces and vehicle Single-track model SMO, EKF [1-3]
sideslip angle
ay, Ay, sus Tire normal force Vehicle roll dynamic model  EKF —6]
ax,Vx, I A Te, Ty Vehicle mass Longitudinal dynamics RLS [7,8]
r,ay, Ay, 8, ww, Te, Tp Tire forces Wheel dynamics model, KF [9]
vehicle planar model
ay, Ay, Ssus, I, P, 8, @ Tire forces and vehicle Four-wheel vehicle model EKF,UKF [10-14]
sideslip angle
ay, Ay, Ssus, I, P, 8, @ Tire-road friction Four-wheel vehicle model EKF,UKF, NLLS [15,16]
coefficient and vehicle
lateral skid indicator
dy, Ay, Ssus, I, P, 8, @ LTR (Lateral load transfer) Four-wheel vehicle model EKF,UKF, NLLS [17]
and LSI (Lateral skid
indicator)- Accident risk
prediction
ay, Bsus Road profile and wheel Quarter-car model KF [18]
load
r, dy, dx Vehicle sideslip angle Kinematics model Nonlinear observer [19]
r,ay, dy, Tire forces Nonlinear vehicle model EKF [20, 21]
Tw: Ux, Ow Velocities and accelerations  Wheel dynamics model Robust differentiator [22, 23]
of the wheels, tire and sliding modes
forces (vertical and
longitudinal) and
friction coefficient
Ty, @, 1,ay, ay Tire forces and vehicle Wheel dynamics model, Model based [24]
parameter estimation vehicle planar model,
Friction ellipse
r,dy, dy, @, 8 Tire forces and road grade  Four-wheel vehicle model EKF, Luenberger [25,26]
observer
ax, Ay, w, 8 Vehicle sideslip angle and Bicycle model UKF [27,28]
yaw rate
ax, Ay, r Vehicle sideslip angle Kinematic model EKF [29]
ax, Ay, vx, 8,1 Vehicle sideslip angle, Four-wheel vehicle model UKF [30]
lateral tire road forces
and tire road friction
coefficient
Fy Vehicle sideslip angle Yaw plane model RLS [31]
r,ay, dy, ,8 Vehicle longitudinal and Bicycle model AKF, UKF [32,33]
lateral velocity
dy, w Vehicle longitudinal Kinematics-based Rule Based [34]
velocity
dy, w Vehicle longitudinal Yaw plane model KF, Fuzzy logic [35]
velocity
ay,p Roll angle Vehicle roll dynamic model ~ KF [36, 37]
ay,r,é Roll angle and roll rate Lateral-dynamics-model a KF [38,39]
four-degree-of-freedom
half-car suspension
model
ay,p Roll angle Vehicle roll dynamic model  Closed loop adaptive [40]
observer
ay,p, ¢tiltang|esensor Roll angle and centre of Kinematic sensor fusion, Sensor fusion [41,42]
gravity height Vehicle roll dynamic
model
ay,p Load Transfer Ratio (LTR) Vehicle roll dynamic model ~ Model based [43]

and Predictive Load
Transfer Ratio (PLTR)

(continued).
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Table 1. Continued.

Measurements used Estimated states Model used Estimation methodology ~ Reference

ax, Ay, az,p, q, Roll and pitch angles, Kinematic and model- Merging schemes [44]
longitudinal, lateral, and based (bicycle model)
vertical velocities observer

ay,r,8 Road bank angle Bicycle model Transfer function approach, [45]

superposition

ax, Ay, p,q, 1, Vehicle roll and pitch Kinematics-based observer  State observer [46]
angles

r,ay, dy, ,8 Road bank and grade Kinematic model Observers using time- [471
angles varying gains

p Roll angle Vehicle roll dynamic model  Controlled integration [48]

ay, I, vy, p Roll angle Vehicle roll dynamic model, Vehicle state index-based [49]

Kinematic model switching

rw,é8,ay,p Vehicle roll angle and Kinematic model Weighting function [50]
Sideslip angle

r,8,ay, vy Tire Slip angle Bicycle model State observer [51]

Notes: SMO: Sliding mode observer, KF: Kalman Filter, EKF: Extended Kalman Filter, UKF: Unscented Kalman Filter, AKF:
Adaptive Kalman Filter, RLS: Recursive least squares, NLLS: Nonlinear least squares. Please also see Nomenclature.

Measurements: yaw rate, steering angle, lateral acceleration
longitudinal acceleration, angular wheel velocities

<y Block 1

Observer SMO

Sliding-mode observer

Single-track model

Force model: Fx=0.ﬁy=0

4

Estimated variables: Longitudinal and lateral tire forces, yaw rate

<7 Block 2

Observer EKF

Extended Kalman Filter

Sideslip angle model

Linear adaptive force model

~

Estimated variables: Sideslip angle and cornering stiffnesses

Figure 3. The cascade observer structure [1,2].

focus more on the lateral tire forces and examine two observers based on Extended [54]
and Unscented [55] Kalman filtering techniques. The EKF is the nonlinear version of the
Kalman filter. This non-linear filter linearises about the current mean and covariance using
Jacobian matrices. Although EKEF is straightforward and simple, it suffers from instabil-
ity due to linearisation and erroneous parameters and the costly calculation of Jacobean
matrices. Instead of linearising and using Jacobian matrices, the UKF uses a determinis-
tic sampling approach to capture the mean and covariance estimates with a minimal set
of sample points [56]. A simplified four-point contact vehicle model is utilised where the
contact points are modelled by the Dugoff tire model. The Dugoft tire model is a simple
analytical model that incorporates both longitudinal and lateral dynamics to calculate the
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tire-road force characteristics. It assumes a steady state tire behaviour. The effects of cam-
ber and turn slip are neglected. Furthermore, a uniform vertical pressure distribution is
assumed in the tire. The basic principle of this model is that the linear tire force is calcu-
lated, which is then modified using the shape function [57]. The proposed scheme yields to
the estimation of lateral forces on individual wheels along with lateral vehicle states such as
vehicle sideslip angle. A comparison with experimental data demonstrates the potential of
the developed process. In [20,21], an extended Kalman filter-based method is presented to
estimate the dynamic states and tire-road forces for a nonlinear vehicle model. In [22,23],
cascaded observer based on first and second order sliding modes are used to estimate the
contact forces. The authors in [24] presents a tire force estimator, designed by account-
ing for the dependency between the longitudinal and lateral tire forces by introducing the
friction ellipse into the estimation algorithm. In addition, the vehicle parameters are esti-
mated online to alleviate the influence of variations in the model parameters on the lateral
tire force estimation performance.

2.2. Road profile estimation

Road profile elevation is an essential input to vehicle dynamics models. Hence, an accu-
rate knowledge of this data is essential for a better understanding of vehicle dynamics and
control systems design. In [18], authors present a method to estimate the road profile ele-
vation based on a classical Kalman filter. Once road profiles are estimated, it is possible
to calculate the vertical forces on each wheel. In [25,26], a method for the estimation of
vehicle states by an EKF, and to reconstitute the road slope using a Luenberger observer
is presented. The estimation results have been compared to measurements collected with
a prototype vehicle running on a test track. The authors in [15-17] describe a method for
assessing the risk of vehicle skidding. The method is based on a nonlinear optimisation
technique (Levemberg—Marquardt) applied to an error function between the forces esti-
mated by observers installed in the vehicle and those calculated by a theoretical tire/road
interaction model (Dugoff model).

2.3. Vehicle velocity estimation

The tire forces can be utilised in many different virtual sensing applications, for instance
for the estimation of critical states such as the vehicle lateral velocity. The study in [31]
provides a good example for the advantages of being able to compute real-time tire forces.
The authors use lateral forces obtained from a multi-sensing hub unit to estimate vehicle
lateral velocity and roll angle based on a recursive least square algorithm and a Kalman
filter. Estimation performances and robustness of proposed estimators were discussed and
evaluated by field tests on dry asphalt and a slippery road. The authors in [19] present
a nonlinear vehicle sideslip observer (NVSO) with reduced computational complexity as
compared to an extended Kalman filter. The observer is suitable for implementation in
embedded hardware and has a reduced number of tuning parameters compared to the EKF.
Nevertheless, because of the switching between operating regimes and the various thresh-
olds involved in the switching logic, tuning the NVSO is nontrivial. The authors in [27-30]
present the development of a nonlinear observer using unscented Kalman filter (UKF) to
estimate sideslip angle. The authors in [32,33] present a vehicle lateral and longitudinal
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Figure 4. Sideslip estimation performance combining a model-based observer and a kinematics-based
observers — experimental validation.

velocity estimation method using an adaptive/unscented Kalman filter. This method was
evaluated under a variety of manoeuvres and road conditions (Figure 4).

From all these studies, it is fair to conclude that estimates from a pure model-based
observer tend to deviate from the actual values because of mismatch between the vehicle
actual parameters and those used by the model. Estimated from a pure kinematic based
observer is prone to drift due to bias errors in the accelerometers and gyroscopes. In [58],
a fusion-based method combing a model based observer and a kinematics-based observer
are presented. The authors of this paper experimentally evaluated the performance of
the approach presented in [58] and confirmed that the proposed algorithm can provide
reasonably accurate estimates of the vehicle sideslip angle.

The authors in [34] present a new algorithm for the estimation of longitudinal vehicle
speed, based on the measurements of the four-wheel rotational speeds and of the longitu-
dinal vehicle acceleration. The main advantage of this approach is the low computational
burden - which makes implementation on a commercial vehicle Electronic Control Unit
(ECU) effective. The proposed algorithm was extensively tested on an instrumented test
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car in different driving and road conditions. In [35], a fuzzy logic is used to get an estimate
of the vehicle longitudinal velocity; together with the estimated vehicle longitudinal accel-
eration, a Kalman filter is used to estimate the velocity of vehicle for use in ESC control
applications. The fuzzy logic is used to get a first estimate of vehicle velocity. Subsequently,
a Kalman filter is used to fuse this first estimate of the vehicle velocity with the vehicle
longitudinal acceleration, to get a more precise estimate the vehicle velocity for use in an
electronic stability controller (ESC).

2.4. Vehicle roll angle estimation

The studies summarised above generally refer to the planar motion of the vehicle and use
the so-called two-track or bicycle model to represent vehicle dynamics within the observer
structure. On the other hand, systems that are related to the body roll or pitch require
inclusion of the vertical motion which than require an extended model so that additional
states can be estimated. The authors in [36,37] present a Kalman filter-based approach to
estimate roll angle and roll rate with either a three-degree-of freedom (3DOF), or IDOF
vehicle model. In [38], an estimator designed based on a 3DOF vehicle manoeuvring model
and a 4DOF half-car suspension model is used to obtain estimates of the vehicle roll angle
and roll rate in driving situations in which both manoeuvring and road disturbances affect
the vehicle roll motions. In [40], an approach using a closed-loop adaptive observer for
estimating roll angle and roll rate of vehicle body with respect to the road is proposed.
The authors in [41,42] focuses on algorithms to estimate roll angle and centre of gravity
(CoG) height. The algorithms investigated include a kinematic sensor fusion algorithm
that utilizes a low-frequency tilt angle sensor and a gyroscope and a dynamic observer that
utilizes only a lateral accelerometer and a gyroscope. The kinematic based sensor fusion
algorithm combines the low-frequency content of the angle estimate from the tilt sensor
with the high-frequency content of the gyroscope using a pseudo integration method. This
helps eliminate the drift from integration of the gyroscope. In [43], two rollover indexes are
proposed and analysed. The first rollover index estimates the actual Lateral Transfer Ratio
(LTR) while the second, referred to as Predictive Lateral Transfer Ratio (PLTR), incorpo-
rates the predictive influence of the driver’s steering input. The authors in [44] focuses on
the accurate estimation of the vehicle states, including the longitudinal, lateral, and verti-
cal velocities, as well as the roll and pitch angles, using merging schemes, that combine the
kinematic and model-based observer outputs. The authors in [45-47] present methods for
estimation of road inclination and bank angle. In [48], a scheme for the vehicle roll angle is
derived based on the combination of sensors from vehicle dynamics control system and a
rollover mitigation system. In [49,50], method for compensating the gravity components of
the lateral acceleration is proposed. The authors in [51] presents a model-based estimation
method that utilises pneumatic trail information in steering torque to identify a vehicle’s
lateral handling limits.

2.5. Tire cornering stiffness estimation

The techniques listed in Table 1 are based on a physical vehicle model, usually including
a model of the tire-road friction forces. There is a main argument against using such a
model due to its inherent uncertainty. Changes in the loading of the vehicle and the tire



1652 K.B.SINGH ET AL.

Table 2. Factor affecting the tire cornering stiffness.

Effect on the tire

Influencing factor cornering stiffness Reasoning

Inflation pressure Moderate Caused by a variation in the carcass stiffness and tread stiffness
(due to change in contact patch area) [65]

Tire wear High Caused by a variation in the tread stiffness [65]

Tire temperature High Caused by a variation in the rubber elasticity (modulus) [60]

Tire aging High Caused by stiffening on tread rubber [61]

characteristics, for example, introduce unknown variations in the model. The cornering
stiffness of a tire is known to be dependent on several factors (see Table 2), which are known
to change as result of driving, operating and environmental conditions [59-61]. Con-
sequently, estimation methods based on vehicle lateral/yaw dynamic equations (mostly
based on the bicycle model) need to be made robust with respect to tire cornering stiffness
changes.

In [62,63], algorithms for online estimation of the tire cornering stiftness during high
excitation manoeuvres (steering frequency > 0.5 Hz) are presented. Among all the meth-
ods studied, the beta-less method has been found to have the highest potential for field
implementation [64].

However, for most approaches presented in literature, the estimation accuracy of the
algorithm is high only for driving manoeuvres that involve a high-frequency steering wheel
excitation and not for manoeuvres with a low-frequency excitation. This is also corrobo-
rated in the benchmarking study conducted by the authors of this paper (Figure 5). The
observer does not give satisfactory results in the steady state cornering manoeuvre. The
estimates diverge from the actual measurements. In [66,67], an online cornering stiff-
ness observer for low-frequency manoeuvres on public roads is presented. The estimation
method presented shows good estimation results even under less extreme manoeuvres on
public roads. The relative error of the cornering stiffness estimate was about 15%. Another
set of methods without any need of vehicle parameters are using black-box regression mod-
els [68] which are non-linear models based in neural networks. For instance, after training
the models with a measured sideslip angle and ESC sensor data and its derivatives of the
order n, it is possible to estimate the sideslip angle. This method delivers very accurate
estimation results, though only when working within the constraints of the trained oper-
ating conditions. For applying the estimator on different vehicle variants with different tire
dimensions or vehicle mass etc., new data for training in every important operation point
must be collected which results in huge time and costs efforts.

2.6. Wheel speed signal analysis

Wheel speed sensors are one of the most important sensors on a vehicle and used not only
for ABS but also for various control systems. Researchers have extensively exploited wheel
speed signals to estimate the tire and vehicle states indirectly. For instance, wheel speed
signals are used in indirect tire pressure monitoring systems [69] to detect pressure loss
(Figure 6).

Table 3 presents a summary of the different applications enabled through time and
frequency domain analysis of wheel speed signals.
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Figure 5. Cornering stiffness observer estimation performance: (a) Manoeuvre: Sine Sweep 0.25-4 Hz -
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pressure. Wheel speeds recorded at 100 Hz using a Racelogic VBOX 3i unit.

Most of these applications require high-resolution wheel speed signals, which poses
some challenges. The wheel speed sensor unit consists of a toothed wheel that is sub-
ject to periodic pulse width errors. These pulse width errors occur at each edge of the
sensor toothed wheel and are caused by mechanical tolerances during production. These
pulse width errors reduce the quality of the wheel speed signal. Hence, is it important to
pre-process the wheel speed signals [79].
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Table 3. Usage of wheel speed signals.

State estimated Underlying physics Reference
Tire wear state Monitor shift in the 2nd torsional mode Singh et al.: US Patent 2016 [70]
frequency (80-100 Hz) Singh: US Patent 2017 [71]
Monitor tire slip behaviour during braking Unterreiner: US Patent 2016 [72]
Monitor change in the tire rolling radius
Vehicle loading state Monitor increase in amplitude of the 1st Lee et al.: SAE 2017 [73] Kawasaki:
torsional mode frequency (30-50 Hz) US Patent 2015 [74]
Wheel imbalance state Monitor wheel hop motion Lu et al.: SAE 2011 [75] Dagh
et al.:[76]
Absolute vehicle speed Use time delay between the front wheel Gustavsson et al.: US Patent 2010
and rear wheel speed signals. [771
Road surface condition Analyse wheel slip histogram Engel et al.: US Patent 2007 [78]

Numerous methods have been proposed in literature to estimate the absolute (i.e. ref-
erence) speed of a vehicle [80]. The commonly proposed method is to use wheel speed
sensors, which accurately measure the angular velocity of the wheels. Wheel speed is pro-
portional to the vehicle speed. However, the proportionality constant, the wheel rolling
radius, is in general known to vary. The wheel rolling radius is known to change with
tire inflation pressure, wheel loading condition, tire rolling speed and the remaining tread
depth of the tire. Authors of this paper conducted a sensitivity study for tire rolling radius.
Results are given in Figure 7. This makes vehicle speed estimates based on wheel speed
sensor not so accurate in comparison to the actual speed over ground. Typically the error
range is in +5% [81]. Alternative solutions for everyday vehicle applications include GPS
based velocity measurements or the usage of inertial measurement units. GPS access may
be limited in tunnels, indoors environments and due to sensor imperfections, methods
based on integration of accelerometer measurements yield large errors after short periods
of time.

2.7. Tire-road friction estimation

Apart from tire and vehicle dynamic states, instantaneous knowledge of the tire-road fric-
tion potential is expected to result in an improved performance of several of the active
chassis control systems [82,83]. Examples of vehicle control systems that can benefit from
the knowledge of tire-road friction include anti-lock braking systems (ABS), electronic
stability control (ESC), adaptive cruise control, and collision warning or collision avoid-
ance systems [84,85]. The quality of traffic management and road maintenance work (e.g.
salt application and snow plowing) can also be improved if the estimated friction value is
communicated to the traffic and highway authorities [86,87]. The importance of friction
estimation is reflected by the considerable amount of work that has been done in the area
(Table 4).

Lateral dynamics-based techniques can be utilised primarily while the vehicle is being
steered.

Longitudinal dynamics-based techniques are in general applicable during vehicle accel-
eration and deceleration. Determination of friction coefficient is straightforward in cases
where tire forces are saturated, such as under hard braking conditions. The difficulty lies in
obtaining a friction estimate under more normal driving circumstances, in which the tire
slip is smaller (lower utilisation conditions). The required utilisation of friction necessary
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Figure 7. Rolling radius sensitivity to: (a) tire load, (b) inflation pressure, (c) rolling speed, and (d) tire
tread depth. Measurements made indoors on a test drum.

to provide a road friction estimate within an accuracy range of £10% is summarised in
Figure 8. In the case of the “Force-Slip Regression Method” more than 75-80% of the
available friction force must be generated before an accurate estimate can be derived.
It is possible to estimate the tire-road friction coefficient for lower levels of utilisation
(~30-40%) if SAT (“Moment-Slip Regression Method”) is used as a basis for the esti-
mator instead of the lateral force (“Lateral Force-Slip Regression Method”). One of the
most promising approaches for friction estimation documented in literature is the longi-
tudinal slip slope method, wherein the longitudinal stiffness of a tire is assumed to change
in a near linear manner with the tire-road friction level. Another promising approach is to
monitor the damping of the torsional frequency mode of a tire (typically between 35 and
45 Hz) under free rolling conditions.

2.8. Vertical state estimation

Another research topic related to state estimation that has garnered considerable atten-
tion is the concept of system state estimation for active suspension control. This is driven
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Table 4. State-of-the-art literature review.

Tire road friction estimation

Lateral dynamics based

Longitudinal dynamics based

Torsional dynamics based

Pasterkamp: JVSD 1997 [88]
Yasui: SAE 2004 [89]

Klomp: AVEC 2006 [90]

Hsu: PhD Thesis 2009 [91]
Erdogan:PhD Thesis 2009 [87]
Andersson: [VSS 2010 [92]
Ahn: PhD Thesis 2011 [93]
Nishihara: ASME 2011 [94]
Matilainen: IEEE 2011 [95]
Li: Elsevier 2014 [96]

Han: IEEE 2016 [97]

Germann: IEEE 1994 [98]

Gustafsson: Automatica 1997 [99]

Muller: ASME 2003 [100]
Lee: [EEE 2004 [101]
Li: IMechE 2007 [102]

Svendenius: PhD Thesis 2007 [103]

Rajamani: IEEE 2010 [104]
Andersson: IVSS 2010 [92]
Ahn: PhD Thesis 2011 [93]
Jonasson: US Patent 2016 [105]
Singh: US Patent 2017 [106]
Han: I[EEE/ASME 2017 [107]

Umeno: SAE 2002 [108]
Pavkovi: SAE 2006 [109]
Schmeitz: 2014 [110]
Schmeitz: VSD 2016 [111]
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Figure 8. Required utilisation of friction (in percent) to achieve a friction estimate within an accuracy of
+10%.

by the need to develop more advanced control systems for semi-active and fully active
suspension systems are becoming more and more common on production vehicles. As
other vehicle motion attributes, the nonlinearities become a significant challenge for such
systems. To be able to overcome this, various linearisation and integration methods have
been utilised. In [112], the authors refer to the concept of Takagi-Sugeno to establish an
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Figure 9. Signal for one-wheel turn from a tire attached tri-axial accelerometer. Sensor data sampled at
4000 Hz.

observer design for nonlinear state estimation in an actively controlled vehicle suspen-
sion application. Another challenge in observing vehicle vertical motion is measurement
of the environmental inputs, such as the road profile or variations on mass. Authors of
[113] utilise a linear quarter car model to design a virtual sensor estimating unmeasured
state variables subject to unknown road inputs. Another approach as proposed in [114] is
by using an adaptive super-twisting sliding mode observer (SMO) for state and unknown
input estimation for the active suspension system. Super-twisting SMO belongs to the sec-
ond order sliding mode approach that allows for finite-time convergence to zero of not
only the sliding variable but its derivative as well, through a continuous control acting
discontinuously on its second-time derivative [115].

For observing supplementary states such as sprung and unsprung mass motion, more
conventional methods have been proposed. In [116], a Kalman Filter algorithm is con-
structed for bounce velocity estimation. [117] presents the design and development of
a state estimator that accurately provides the information required by a sky-hook con-
troller, using a minimum number of sensors. In [118], a road-frequency adaptive control
for semi-active suspension systems is investigated. By using the data measured from a rel-
ative displacement sensor, a state estimator based on a Kalman filter for estimating the
required state variables is designed. Road disturbance frequencies are estimated by using
a first order zero-crossing algorithm. In [119], an estimator structure for active vehicle
suspension control incorporating three parallel Kalman filters has been presented.

2.9. Intelligent tire technology

Although the methods based on chassis attached sensors present a relatively accurate solu-
tion, they rely heavily on tire and vehicle kinematic formulations and break down in case of
abrupt changes in the measured quantities. To address this problem, researchers have been
developing a certain sensor based advanced tire concepts for a direct measurement of crit-
ical tire states. The terms “Intelligent Tires” and “Smart Tires,” which mean online tire
monitoring, are enjoying increasing popularity among researchers and automotive manu-
facturers. Most of the recent studies have evaluated the possibility of using a tire mounted
accelerometer for tire state estimation (Figure 9).

Table 5 presents a summary of the different applications enabled through time and
frequency domain analysis of tire accelerometer signals.
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Table 5. State-of-the-art literature review — intelligent tires.

State estimated Underlying physics Reference

Tire vertical force Uses an empirical model to describe the shape of the Teerhuis et al. [120]
radial acceleration signal - Vertical load is treated as
an unknown parameter and is estimated used an
EKF observer
Tire longitudinal force The observer contains a physical tire model. The Goos et al.[121]
Flexible Ring Tire model is adapted such that the
tire belt deformation is calculated for prescribed
contact patch boundary conditions. These boundary
conditions are calculated using the vertical and
longitudinal tire forces, which are the states of the

model

Tire road friction propensity Friction potential estimated through frequency Niskanen [122]
domain analysis of the accelerometer signals Singh et al. [83]

Tire aquaplaning propensity Remaining tire road contact length is determined Niskanen [122]
based on the tangential acceleration signal

Water depth To detect the presence of water in the tire-road Niskanen [122]

contact, the lateral acceleration signal is utilised.
Since normal excitation from the road surface is
lowest in the lateral direction, all external excitation
produces rather noticeable difference. This is the
case also with the turbulent water flow in the
contact.

Table 6. State of the art for load sensing bearing technology.

State estimated Underlying physics Reference

Wheel Forces The strain on the outer ring of the bearing is measured Nishikawa [123]
and corrected based on the pass-by frequency of
the rolling element
Wheel Slip and Forces A decision-based hybrid algorithm yields to Kerst et al.[124]
information regarding peak friction using the
real-time feedback of the load-sensing bearing,
which is primarily used in an ABS application.
Tire road friction propensity Friction potential estimated through the force feedback Madhusudhanan et al.[125]
on the bearing sensor, combined slip and an SMO
scheme.

2.10. Load sensing bearing technology

Another novel sensor technology has been developed for the mechanical bearings situated
on the wheel hubs. In addition to the conventional speed encoders, the primary feedback
on these types of sensors are related to the moments and forces, therefore these systems
are generally called load-sensing bearings. The changes in the strain levels of the inner or
outer rings of the bearing yields to an accurate estimate of the force and moment applied
which then needs to be tuned for the specific construction using innovative methods. Table
6 summarises most relevant solutions and products introduced so far.

3. Discussion

Key vehicle state attributes for which numerous estimation algorithms have been proposed
in literature include:

e Absolute vehicle speed
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o Vehicle sideslip angle
e Tire road friction coeflicient

The most commonly used state estimation algorithms include: SMC, KF, EKF, UKE.

e Both UKF and EKF have been found to be effective at identifying simple or complex
vehicle models [81]. Although they use different methods for parameter error covari-
ance estimation, both techniques have identical convergence characteristics and yield
near-identical models. Unlike an EKF based observer, a UKF based observer avoids the
need to calculate Jacobians and is computationally less expensive and easier to imple-
ment. It is also easily extended to system identification and dual estimation problems,
in a similar fashion to the EKE. The convergence rate for these observers is primarily
influenced by the quality of the excitation (i.e. in conditions of high excitation, a fast
convergence of the estimation residuals is observed) and state covariance matrix tun-
ing [96]. Hence, for real-world implementation, it is necessary to tune the Kalman filter
covariance matrix Q and R. The disadvantage of Kalman filter-based estimators is that
the optimality of the estimation algorithm depends on the quality of a priori knowledge
of the process and measurement noise statistics. More recently, Artificial Intelligence
(AI) algorithms have been proposed to eliminate some of its inadequacies. For instance,
in [97, 98], Al-based algorithms are used to estimate the sideslip angle based an Adaptive
Neuro-Fuzzy Inference System (ANFIS) [126]. ANFIS integrates both neural networks
and fuzzy logic principles, hence has the potential to capture the benefits of both in a
single framework.

Most model-based observers require adaptation of the model parameters.

e Different driving conditions, such as the number of passengers and seating arrange-
ment, cause the inertial parameters to vary. However, most model-based observers
proposed in literature assume fixed inertial parameters. Due to inherent interdepen-
dency of vehicle states and parameters, it is not realistic to separately solve the problems
of vehicle state estimation and parameter identification. A variety of approaches have
been proposed lately in literature [127,128] focused on combined estimation of vehicle
states and identification of parameters. As these inertial parameters substantially influ-
ence the longitudinal and lateral dynamics of a vehicle, the availability of an accurate
estimate could significantly improve the performance of the vehicle state observers.

Some of the shortcomings present in the state-of-the-art estimation techniques will be
addressed in the future. General indication within most of the recent publications shows
that more researchers will start using machine learning and data-driven modelling tech-
niques for vehicle state estimation. Also expected is fusion of radar (or lidar) data, as these
sensors are expected to become standard components on next-generation electric vehicle
and autonomous vehicles [129-131].

4. Conclusion

This paper provides a comprehensive review of relevant works about virtual sensing
and state estimation methods in vehicle dynamics and controls applications. Distinct
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approaches based on kinematics and model-based observers have been reviewed and the
main advantages and drawbacks for these estimation methods have been discussed. As has
been evidenced, model-based approaches require significant excitation levels to achieve
an accurate estimation of the vehicle- and tire-states. In brief, additional investigations
are needed to prove the efficacy of the proposed methods on production vehicles under
daily drive cycles. Apart from model-based approaches, other non-model-based methods
have also been proposed, namely, kinematic-based, black-box regression, neural networks,
machine learning, etc., however, the effectiveness of these methods is also not proven on
production vehicles. Therefore, the most suitable approach so far is a fusion of outputs
from model-based and non-model-based methods.

Finally, a brief discussion has been presented concerning upcoming technologies related
to intelligent tires and load sensing bearings. Even though these technologies are currently
not matured for production vehicles, there is significant research and development work
ongoing by major tire and bearing manufacturers. It is, therefore, reasonable to conclude
that these technologies will make their way into series production vehicles in the next three
to five years. The key value proposition for usage of virtual sensing techniques for state
estimation in vehicles is the potential they offer in improving the performance of vehicle
control systems. This would be of even more relevance in the case of autonomous vehicles,
considering their high safety requirements.
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