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Highlights:9

• The topography of Default Network cortical regions varies across individuals.10
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• Default Network topography varied across individuals in mPFC, moreso than in PCC.13

• Overlap of task effects with DN regions should be assessed at the individual level.14
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Abstract15

Regions of human medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) are part of the default16

network (DN), and additionally are implicated in diverse cognitive functions ranging from autobiographical17

memory to subjective valuation. Our ability to interpret the apparent co-localization of task-related effects18

with DN-regions is constrained by a limited understanding of the individual-level heterogeneity in mPFC/PCC19

functional organization. Here we used cortical surface-based meta-analysis to identify a parcel in human20

PCC that was more strongly associated with the DN than with valuation effects. We then used resting-state21

fMRI data and a data-driven network analysis algorithm, spectral partitioning, to partition mPFC and PCC22

into “DN” and “non-DN” subdivisions in individual participants (n = 100 from the Human Connectome23

Project). The spectral partitioning algorithm identified individual-level cortical subdivisions that varied24

markedly across individuals, especially in mPFC, and were reliable across test/retest datasets. Our results25

point toward new strategies for assessing whether distinct cognitive functions engage common or distinct26

mPFC subregions at the individual level.27

Keywords: functional connectivity, default network, network neuroscience, medial prefrontal cortex, spectral28

partitioning29

2



1. Introduction30

Human medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) are jointly associated with a31

diverse set of cognitive processes (Hiser & Koenigs, 2018; Kragel et al., 2018), and contain subregions that32

are part of the brain’s default network (Buckner & DiNicola, 2019; DN; Buckner et al., 2008). DN regions33

are characterized by a decrease in BOLD activity during externally oriented tasks that require attention34

or cognitive control, in comparison with less-demanding task conditions or periods of rest (Buckner et al.,35

2008; Laird et al., 2009; McKiernan et al., 2003). The DN can also be identified on the basis of a distinctive36

pattern of inter-region correlations in resting-state fMRI data (Buckner et al., 2008; Fox et al., 2005; Greicius37

et al., 2003; Yeo et al., 2011).38

Many different cognitive task manipulations evoke patterns of brain activity that overlap with DN regions in39

ventral and anterior mPFC and in PCC. Examples include manipulations of self-referential thinking (Gusnard40

et al., 2001; Mitchell et al., 2005), memory (Euston et al., 2012; Schacter et al., 2007), affective regulation41

(Reddan et al., 2018; Schiller et al., 2008), and subjective valuation (Bartra et al., 2013; Clithero & Rangel,42

2014; Kable & Glimcher, 2007; Levy et al., 2011). Some of these task-related effects are thought to reflect43

processes integral to the functional role of the DN, such as internally oriented cognition, scene construction,44

and self-projection (Buckner & Carroll, 2007; Hassabis & Maguire, 2007). For other task-related effects, such45

as subjective valuation (i.e., greater BOLD activity in response to more highly valued choice prospects and46

outcomes, relative to prospects and outcomes that are less highly valued), the degree of overlap with DN47

regions is only partial and the reason for the overlap is less obvious (Acikalin et al., 2017). Insofar as the DN48

shares a subset of nodes in common with the distributed brain systems that support valuation and other49

functions, this has potential to inform our theoretical understanding of the cognitive operations involved50

in those functions (Northoff & Hayes, 2011). As a result, there is widespread interest in understanding the51

degree to which DN regions overlap topographically with task-related effects (Buckner & DiNicola, 2019;52

DiNicola et al., 2019; Spreng, 2012).53

However, strong conclusions about functional colocalization require consideration of individual-level hetero-54

geneity in topographic patterns of brain activity. A recognized limitation of group averaging and meta-analysis55

is that the functional topography of individual brains can be misaligned and blurred (Fedorenko et al., 2012;56

Guntupalli et al., 2018; Michalka et al., 2015; Tobyne et al., 2018; Wang et al., 2015; Woo et al., 2014),57

exaggerating the apparent overlap across domains. This concern is especially pronounced in ventral mPFC,58

which is subject to considerable idiosyncratic cortical folding (Lopez-Persem et al., 2019; Mackey & Petrides,59

2014; Zilles et al., 2013) and inter-subject functional variability (Mueller et al., 2013). An alternative60
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approach is to focus on analyses at the individual-participant level. Individual-level analyses of fMRI data61

have identified idiosyncratic, reliable, and valid patterns of functional organization that would be blurred62

in aggregative estimates (Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015; Michalka et al.,63

2015; Tobyne et al., 2018), and subject-specific network arrangements have been found to predict behavioral64

characteristics (Kong et al., 2018). Recent work has uncovered fine-grained subdivisions within the DN using65

both data-driven clustering and individually customized seed-based connectivity analysis (Braga & Buckner,66

2017; Braga et al., 2019). It is therefore possible that the apparent overlap of the DN with task-related effects67

might, in some cases, be attributable to low effective spatial resolution, and that the organization of mPFC68

and PCC might be better understood at the individual level. An important first step in investigating this69

possibility, and the goal of the present paper, is to quantify the degree of variability in the topography of the70

DN within mPFC and PCC across a large sample of individuals.71

A useful way to characterize individual-specific brain organization is to examine patterns of resting-state72

functional connectivity. Connectome-based analyses of resting-state functional connectivity have been fruitful73

in identifying individualized functional subregions that correspond well to task-induced activity patterns74

(Gordon et al., 2017; Laumann et al., 2015; Smith et al., 2009; Tobyne et al., 2018). A functional connectome75

can be represented in the form of a network, and graph theoretic methods can be applied to analyze the76

network’s structure (Bassett & Sporns, 2017; Rubinov & Sporns, 2010). In the context of network analysis,77

community detection algorithms subdivide brain networks into sets of nodes that share more connections78

with each other than with the rest of the network (Fortunato & Hric, 2016; Garcia et al., 2018). Here we use79

the technique of spectral partitioning (SP), an efficient community detection algorithm that deterministically80

subdivides a network into two communities (Belkin & Niyogi, 2003; Chung, 1997; Fiedler, 1975). SP has81

previously been used to characterize the posterior-anterior functional gradient of the insula using resting-state82

fMRI data (Tian & Zalesky, 2018), and was shown to robustly and reliably separate both simulated and83

actual primate ECoG networks (Toker & Sommer, 2019). We use SP here to identify subsets of nodes within84

mPFC and PCC that share spontaneously covarying temporal activation patterns during rest.85

In this study, we aimed to subdivide mPFC and PCC into individual-specific DN and non-DN communities,86

and to quantify the degree of topographic heterogeneity in the resulting community structure over time and87

across individuals. We did this by capitalizing on the respective strengths of meta-analysis and subject-specific88

analyses of brain networks. We used a data-driven network-analysis procedure to identify two communities89

that each spanned both mPFC and PCC in each individual participant. We found that the resulting90

communities had a stereotyped topographic layout within PCC (according to a label-agnostic similarity91

metric), whereas their layout in mPFC was variable across individuals but stable across test/re-test. We92
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took advantage of the more consistent configuration within PCC to assign meta-analysis-derived labels to the93

two communities. Because our data-driven method established correspondence between PCC subregions and94

mPFC subregions, the labels defined in PCC could then be indexed into the more heterogeneous community95

structure of mPFC in each individual.96

The outline of our paper is as follows. First, we defined a search space by selecting parcels from an established97

brain atlas (Glasser et al., 2016) that corresponded to previously defined DN and limbic networks on the98

medial cortical wall (Yeo et al., 2011). A cortical surface-based meta-analysis of the DN and valuation99

literatures identified a parcel in PCC that was DN-specific at the aggregate level. Valuation was selected as an100

example of a cognitive domain in which group-average activity patterns overlap extensively with DN regions101

on the medial surface, despite being segregable elsewhere (Acikalin et al., 2017). We then derived a functional102

connectivity network of all the surface vertices within the search space for each of 100 individual resting-state103

fMRI data sets from the Human Connectome Project (HCP; Van Essen et al., 2012), and used the SP104

algorithm to subdivide each individual’s network into DN and non-DN communities (labeled according to105

which community included the meta-analytically identified DN-specific parcel in PCC). Focusing on individual106

vertices in the search space rather than the parcels (as is typical in brain network analyses) allowed us to107

finely delineate the topographic extent of each community. The resulting communities varied topographically108

across individuals, while also appearing to follow common organizational principles. Test-retest analyses109

showed that these partitionings were similar across scanning days within (but not between) individuals,110

and that individual-level idiosyncrasy was greater in mPFC. Partitionings obtained from the SP algorithm111

had higher test-retest reliability than did analogous results from seed-based functional connectivity. We112

observed a trend for the DN community to be located within principal sulci in ventral mPFC and left PCC,113

but in gyri within superior mPFC and right PCC. Lastly, we describe how the structure of the resulting114

automatically defined DN and non-DN communities both aligns with and differs from a recently proposed115

scheme for identifying subdivisions within the DN (Braga & Buckner, 2017; Braga et al., 2019). Our work116

highlights the usefulness of estimating brain effects at the individual level in mPFC and PCC, and provides a117

new framework and tool set for future investigations of overlap across cognitive domains.118

2. Material and Methods119

2.1. Data and Code Accessibility Statement120

All code used in this study is openly available at https://github.com/ctoroserey/mPFC_partitioning. Resting-121

state fMRI data were obtained from the Human Connectome Project (Van Essen et al., 2012).122
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2.2. Search space123

For all analyses, we defined our search space based on the 17-network parcellation proposed by Yeo et124

al. (2011). First, we selected vertices on the medial cortical surface that were contained by the DN and125

limbic networks in HCP’s 32,000 vertex surface space (fs_LR_32k). Next, we overlaid those networks on a126

parcellated atlas of the human cortical surface (360 regions; Glasser et al., 2016), and retained a set of parcels127

that covered approximately the same brain regions (visually inspected, retaining parcels that appeared to128

have at least 15% overlap). This resulted in a search space that consisted of 40 parcels across hemispheres129

(Supplementary Table 1). The search space in each hemisphere was naturally divided into two spatially130

non-contiguous clusters in PCC and mPFC, facilitating the examination of each region separately.131

2.3. Meta-analysis132

We used a novel approach to cortical surface parcel-based meta-analysis to assess whether individual133

parcels within the search space were preferentially associated with subjective valuation or with decreased134

activity during externally oriented tasks, which served to operationalize the DN. For subjective valuation,135

we gathered peak activation coordinates from 200 studies that reported positive effects in contrasts of136

higher-value minus lower-value outcomes or prospects (Bartra et al., 2013). For the DN, we acquired137

coordinates from 80 studies that reported reductions in BOLD during externally directed tasks compared138

to a baseline (Laird et al., 2009). The coordinates represent areas that exceeded the statistical significance139

threshold in each original study. For each study, we created an indicator map in standard volumetric space140

(MNI152, 1 mm resolution) which contained values of 1 in a 10 mm radius sphere around each reported141

activation peak, and values of 0 elsewhere (Wager et al., 2009). The indicator map for each study was142

then projected to a standard cortical mesh (fsaverage, 160,000 vertices, projfrac-max from 0 to 1 by 0.25,143

registered using mni152.register.dat) using FreeSurfer’s mri_vol2surf (Dale et al., 1999; Fischl et al., 1999)144

(http://surfer.nmr.mgh.harvard.edu/). We then resampled the Glasser et al. (2016) parcellation to fsaverage,145

and tallied how many studies had positive indicator values intersecting with each cortical parcel (the details146

of the resampling procedure are described in https://wiki.humanconnectome.org/display/PublicData/HCP+147

Users+FAQ#HCPUsersFAQ-9.HowdoImapdatabetweenFreeSurferandHCP, and were implemented using a148

custom script available at https://github.com/stobyne/Spherical-Surface-Swapper). Two studies from the149

subjective valuation corpus were removed because they did not contain activation peaks that overlapped with150

cortex, leaving a final number of 198 studies.151

To test for parcels that were significantly more strongly associated with one domain than the other, we152
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performed per-parcel chi-squared tests comparing the proportion of studies with activation in that parcel153

between the two domains. We permuted the study domain labels (DN or valuation) 5000 times while154

preserving the total number of studies in each domain, and on each iteration stored the maximum resulting155

chi-squared statistic across all parcels. This gave us a null distribution of 5000 maximum chi-squared156

values. The 95th percentile of this distribution served as an FWE-corrected significance threshold to evaluate157

unpermuted chi-squared values.158

2.4. Resting-state fMRI Data159

Our fMRI analyses used resting-state fMRI data from the Human Connectome Project (Van Essen et al.,160

2012) Q6 release (N = 100, randomly sampled from the total pool of 469 available subjects). The Washington161

University Institutional Review Board approved all experimental procedures, and all subjects provided written162

informed consent in accordance with the guidelines set by the institution. Each subject’s data was acquired163

over two days at Washington University in St. Louis on a Siemens CONNECTOM Skyra MRI scanner164

(Siemens, Erlangen, Germany). Four resting state runs (repetition time = 0.720 s, echo time = 33.1 ms, flip165

angle = 52°, multiband factor = 8, 72 slices, 2 mm isotropic voxels) each comprised 1200 time points (14 min166

24 s) for a total of 4800 time points. Two runs were acquired on each day, with the phase encoding direction167

set to left-right for one run and right-left for the other. Only subjects with both left-right and right-left168

phase encoding for each day were included (i.e. subjects with four resting-state fMRI sessions). In addition,169

only datasets with low motion levels (under 1.5 mm) and less than 5% of points over 0.5 mm framewise170

displacement (FD; Power et al., 2014) were used. See (Van Essen et al., 2012) for more details about the171

data acquisition protocol.172

Data initially underwent the HCP minimal preprocessing pipeline (Glasser et al., 2013), which included173

gradient nonlinearity correction, motion correction, EPI distortion correction, high-pass filtering (0.0005174

Hz threshold), MNI152-based normalization, surface reconstruction, and mapping of functional data to a175

standardized cortical surface model (details can be found in Glasser et al., 2013). In addition, data underwent176

temporal denoising based on independent components (FMRIB’s ICA-based X-noiseifier, FIX; Griffanti et al.,177

2014; Salimi-Khorshidi et al., 2014). Data were further preprocessed using an in-house pipeline described178

previously (Tobyne et al., 2017). Steps (in order) included linear interpolation across high motion timepoints179

with over 0.5 mm of FD, band-pass filtering (allowed frequencies ranged from 0.009 and 0.08 Hz), and180

temporal denoising via mean grayordinate signal regression (Burgess et al., 2016). Interpolation of high181

motion time points was performed to avoid temporal smoothing of noisy signal from head motion into the182

filtered signal during the bandpass procedure. After filtering and denoising, the interpolated high-motion183
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time points were censored by deletion and each run was temporally de-meaned. The processed time series184

had a median of 4799 time points (minimum = 4661) across participants. Each subject’s brain was comprised185

of 32k standard grayordinates per hemisphere (combined in a CIFTI file). We retained only the cortical186

surfaces, which resulted in 59,412 total surface vertices per subject.187

2.5. Network Definition188

All network analyses were performed using the igraph package (v. 1.1.2; https://igraph.org/r/; Csardi &189

Nepusz, 2006) in R (v. 3.4.1; https://www.r-project.org/; R Core Computing Team, 2017). To establish190

each subject’s network, we selected all the vertices contained within the mPFC/PCC search space (n =191

4,801 per subject; mPFC = 2854, PCC = 1947) and computed the Pearson correlation of the time series192

for every pair of vertices. All correlation values were transformed using Fisher’s r to z. This produced a193

weighted network for each subject, in which the nodes were surface vertices and the edge weights were the194

correlations among them. Edges mostly consisted of positive correlations (mean proportion positive = 0.65,195

SD = 0.03). We chose not to threshold the network, as the SP algorithm is well equipped to operate on196

complete (i.e. fully-connected) weighted graphs (Chung, 1997). However, our results were unchanged if we197

retained only significant correlations (p < 0.05, uncorrected) in the weight matrices. Next, we took the198

exponential of the z-transformed correlations so that all weights became positive while maintaining their199

ordinal ranks. Ensuring that all edges were positive facilitated the construction of the graph Laplacian (see200

below), which requires all off-diagonal elements to have the same sign by design. We generated and analyzed201

network weight matrices at four levels: (1) for each subject’s full concatenated dataset (up to 4800 TRs); (2)202

on each step of a sliding window analysis (see Section 2.7 for more details); (3) for the concatenated time203

series for the two runs on each day (up to 2400 TRs); and (4) for each run separately (up to 1200 TRs).204

2.6. Community Detection205

Communities (i.e. clusters) were identified using the SP algorithm (Belkin & Niyogi, 2003; Chung, 1997;206

Fiedler, 1975; Higham et al., 2007). First, each network was represented as an n x n network weight matrix207

W as described above (where n equals the number of vertices in the search space, 4,801). The matrix was208

then transformed into its symmetric normalized Laplacian form209

L = I −D− 1
2WD− 1

2
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where I is an identity matrix of size n, and D is a diagonal matrix containing the strength of each vertex210

(i.e. the sum of its edge weights with all other vertices). This resulted in a matrix wherein each entry was the211

negative normalized value of the connection (from 0 to 1) between any two vertices relative to their combined212

connectivity strength, and with ones along the diagonal. The transformation ensures that every row sums to213

zero. We then computed the eigenvalues and eigenvectors of the symmetric normalized Laplacian matrix,214

and used the eigenvector associated with the second-to-lowest eigenvalue (traditionally called the ‘Fiedler215

vector’) to divide the network into two. The Fiedler vector consists of a set of positive and negative values216

and is binarized by sign to partition the network into two similar-sized communities (Fiedler, 1975). In this217

way, SP avoids producing communities that are too small to be physiologically meaningful (for example,218

small sets of vertices that are spuriously correlated due to measurement noise). Given that this data-driven219

method does not label the two communities or establish correspondence across participants, we defined each220

individual’s “DN” community as that which contained the majority of the vertices in the DN-specific PCC221

parcel identified in our meta-analysis (area 7m). The completeness of the graphs ensured that SP did not222

face the issues associated with its use in sparse networks (Fortunato & Hric, 2016).223

In order to evaluate the validity of the resulting partitionings across community-detection methods, we also224

estimated network communities using the more traditional approach of modularity maximization (Garcia et225

al., 2018), based on the algorithm from Clauset et al. (2004). The method heuristically iterates through226

many possible combinations of vertices, and selects the partitioning that maximizes the within-community227

edge weights, relative to a random network containing the same number of edges and communities. Unlike SP,228

modularity can fractionate a network into more than two communities. Agreement between the partitions229

provided by the bounded (SP) and unbounded (modularity) community detection methods would suggest the230

results are not distorted by the restriction of SP to binary partitionings.231

2.7. Partition Evaluation232

We used the Adjusted Rand index (ARI) to evaluate the stability and topographical heterogeneity of the233

communities within and across individuals (Hubert & Arabie, 1985), which was calculated using the “mcclust”234

package in R (Fritsch, 2012). The ARI is a metric that quantifies the similarity between two alternative235

clusterings of the same data. The base of the ARI is computed by the formula236

a+ b

a+ b+ c+ d

where a is the number of pairs of nodes that were grouped together in both partitionings, b is the number237
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that were grouped separately, and c and d denote the number of pairs grouped together (separately) in one238

partitioning, but separately (together) in the other. Therefore, the ARI estimates the fraction of all possible239

node pairs that had the same status (connected or not) in both partitionings (with the denominator equal to240

n(n− 1)/2). The resulting ratio is adjusted against a baseline given by the expectation assuming independent241

partitionings to yield an index that ranges from 0 to 1, where 0 denotes the value expected by chance. This242

means that even though differences are heavily penalized, positive ARI values compare favorably against243

chance clustering (and the index can take negative values if the ratio given by the formula above falls below244

the chance level). In short, the ARI quantifies the chance-corrected agreement between any two partitions245

while being agnostic to the labeling scheme.246

We performed a number of comparisons among partitions. First, we computed the degree of agreement247

between SP and modularity maximization per subject. SP and modularity maximization have been previously248

found to show a tendency toward underfitting and overfitting, respectively, in their community detection249

performance in a diverse set of network types (Ghasemian et al., 2019), so alignment between the two250

algorithms would increase our confidence in the validity of the resulting partitionings. Next, we compared251

the subject-level SP partitionings across individuals, and calculated the mean pairwise ARI for the group.252

We then performed the same evaluation for PCC and mPFC separately, and examined whether there were253

differences in overall agreement within these regions by performing a paired permutation analysis. For each254

individual and region we took the mean ARI with all 99 other individuals, then took the difference between255

regions to get an ARI difference per subject. On each of 5000 permutations each subject’s ARI difference was256

independently sign-flipped and the group mean difference was added to a null distribution. The unpermuted257

group mean difference was then evaluated against this permuted distribution.258

To identify vertices whose community assignment was more stable or more variable, we performed a sliding259

window analysis (20 min windows, 1 min increments, median number of windows per subject = 37, range =260

35 - 37), comparing each window’s resulting partitioning against the partitioning derived from the subject’s261

whole data set. A 20-min window has previously been found to yield relatively stable and unbiased estimates262

of individual-level brain network characteristics (Gordon et al., 2017). We assessed whether the magnitude of263

the Fiedler vector value for a given vertex (for the full subject-level data set) was associated with the stability264

of that vertex’s sub-network assignment across time windows. To do this, we fit a mixed effects logistic265

regression model, in which the dependent variable was the proportion of times each vertex participated in the266

DN community across windows, and the explanatory variables included a random effect of subject and a267

fixed effect of the Fiedler vector value for that vertex (derived from their full time series). Based on this268

significant relationship, we identified a threshold Fiedler vector value for each subject, such that empirical269
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above-threshold vertices were persistently associated with either DN or non-DN more than 99% of the time.270

We then estimated the level of agreement between network partitions estimated using data across individual271

scan days (with 2 days per participant). If the functional organization estimated by SP is indeed individual-272

specific, we should see higher agreement within individual (test/re-test across days) than across individuals.273

We tested this idea by computing the ratio of the mean ARI within and between individuals. Ratios close to274

one would denote similar within-participant and across-participant alignment, whereas ratios considerably275

higher than one would suggest that partitions were more similar within-participant than across participants.276

We then extended this idea by computing the agreement across individual runs (4 per subject). Similar to277

the day-based analysis, we assessed whether run-level data showed higher agreement within-subject than278

between subjects.279

2.8. Seed-based Resting-state Functional Connectivity versus Community Detection280

We evaluated the performance of the SP algorithm in comparison to a simpler partitioning approach based281

on seed-based functional connectivity. Independently for each day (2 per individual), we estimated each282

subject’s DN partition in mPFC based on its vertex-wise functional correlations (Pearson) with the spatially283

averaged activity across all vertices in the PCC search space. We used the whole PCC region because it is284

traditionally thought to be a prominent node of the DN (Buckner et al., 2008), and is a common area for285

researchers to place seeds for vertex- and volume-based connectivity analyses (e.g. Fox et al., 2005). We286

compared these seed-based maps with the unthresholded Fiedler vectors produced by SP, with the sign of the287

Fiedler vector oriented so the DN community was marked by positive values in every subject. We calculated288

three sets of across-day similarity values for each individual: 1) between the two seed-based maps; 2) between289

the two SP-based maps; and 3) between seed- and SP-based maps. Because the values in the maps were290

continuous-valued (and not categorical labels, which would be amenable to ARI), we quantified the similarity291

between maps in terms of the spatial Spearman correlation across vertices. These spatial correlations were292

meant to determine the test/re-test reliability of each approach, as well as the overall level of agreement293

between them. For 8 subjects, the communities produced with one of the days’ data sets had split coverage294

of area 7m, and our community labeling scheme for the Fiedler vector produced a sign mismatch across295

days. ARI is robust to such labeling issues, but the inconsistency produced strong negative correlations of296

the Fiedler vector across days for these individuals. Visual inspection showed that the community layout297

was well aligned across days, and so we matched the labeling of their partitionings based on the day that298

sufficiently covered area 7m.299
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The two methods were expected to produce somewhat similar results, but the one displaying greater within-300

subject agreement across days should be preferred (for a discussion on the stability of functional networks see301

Kong et al. (2018) and Gratton et al. (2018)). We therefore compared the within-subject spatial correlation302

coefficients produced by each method through a paired permutation analysis. For each of the 100 individuals,303

we computed the difference in inter-day correlations between methods, randomized the sign of these values304

5000 times, and computed the mean of these differences on each iteration. The empirical difference in means305

was then evaluated against this permuted distribution.306

2.9. Associations with sulcal morphology307

Next we asked whether the location of the DN and non-DN communities was systematically related to sulcal308

morphology. Based on a previous report of individual alignment of DN within sulci in ventral mPFC (vmPFC;309

Lopez-Persem et al., 2019), we subdivided our search space into three regions: vmPFC, which matched the310

ROI used by Lopez-Persem and colleagues (2019; areas 25, s32, a24, 10v, 10r, p32, and OFC); superior mPFC311

(sup-mPFC), encompassing the remaining dorsal areas in our mPFC space; and all of the PCC search space.312

We used each subject’s curvature maps from the HCP (transformed to fs_LR 32k space), in which cortical313

depth is quantified by negative numbers for sulci and positive numbers for gyri. For each individual, we314

computed the Spearman correlation between curvature and the unthresholded Fiedler vector values in each315

region and hemisphere separately (6 correlations per individual). Since the DN was indicated by positive316

FV values, negative correlations meant that the DN was more likely to be contained in sulci, with non-DN317

located in gyri. Finally, we collected all individual correlations for each combination of hemisphere and region,318

and performed a one-sample t-test on each set to determine whether correlations were significantly different319

from 0 in our group (6 tests total).320

3. Results321

3.1. Meta-analysis322

We performed a coordinate-based meta-analysis to identify cortical surface parcels within mPFC and PCC323

that were preferentially associated with the DN or with subjective valuation. Volumetric coordinates from324

80 studies with task deactivation contrasts and 198 studies with valuation contrasts were projected onto325

a cortical surface, and mapped to discrete parcels from a multimodal cortical parcellation (Glasser et al.,326

2016) to produce a list of brain areas reported per study. The 40 parcels considered were limited to the327
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medial portion of the default and limbic networks defined by the Yeo et al. (2011) 17-network parcellation.328

Domain-specificity was tested by first permuting the domain labels across studies (DN or valuation) to create329

a null distribution for the maximum chi-squared statistic in the search space (see Methods for details). The330

null distribution was used to identify regions that were reported significantly more often in one literature or331

the other.332

Figure 1 shows the proportion of times each parcel was reported for each domain, as well as the significant333

differences between domains. The 95th percentile of the permuted chi-squared distribution was 8.87. Based334

on this threshold, area 7m in PCC/precuneus was the only parcel to show a preferential association with335

the DN bilaterally (Left: observed χ2 = 10.07, p = 0.029; Right: observed χ2 = 18.89, p < 0.001). The336

adjacent area v23 exhibited a similar effect, albeit only unilaterally (Right: observed χ2 = 11.51, p = 0.011;337

Left: observed χ2 = 8.25, p = 0.067). There appeared to be a bilateral preference toward valuation effects338

in mPFC area 25 (Left: observed χ2 = 12.91, p = 0.005; Right: observed χ2 = 12.83, p = 0.005); however,339

closer inspection suggested this effect was driven by subcortical foci centered in adjacent ventral striatum. No340

other parcels were preferentially implicated in valuation relative to DN. We therefore selected area 7m as an341

interpretable, bilateral reference point for labeling DN and non-DN communities in the analyses that follow.342

We note that the area labeled 7m in the parcellation used here (Glasser et al., 2016) is different from (and343

located inferiorly on the medial surface to) the non-DN area 7m discussed in previous work (Andrews-Hanna344

et al., 2010).345
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Figure 1: Figure 1. Meta-analysis results. A: Proportion of times each ROI was reported in the valuation and

DN literatures. B: Regions identified in permutation-based chi-squared tests contrasting the two literatures.

Area 25 (in red) initially appeared to be associated with valuation, but was not interpreted because the effect

was found to reflect carryover from subcortical foci centered in ventral striatum (see text for details). Areas

in blue represent the remainder of the search space.

3.2. Individual-level DN and non-DN communities346

Within the mPFC/PCC search space, we estimated the topography of the DN for each individual. Using347

each individual’s full time series (approximately 4800 total TRs from four 14-min scanning runs acquired over348

two days), we calculated the full vertex-to-vertex correlation matrix for the 4801 surface vertices in the search349

space. We represented each individual’s correlation matrix in the form of a network, with cortical surface350

vertices as nodes and transformed correlation values as edge weights. We then applied the SP community351

detection algorithm to partition the network into two cohesive functional communities.352
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Figure 2 shows a representative partitioning of the search space for a single participant (100307; additional353

examples are presented in the first two columns of Supplemental Figure 1). The SP algorithm subdivides354

a network according to the positive versus negative values in the Fiedler vector (the eigenvector related to355

the second-to-lowest eigenvalue of the network’s normalized Laplacian matrix, see Methods). Since this is a356

data-driven approach, there is no a priori labeling for the two communities. We assigned the DN label to the357

community that contained the majority of the DN-specific PCC parcel from the meta-analysis (7m). We358

oriented each individual’s Fiedler vector so positive values corresponded to the DN community (Nenning359

et al., 2017), and were assigned a value of 1 in the binarized partitionings (with 0 denoting non-DN). In360

qualitative terms, the resulting patterns contained substantial DN coverage in posterior PCC (as dictated361

by our labeling strategy), with non-DN vertices in anterior PCC. The mPFC region tended to include DN362

vertices in its ventral-anterior and dorsal-anterior areas, with a persistent non-DN pocket between them. This363

non-DN section extended posteriorly into pregenual cingulate cortex (area a24). We note that the addition of364

restrosplenial cortex (an area commonly regarded as part of canonical DN) to the search space did not change365

these results; as expected, that area tended to be largely assigned to the DN community (Supplemental366

Figure 1).367
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Figure 2: Figure 2. Brain partition for an example subject (100307). Fiedler vector values (top) are mapped

onto the brain surface, dividing it into positive and negative communities. The bottom brain shows the

binarized Fiedler vector, with red areas denoting the DN community (as indicated by coverage of area 7m,

bordered).

Before evaluating the degree of generalizibility of this topographic pattern across individuals, we examined368

the validity of the partitionings by comparing them to results from an alternative community detection369

algorithm, modularity maximization (Clauset et al., 2004). Modularity seeks to find the set of communities370

that maximizes within-community connection weights relative to a null model. Since modularity is not371

constrained to a predetermined number of communities, it was capable of finding more than two in our data372

set. We quantified the cross-method agreement in terms of the Adjusted Rand Index (ARI; see Methods),373

which measures the proportion of node pairs in a network that were either clustered together or separately374

in both partitionings, while being agnostic to labeling schemes and controlling for chance clustering. The375

ARI normally takes values ranging from 0 to 1, with 0 indicating chance agreement (but can take negative376

values if the similarity falls below chance). Supplemental Figure 2 contains examples of ARI values in real377

and simulated contexts.378

The two clustering methods had high agreement (mean ARI = 0.87, SD = 0.13). Modularity showed a379

tendency to produce additional communities (median = 3, range = 2, 5). However, the additional communities380
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encompassed a small number of vertices (median = 16.5, IQR = 6 - 41.5) compared to the principal two381

(median = 4783.5, IQR = 4759.5 - 4795), suggesting that a binary partitioning provided a reasonable382

approximation of the network’s true community structure.383

Next, we examined the similarity of SP-based partitionings across individuals by computing the ARI between384

every pair of subjects, and found modestly above-chance agreement overall (mean = 0.13, SD = 0.05).385

Qualitative inspection of the community organization showed good alignment for PCC, whereas the pattern386

in mPFC was consistent but shifted topographically across subjects. To quantify this heterogeneity in mPFC,387

we calculated the between-subject ARI for each region separately (Figure 3). The functional topography388

of PCC was better aligned across individuals (mean = 0.19, SD = 0.09) than mPFC (mean = 0.1, SD =389

0.05; paired permutation, p < 0.001; Cohen’s D = 1.26), although the mean ARI in mPFC still exceeded the390

chance value of zero (Wilcoxon signed rank test, p < 0.001; Cohen’s D = 2.03).391

Figure 3: Figure 3. Similarity matrix showing ARI values among all subjects for PCC (lower triangle) and

mPFC (upper triangle) separately. Functional topographic patterns were better aligned across individuals in

PCC than mPFC.

3.3. Pattern variability over time392

We next sought to estimate whether individual vertices had a stable or unstable community affiliation over393

time. We did so by performing a sliding window analysis on each subject’s full time series (20 min windows394

shifting by 1 min). We compared the partitioning derived from each window with the partitioning computed395

using the entire time series (Figure 4). Our focus here was not on the overall level of agreement (which is396
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expected to be high given the use of overlapping data), but on differences in stability across nodes. The397

sliding window analysis provided a means to identify nodes that were highly variable, and allowed us to398

determine whether these variable nodes followed a specific spatial structure.399
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Figure 4: Figure 4. A: For each individual, we produced partitions for each 20 minute sliding window (84

TRs). B: Proportion of times each vertex was affiliated with the DN community across windows in one

example subject (upper), and the continuous Fiedler vector map for the same subject using their full time

series (lower). C: Relationship between the magnitude of Fiedler vector values and the proportion of DN

affiliations. Grey lines display data for each subject, and the black line shows the fit from a mixed-effects

logistic regression. Dashed red lines indicate the mean FV value at which maps were thresholded. The

histogram displays the mean frequency distribution of y-axis values.
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The mean ARI along each subject’s time series was significantly higher for PCC (mean = 0.59; SD = 0.14)400

than mPFC (mean = 0.5; SD = 0.13; paired permutation, p < 0.001; Cohen’s D = 0.65). A subset of nodes401

showed exceptionally high stability, in that they were assigned to the same community in every time window.402

The percentage of stable nodes ranged from 0 to 73% across individuals (median = 49.5%, IQR = 29% -403

60.25%).404

We next tested whether the continuous-valued Fiedler vector (before binarization into discrete communities)405

carried information about the stability of individual nodes. There is precedent in the literature for the406

idea that the magnitude (and not just the sign) of the Fiedler vector values conveys important information407

about the role of each node in the network (Gkantsidis et al., 2003; Tian & Zalesky, 2018). Therefore, we408

tested whether the magnitude of the eigenvector values was associated with the stability of nodes over time.409

Specifically, we estimated the proportion of DN affiliations per node as a function of Fiedler vector values,410

using a logistic mixed effects model (Figure 4). The model identified a positive significant relationship between411

these features (β = 217.02, SE = 0.67, p < 0.001), signifying that vertices with higher absolute Fiedler vector412

values were more persistent in their relationship with their corresponding community over time.413

These analyses suggest that there is potential value in thresholding the Fiedler vector as a means to identify414

reliable DN and non-DN vertices on an individual subject basis. We therefore thresholded each subject’s415

Fiedler vector to produce these refined maps. For each individual, we estimated the threshold by selecting416

the empirical smallest absolute Fiedler vector value that yielded an average stability across suprathreshold417

nodes of 99%, for positive (mean = 0.0132, SD = 0.006) and negative (mean = -0.0139, SD = 0.0069) values418

separately. Individuals without such stable nodes (n = 19) were not thresholded, and were included in the419

subsequent analyses in unthresholded form. The median proportion of retained vertices per individual was420

0.49 (IQR = 0.29 - 0.65). Sub-threshold vertices were set to zero in Fiedler vector maps and 0.5 in the421

binarized maps (so that they would not bias the calculation of averages). Figure 5A shows the thresholded422

partitioning for the same individual shown in Figure 2. The maps used in all subsequent analyses were423

thresholded by this individualized criterion.424
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Figure 5: Figure 5. A: Thresholded Fiedler vector map for subject 100307 (top), and its binarized form

(bottom). Subthreshold values effectively formed a third community of high-variability vertices. B: Mean

of the binarized maps across all participants, indicating the proportion of DN affiliations per vertex in our

sample. Colors represent PCC-based labels (’DN’ versus ’non-DN’), which were applied in a subsequent step

following the data-driven community-detection analysis and which were necessarily well-aligned in PCC. This

aggregate map shows the common organizational principle of the DN and non-DN communities, while also

showing the high level of variability in mPFC.

With these thresholded partitions, we recomputed the overall similarity across participants. Compared to425

before, there was lower topographic agreement across individuals (mean ARI = 0.07, SD = 0.04). The same426

was true for both PCC (mean = 0.1, SD = 0.07) and mPFC (mean = 0.05, SD = 0.03) separately, although427

the significance of the differences between areas was preserved (paired permutation, p < 0.001; Cohen’s D428

= 1.11). Figure 5B shows the average of the thresholded partitions across all participants, denoting the429

proportion of times a vertex was affiliated with the DN community. This summary illustrates the common430

organizational layout of both communities, but also highlights the considerable variability across individuals.431
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To test the possibility that the higher inter-subject variability in mPFC was driven merely by lower signal432

quality in the retained vertices, we quantified the temporal signal to noise ratio (tSNR) for each region,433

both before and after thresholding. We calculated tSNR using time series that were not demeaned, but434

were otherwise equivalent to the data originally used. A map of the mean tSNR across individuals can be435

found in Supplemental Figure 3. In terms of tSNR variability across vertices within each region, mPFC had436

overall greater spatial standard deviation both before and after thresholding (mPFC: pre-threshold mean437

spatial SD = 33.96, post-threshold mean spatial SD = 30.15; PCC: pre-threshold mean spatial SD = 15.28,438

post-threshold mean spatial SD = 14.59). However, mean tSNR after thresholding was significantly higher for439

mPFC than PCC (mPFC: mean = 77.34, SD = 13.77; PCC: mean = 64.99, SD = 10.19; permutation p-value440

< 0.001, Cohen’s D = 1.02). This reflected a significant increase in mean tSNR in mPFC as a result of the441

thresholding step (pre-threshold mean = 66.5, SD = 7.87; paired permutation p-value < 0.001, Cohen’s D =442

0.97), whereas the mean signal quality in PCC increased only slightly (pre-threshold mean = 64.56, SD =443

10.02; paired permutation p-value = 0.0384, Cohen’s D = 0.04). In short, mPFC had higher overall tSNR,444

albeit with greater variability across nodes. Applying the thresholding step focused the analysis on vertices445

with high signal quality.446

3.4. Test/re-test reliability across days447

The relatively high inter-individual variability seen in the aggregate map could reflect at least three factors:448

(1) measurement noise, (2) dynamic variation in mPFC network organization, and (3) stable patterns of449

functional organization that differ across individuals. To arbitrate among these possibilities, we examined450

the test/re-test reliability of mPFC/PCC community structure across separate days of testing. Insofar451

as the observed variability reflects individual-specific brain organization, across-day ARI values should be452

consistently higher within-individual than between individuals (an example comparison for two individuals is453

provided in Supplemental Figure 2). Figure 6 shows pairwise comparisons among ten example subjects for454

PCC and mPFC separately (left).455
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Figure 6: Figure 6. Left: Similarity matrix for 10 example participants (2 scanning days each), showing

pattern agreement across days and subjects for PCC and mPFC separately. Color scale represents the ARI,

which quantifies topographic similarity irrespective of how the communities are labeled. The block-diagonal

structure is indicative of test-retest reliability across days within an individual. Middle: ratio of within-

subject ARI to between-subject mean ARI for all individuals across days suggests idiosyncratic community

arrangement for both PCC and mPFC (ratios > 1, solid line), with greater subject-specificity in mPFC. Right:

within-to-between subject mean ARI ratios for run-specific partitionings again show greater subject-specific

organization for mPFC.

Once again we found low alignment across individuals for PCC (mean = 0.08, SD = 0.06) and mPFC456

(mean = 0.03, SD = 0.03), but both areas showed comparatively high levels of within-individual agreement457

(PCC: mean = 0.36, SD = 0.14; mPFC: mean = 0.26, SD = 0.1). We calculated an index of relative458

specificity by computing the ratio of each individual’s across-day (within-participant) ARI to the mean of all459

between-participant ARI values involving that individual. The index is expected to take on a value near460

1 if partitionings are well aligned across individuals and/or are subject to a common level of measurement461

noise. It is expected to exceed 1 insofar as functional network organization is reliable and individual-specific.462

This index is intended to factor out the potential contributions of measurement noise or dynamic instability,463

which would introduce variability both across individuals and across days.464

Figure 6 shows ARI ratios for PCC and mPFC. A signed-rank test showed evidence for specificity (i.e. ratios465

> 1) in both mPFC (median = 7.45, IQR = 6.08 - 8.65, V = 5037, p < 0.001) and PCC (median = 4.25,466

IQR = 3.53 - 5.29, V = 5030, p < 0.001). Moreover, the ratios for mPFC were significantly greater than467

those for PCC when compared in a paired permutation test (p < 0.001; Cohen’s D = 0.5). This pattern468

was mostly unchanged when computed using modularity maximization to detect the communities, showing469

that the results persisted even without a forced binarization (mPFC: median = 4.46, IQR = 3.55 - 5.33;470
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PCC: median = 2.85, IQR = 1.94 - 3.38; difference: p < 0.001; Cohen’s D = 0.52). These test/retest results471

suggest that the topographic variability seen in mPFC arose at least in part from stable and subject-specific472

organizational patterns (examples of these partitionings can be found in Supplemental Figure 4). We stress473

that our similarity metric, the ARI, measured the similarity of partitionings in a label-agnostic manner.474

The greater inter-individual consistency in PCC was therefore not merely an artifact of having used a PCC475

subregion as the basis for label assignment.476

3.5. Test/re-test reliability across runs477

We extended the analysis of per-day data by examining whether the organization of the DN could be extracted478

using per-run data only. The duration of each run (approximately 14 min) falls well below a previously479

suggested stability threshold for fMRI-based modularity estimations (Gordon et al., 2017). Nonetheless, high480

ARI ratios could indicate that the SP algorithm can still obtain information about individual-specific patterns481

of DN organization from a single run of data.482

Run-specific SP results captured unique organizational patterns to some degree, even though the overall levels483

of agreement decreased (PCC between subjects: mean = 0.04, SD = 0.05; mPFC between subjects: mean =484

0.01, SD = 0.02; PCC within subjects: mean = 0.17, SD = 0.14; mPFC within subjects: mean = 0.09, SD485

= 0.08). Supplemental Figure 4 shows that even though the community estimates were indeed less reliable486

within-individuals than those captured using per-day data (and sometimes even failed to produce meaningful487

partitionings), the layout of DN and non-DN was still observable in many cases, and was comparable to the488

organization seen using larger amounts of data. We again computed each subject’s ARI ratio in order to489

quantify the specificity of the partitions, this time using the mean of 6 across-run (within-participant) ARI490

values in the numerator of the ratio (Figure 6, right).491

As before, a signed rank test showed that both regions had ARI ratios significantly greater than 1 (mPFC:492

median = 6, IQR = 4.14 - 7.99, V = 4953, p < 0.001; PCC: median = 3.51, IQR = 2.4 - 4.26, V = 4971,493

p < 0.001), and ratios for mPFC were higher than those of PCC (permutation p = < 0.001; Cohen’s D =494

0.94). This result further confirms that the intrinsic functional organization of mPFC is uniquely arranged495

per individual, and provides evidence that information about such patterns can be extracted from relatively496

small amounts of data.497
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3.6. Correlation vs community detection in mPFC498

We next explored the possible advantage of community detection relative to a more conventional seed-based499

functional connectivity analysis for estimating the individual-specific functional topography of mPFC. We500

examined whether maps generated with SP were more similar per participant across days than those computed501

from seed-based correlations. We generated a seed time-series by averaging all vertices in the PCC region of502

our search space, and calculated its correlation with the activity of each vertex in mPFC. The use of the whole503

PCC region (instead of just 7m) was meant to represent a typical approach to seed-based connectivity that504

relies on the group-average location of canonical DN regions. We compared the map of correlation values in505

mPFC to the map of unthresholded Fiedler vector values using Spearman correlations across vertices. Pairwise506

spatial correlations were calculated among maps computed for each day and method from all individuals.507

Figure 7A shows that these pairwise comparisons resembled those from the across-day comparisons above,508

and suggested good alignment between methods, but particularly high agreement within subject and method.509
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Figure 7: Figure 7. A: Correlation matrix comparing the across-day spatial stability of mPFC maps

derived from seed-based functional connectivity (using a PCC seed) and the Fiedler vector for 10 example

subjects. The top-left quadrant represents seed-based FC maps, and the bottom-right the Fiedler vector,

with two single-day-based maps per individual. The upper-right and lower-left quadrants show across-method

agreement. B: Day 1 vs Day 2 within-subject correlation coefficients for each method, as well as between

methods. Community detection through spectral partitioning provided more stable estimates, even though

both methods showed good levels of agreement.

Figure 7B shows the test/re-test reliability across days for patterns derived using community detection, seed-510

based correlation, and across methods (e.g. Day 1 community detection versus Day 2 seed-based correlation).511

26



While both approaches were reliable, community detection displayed a significantly higher median correlation512

coefficient across days than seed-based correlation (Community: median = 0.77, SD = 0.19; Seed-based:513

median = 0.63, SD = 0.12; paired permutation p < 0.001; Cohen’s D = 0.54). Agreement across methods was514

fair (median = 0.48, SD = 0.23), signifying that the two approaches identified similar topographic features but515

also had systematic differences. These findings suggest that graph-theoretic community detection algorithms516

are advantageous for detecting stable functional topologies, in addition to their other advantages of being517

data-driven, unbiased and observer agnostic.518

3.7. Relationship between functional organization and sulcal morphology519

Next, we asked if the idiosyncratic organization of the DN corresponded to patterns of sulcal morphology.520

Several previous studies have provided evidence that sulcal and gyral organization informs the location of521

functional effects (Amiez & Petrides, 2014; Amiez et al., 2013; Zlatkina et al., 2016). Recent work has522

suggested that DN regions in individuals lie mostly within sulci in vmPFC (Lopez-Persem et al., 2019). We523

sought to reproduce this relationship using the SP communities, and interrogated whether it persisted in524

PCC and more superior mPFC regions.525

Figure 8A shows a qualitative comparison between the thresholded DN and non-DN communities and526

curvature maps for two individuals. In agreement with findings from Lopez-Persem and colleagues (2019), the527

DN community appeared to overlap with the superior rostral sulcus in vmPFC in these individuals, whereas528

the non-DN community included both gyri and sulci. A similar trend was observable in left PCC, where the529

DN community traced sulcal layouts and non-DN was more likely to appear in gyri.530
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Figure 8: Figure 8. A: Correspondence between SP communities and sulcal morphology in two example

individuals. Zoomed-in boxes show areas in PCC and ventral mPFC where the DN community appears

to follow sulci. The superior rostral sulcus aligned with the DN community, in agreement with findings by

Lopez-Persem et al. (2019). B: Correlations between cortical curvature and the unthresholded Fiedler values.

We divided the search space into three areas (left): vmPFC (yellow), superior mPFC (sup-mPFC, red), and

PCC (blue). Boxplots on the right show the distribution of correlation values across individuals for each

combination of region and hemisphere, indicating that the DN (defined by positive FV values) was associated

with sulci in vmPFC, but with gyri within sup-dmPFC. PCC showed evidence of an opposite association

across hemispheres.
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We quantified these observations by dividing the search space into three regions: a ventral mPFC area531

corresponding to the region tested by Lopez-Persem et al. (2019), a superior mPFC area (sup-mPFC) that532

contained the remaining mPFC regions, and PCC (Figure 8B, left). For each individual, we correlated the533

unthresholded Fiedler vector with cortical curvature for each combination of region and hemisphere. Negative534

correlations in this context imply that the DN was found in sulci and non-DN in gyri. Results are shown in535

Figure 8B. Correlations tended to be slightly negative in vmPFC, both on the left (mean correlation = -0.02,536

SE = 0.01) and right (mean correlation = -0.02, SE = 0.01); the distribution was only significantly different537

from zero in the right hemisphere, and weakly so (one sample t-test: t = -2.18, p = 0.031, uncorrected;538

Cohen’s D = -0.22). Correlations between FV and curvature were positive and significantly different from539

zero in sup-mPFC, both on the left (mean correlation = 0.09, SE = 0.01; one sample t-test: t = 6.95, p <540

0.001; Cohen’s D = 0.69) and right (mean correlation = 0.04, SE = 0.01; one sample t-test: t = 4.49, p <541

0.001; Cohen’s D = 0.45). Correlations in PCC were negative and significantly different from zero in the542

left hemisphere (mean correlation = -0.08, SE = 0.01; one sample t-test: t = -6.89, p < 0.001; Cohen’s D =543

-0.69), but significantly greater than zero in the right hemisphere (mean correlation = 0.03, SE = 0.01; one544

sample t-test: t = 2.19, p = 0.031; Cohen’s D = 0.22). The difference across hemispheres was significant545

(paired t-test: t = -7.07, p < 0.001; Cohen’s D = -0.88). These results provide preliminary indications that546

the association between function and structure is heterogenous across subregions of the canonical DN.547

3.8. Alignment of mPFC community structure with a proposed DN sub-network organization548

The thresholded partitions we identified had conceptual and topographic similarities to DN sub-networks549

A and B proposed by Braga and Buckner (2017). We explored the relationship between the two sets550

of sub-regions by reproducing the previously described seed-based connectivity approach in two of our551

subjects. In previous work, Braga and Buckner (2017; Braga et al., 2019) manually selected individual552

vertices in dorsolateral prefrontal cortex (DLPFC) that produced two spatially anticorrelated, interdigitated553

networks with distinctive patterns in the temporo-parietal junction (TPJ), inferior parietal lobule (IPL),554

parahippocampal cortex, mPFC, and PCC. We hypothesized that if the SP communities corresponded to one555

or both of the previously proposed sub-networks, our partitionings should match networks A and B generated556

by seed-based functional connectivity in these diagnostic areas. For whole-brain functional connectomes from557

two individuals (100307 and 101006), we evaluated seeds in each diagnostic region that reproduced networks558

A and B (correlation coefficients thresholded at 0.2), and confirmed their placement based on functional559

connectivity patterns observed in the remaining areas. In both individuals, seeds in posterior IPL and TPJ560

most clearly identified networks A and B, respectively. The whole-brain seed-based functional connectivity561
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maps for the two individuals are juxtaposed with the corresponding community detection results in Figure 9.562

It is worth noting that a few distinguishing features are missing due to below-threshold correlation values563

(e.g. network B in right PCC of 100307).564

Visual inspection of these networks showed high similarity between our DN community and the previously565

reported sub-network A. However, the non-DN community filled areas not covered by either DN-A or DN-B.566

Since this three-network configuration is at odds with the two-network solution suggested in our previous567

analyses (i.e. comparison with modularity), we ran additional evaluations to confirm its existence. First, we568

reproduced the whole-brain k-means clustering analysis (12 clusters, 100 iterations) performed by Braga et569

al. (2019) using the full time series for two subjects (Supplemental Figure 5A). In addition to identifying570

DN networks A and B through this approach (in line with previous findings), we found a third cluster that571

aligned well with the non-DN community. To understand why modularity maximization did not identify572

the same three discrete clusters within the search space, we performed a silhouette analysis to determine573

the ideal number of clusters in our search space (Supplemental Figure 5B). For all 100 individuals, we ran574

k-means clusterings restricted to the mPFC/PCC search space with a specified number of clusters ranging575

from 2 to 5, and computed a silhouette score for each solution (higher silhouette scores indicate a better fit).576

Scores decreased as the number of clusters increased beyond 2 for all individuals, suggesting that a bisection577

was indeed the best solution. Paired permutations comparing silhouette scores across individuals indicated578

that the difference between two (mean = 0.042, SE = 0.001) and three (mean = 0.032, SE = 0.0009) cluster579

solutions was significant (p < 0.0001, Cohen’s D = 0.96). Visualization of a two-cluster k-means revealed a580

close match with partitionings estimated through modularity, and are comparable to those produced by SP581

prior to thresholding (Supplemental Figure 5A, bottom rows). These analyses suggest that SP isolated DN-A582

and the non-DN community as the dominant opposite signals within our search space, but that DN-B is583

observable once we take advantage of the continuous information contained in the Fiedler vector.584

These results support the idea that the two approaches serve complementary purposes. Whereas Braga and585

colleagues (2017; 2019) identified subdivisions within the DN, the present community detection approach586

might be better understood as partitioning DN from non-DN cortex. Furthermore, the results show that587

the continuous-valued output of our approach provides a method for estimating the location of the three588

networks in PCC and mPFC that is less computationally demanding than full-brain clustering.589
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Figure 9: Figure 9. Qualitative comparison between DN sub-networks A and B (estimated based on

descriptions from Braga et al. (2019)) and SP communities for two individuals. Panel A: Whole-brain

networks A and B produced by selecting seeds in TPJ, with our community detection search space delineated

by black borders. Correlation values are thresholded at 0.2. Panel B: thresholded communities (indicated

by borders) show strong resemblance between the DN community and network A. The non-DN community

covers sections of cortex not associated with either DN sub-network.

4. Discussion590

A considerable amount of meta-analytic work has been dedicated to characterizing the brain activity patterns591

associated with psychological processes in medial prefrontal cortex (mPFC), revealing both dissociable and592
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overlapping activation across domains (De La Vega et al., 2016; Hiser & Koenigs, 2018; Kragel et al., 2018).593

For example, topographic patterns associated with subjective valuation and with the default network (DN)594

have been suggested to be indistinguishable in mPFC, with overlap also partially extending to posterior595

cingulate cortex (PCC) (Acikalin et al., 2017; Bartra et al., 2013; Clithero & Rangel, 2014; Laird et al., 2009).596

This apparent overlap of task-related effects with DN regions has important implications, as it has motivated597

theoretical proposals about ways in which these superficially dissimilar domains might involve a shared set of598

core cognitive processes (Acikalin et al., 2017; Clithero & Rangel, 2014; Northoff & Hayes, 2011).599

However, the interpretation of overlap in group-level data depends on the degree to which functional600

organization is heterogeneous across individuals. Recent studies have shown that heteromodal brain regions601

have considerable variability in functional connectivity across individuals (Mueller et al., 2013), individual-602

specific functional topography can be occluded in aggregative estimations (Braga & Buckner, 2017; Gordon603

et al., 2017; Michalka et al., 2015; Tobyne et al., 2018), and overlap in functional activation can vanish with604

increases in spatial precision (Woo et al., 2014). These findings suggest that group-level and meta-analysis-605

level overlap does not necessarily imply overlap in individual brains. To date, our understanding of the606

individual-level heterogeneity in the functional topography of mPFC has been mostly descriptive (Braga &607

Buckner, 2017; Braga et al., 2019; Gordon et al., 2017). A strong test of the overlap between task-related608

effects and DN regions would require a method to reliably and precisely capture the functional topography of609

mPFC in isolated individuals, as well as a quantitative estimate of the degree of topographic heterogeneity610

across a large group of individuals.611

Here we address these challenges by using spectral partitioning (SP), a graph-theoretic community detection612

algorithm that efficiently separates a network into two (Fiedler, 1975; Higham et al., 2007; Toker & Sommer,613

2019). For each of 100 individuals, we subdivided canonical DN regions into DN and non-DN communities.614

Restricting our analyses to a general mPFC/PCC search space made it appropriate to use a technique that615

identified a vertex-wise, binary partitioning that was sensitive to the complex topography of the brain. This616

contrasts with whole-brain network analyses, which need to allow for multiple sub-networks and which often617

use parcels that are several orders of magnitude larger than vertices as the units of analysis. Partitioning618

an individual’s brain network through SP has a number of advantages, including identifying communities619

deterministically, constraining communities to contain a similar number of vertices (i.e. preventing the620

allocation of most vertices to a single community), providing continuous values that relate to the strength of a621

node’s community affiliation, and the ability to diagnose the connectedness of a network through examination622

of its resulting eigenvalues (Chung, 1997; Higham et al., 2007). Comparisons with partitionings formed by623

modularity maximization, which heuristically determines the ideal number of communities (Garcia et al.,624
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2018), as well as a silhouette analysis, suggested the binary partitioning was appropriate.625

We found a generalizable pattern across individual partitionings, in which the DN community covered ventral626

and anterior/superior mPFC and posterior PCC, with the non-DN community concentrated in pregenual627

ACC and anterior PCC. The precise spatial positioning of this general community structure was highly628

heterogenous across individuals, yet stable across test/re-test evaluations within-individual. The idiosyncrasy629

in functional topography was particularly pronounced in mPFC, and was identified in both run-based and630

day-based analyses. Individual-specificity could theoretically arise from a variety of sources. For example,631

individual variability could be due to shifts in functional organization that are independent of structural632

features (Conroy et al., 2013; Nenning et al., 2017), or could relate to the pattern of functional connections633

with the rest of the brain (Mars et al., 2018; Passingham et al., 2002; Tobyne et al., 2018). Alternatively, the634

functional topography of mPFC could be governed by its underlying sulcal and gyral organization, which635

has been shown to vary systematically across individuals (Mackey & Petrides, 2014). Our results offer some636

support for this idea, echoing previous findings that DN is contained within sulci (in particular the superior637

rostral sulcus) in vmPFC (Lopez-Persem et al., 2019). Structure/function associations were heterogeneous638

in other regions; DN tended to be located in gyri in more superior mPFC regions, whereas the association639

differed across hemispheres in PCC. Future studies should further characterize this heterogeneous relationship.640

Another important goal for future work will be to assess whether the network layout in these regions can also641

be predicted on the basis of other aspects of brain structure, such as myeloarchitecture (Glasser et al., 2016)642

or structural connectivity (Osher et al., 2016; Saygin et al., 2011, 2016).643

Network-partitioning methods such as SP are data-driven, and therefore provide no labeling information644

about the resulting communities. We circumvented this issue by independently identifying the DN community645

based on its coverage of area 7m, a region in PCC that was preferentially associated with the DN relative646

to subjective valuation in our meta-analysis. We were able to apply labels derived from this group-level647

approach on the basis of the topography in PCC, where functional organization was more consistent across648

individuals. Because each community spanned both mPFC and PCC, the labels extended to mPFC where649

topography was more heterogeneous.650

Our results extend previous work that described individual-specific brain organization. Several recent651

investigations have identified topographic heterogeneity using a different data aspect ratio than we used here652

(a small number of individuals and a large number of scanning sessions per individual; Braga & Buckner,653

2017; Braga et al., 2019; Gordon et al., 2017). Previous work has also shown that functional correlations654

among pre-defined cortical parcels are highly stable within an individual (Gratton et al., 2018; Kong et al.,655

2018). Here we were able to quantify the variability and stability of functional topography in a large sample656
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at a fine, vertex-level spatial granularity, using moderately low amounts of data (down to a single 14 minute657

scan, although estimates based on more data were more reliable). The motivation to subdivide DN also stems658

from recent work by Kernbach et al. (2018), which identified specialized communication of parcels within DN659

with the rest of the brain in a large pool of individuals.660

In addition to the technical advantages noted above, the SP algorithm offers analytical advantages specific to661

neuroscience. We found that SP outperformed a traditional seed-based correlation approach in capturing662

idiosyncratic functional topography. Community detection methods such as SP are stabilized by relying663

on all pairwise correlations among cortical vertices (rather than correlations with an individual seed). In664

addition, we found we could threshold the underlying Fiedler vector on the basis of the temporal stability of665

SP results. The magnitude of Fiedler vector values has been recently used to characterize the continuous666

connectivity profile of the insula with the rest of the brain, challenging the notion of discrete parcellations667

in that region (Tian & Zalesky, 2018). The combination of discrete classification and graded information668

yielded by SP provides additional flexibility and richness relative to some other clustering algorithms.669

The community organization of PCC and mPFC was congruent with DN sub-networks A and B proposed670

by Braga & Buckner (2017; Braga et al., 2019). The topography of our thresholded DN community closely671

matched network A, whereas our non-DN community included cortical territory that was not part of either DN672

network. Subthreshold vertices from the SP communities in turn overlapped with DN-B vertices. Our findings673

therefore complement the initial identification of DN sub-networks by quantifying the systematic variability674

of their underlying topography in a larger group of people. Understanding the interaction of networks DN-A,675

DN-B, and non-DN is an important goal for future research. SP is related to methods that have gained676

traction recently for distinguishing functional cortical gradients (Huntenburg et al., 2018; Margulies et al.,677

2016; Tian & Zalesky, 2018). A valuable goal for future work would be to assess whether DN-A and DN-B678

form part of a gradual information processing sequence, or if their functions can be discretized. Regardless,679

this set of results collectively suggests that canonical DN regions can be topographically partitioned into DN680

and non-DN communities, and that the DN community can in turn be further divided into sub-networks A681

and B.682

4.1. Conclusion683

Our findings show that the functional topography of mPFC is variable across a large pool of individuals,684

and that the SP algorithm is a useful tool for identifying individualized topography in a data-driven way.685

The ability to capture an individual’s functional topography without the need for group priors is clinically686
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relevant, as it could help target the assessment of mPFC activity changes in disorders such as depression687

and schizophrenia (Hiser & Koenigs, 2018). It will be beneficial for future task-based fMRI experiments688

to be able to characterize where task-evoked activity is situated relative to an individual’s overall mPFC689

organization. Our work is relevant to interpreting the overlap of DN regions with task-related brain activity690

in numerous cognitive domains, including valuation (Acikalin et al., 2017; Shenhav & Karmarkar, 2019),691

memory (Euston et al., 2012), and self-referential thought (Mitchell et al., 2005). An individualized frame of692

reference will enhance the ability of future studies to gauge similarities and differences among brain activity693

patterns associated with diverse psychological domains.694
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Supplemental Materials703

Table 1. Parcels from Glasser et al. (2016) contained in the search space.704

Hemisphere mPFC PCC

Left 10d, 10r, 10v, 25, 9m, a24, d32, OFC,

p24, p32, s32

23d, 31a, 31pd, 31pv, 7m, d23ab,

PCV, RSC, v23ab

————— —————————- —————————

Right 10d, 10r, 10v, 25, 9a, 9m, a24, d32,

OFC, p24, p32, s32

23d, 31a, 31pd, 31pv, 7m, d23ab,

RSC, v23ab
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Figure S1: Supplemental Figure 1. Additional examples of individualized partitionings. The first two columns

show both Fiedler vector values and binarized communities, respectively. A common organizational principle

is visible, even though it shifts topographically across individuals. The organization is also evident when

using Modularity (third column), even though some isolated vertices were sometimes placed in a small third

community (see subject 100408). The fourth column shows Fiedler vector maps after adding retrosplenial

cortex (a common component of canonical DN affected by task-deactivation). The addition of this area to

the search space does not alter the original results, and the retrosplenial region tends to be included in the

DN community.
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\begin{figure}[H]705

{706

}707

\caption{Supplemental Figure 2. A: Example of an across-day comparison using ARI for two subjects (100307708

and 100408). This reflects how qualitatively similar, within-subject partitionings can have relatively small709

ARI values (here 0.24-0.25), and how partitionings across individuals are much closer to the chance level of710

zero. B: Simulated comparison between two binary partitionings. The allegiance of each node is progressively711

switched, and the agreement between the new vector and the original one is computed on each change. The712

x-axis shows the number of nodes switched. Comparing the increasingly dissimilar maps by computing the713

proportion of equal cluster labelings (EQ) shows the expected linear decrease in similarity. The unadjusted714

form of the ARI (RI) displays a nonlinearly decaying similarity, and increases after reaching 50% as a result715

of node pairs once again being grouped in the same/different clusters (making the index label-agnostic). The716

ARI decays more steeply as a function of increasing dissimilarity, reaching 0 at chance levels. Low ARI717

values can therefore still occur when there is systematic agreement between partitionings.} \end{figure}718
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Figure S2: Supplemental Figure 3. BOLD signal quality in the mPFC and PCC search space. Left: Surface

map displaying the vertex-wise mean tSNR across individuals. Right: Mean tSNR for mPFC and PCC across

individuals.
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Figure S3: Supplemental Figure 4. Visual examples of idiosyncratic organization across days and runs. Left:

Thresholded partitionings captured with SP were highly similar across days within individuals, but were

topographically distinct across individuals. The organization estimated for each day was generally similar to

that captured using the full time series (Supplemental Figure 1). Right: Thresholded partitionings estimated

using the first scanning run from day 1, and the last scanning run from day 2. As expected, the considerable

reduction in the amount of data used decreased the reliability of the community localization across single

scanning runs, which were in some cases irrecoverable (e.g. subjects 100408 and 687163). Even so, the general

location of DN and non-DN was still observable in many cases, and is comparable to the organization seen

using larger amounts of data. This shows that even with notably noisier estimates and lower within-individual

ARI values from working with less data, it was possible to gain information about the general location of DN

and non-DN in individuals.
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Figure S4: Supplemental Figure 5. Additional checks to confirm the match between our findings and Braga et

al. (2019). A: DN sub-networks A and B identified through whole-brain k-means clustering were congruent

with the existence of a third sub-network, which matched the non-DN SP community (top rows). Limiting

k-means to two clusters within the search space aligned with results from modularity (bottom two rows).

B: K-means based silhouette scores were computed per individual to determine the appropriate number of

clusters within the search space (the higher the score, the better). This showed that two networks produced

the preferred solution.
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