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ABSTRACT: Assessment of permeability is a critical step in the drug development process for selection of drug candidates
with favorable ADME properties. We have developed a novel physics-based method for fast computational modeling of passive
permeation of diverse classes of molecules across lipid membranes. The method is based on heterogeneous solubility−diffusion
theory and operates with all-atom 3D structures of solutes and the anisotropic solvent model of the lipid bilayer characterized by
transbilayer profiles of dielectric and hydrogen bonding capacity parameters. The optimal translocation pathway of a solute is
determined by moving an ensemble of representative conformations of the molecule through the dioleoyl-phosphatidylcholine
(DOPC) bilayer and optimizing their rotational orientations in every point of the transmembrane trajectory. The method
calculates (1) the membrane-bound state of the solute molecule; (2) free energy profile of the solute along the permeation
pathway; and (3) the permeability coefficient obtained by integration over the transbilayer energy profile and assuming a
constant size-dependent diffusivity along the membrane normal. The accuracy of the predictions was evaluated against
experimental permeability coefficients measured in pure lipid membranes (for 78 compounds, R2 was 0.88 and rmse was 1.15
log units), PAMPA-DS (for 280 compounds, R2 was 0.75 and rmse was 1.59 log units), BBB (for 182 compounds, R2 was 0.69
and rmse was 0.87 log units), and Caco-2/MDCK assays (for 165 compounds, R2 was 0.52 and rmse was 0.89 log units).

■ INTRODUCTION

A variety of organic molecules, including metabolites, drugs,
and xenobiotics, interact with cellular membranes and
modulate their properties. Many of them translocate across
the lipid bilayer using diverse mechanisms of active and passive
membrane transport.1 The quantification and analysis of direct
physical interactions of organic molecules with the lipid bilayer
is required to understand, model, and predict many of these
processes.
There is strong experimental evidence that small lipophilic

molecules, including many marketed drugs, are able to traverse
artificial lipid bilayers by passive diffusion driven by the
concentration gradient between the solutions on the opposite
sides of the bilayer.1 Spontaneous membrane permeation is
often described in terms of a solubility−diffusion model or the
so-called “Overton’s rule” stating that the permeability
coefficient is proportional to the solute partition in water−oil
systems.2 Indeed, fair correlations were obtained between

measured permeability coefficients of organic molecules and
their partition coefficients in water/organic solvent systems
(e.g., octanol, hexadecane, etc.).3,4 To rationalize permeation
of solutes through the lipid bilayer, solubility−diffusion models
were applied, where permeability coefficients were assessed
using solute diffusion coefficients in the membrane, their
partitioning between water and the nonpolar solvent, and the
width of the barrier domain.4−6

In natural membranes, mechanisms of selective permeability
are more complex: in addition to passive transbilayer diffusion
and diffusion through aqueous boundary layer, there are
compound-specific transporter- and carrier-mediated influx
and efflux, adsorptive transcytosis of cationic compounds,
receptor-mediated endocytosis, micropinocytosis, and other
mechanisms.2,7−9 The relevance of the passive diffusion and
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transport-mediated influx and efflux of drug-related com-
pounds has been extensively discussed,1,8,10−13 and it was
concluded that both mechanisms coexist and contribute to
translocation across biological membranes.1,10 However,
rigorous evaluation of the contribution of passive diffusion in
vivo is a challenging task, as the measurable permeation of
drugs across biological membranes depends on many factors,
such as physicochemical properties of drugs (molecular weight,
polarity, lipophilicity, hydrogen bonding capacity, charge, etc.)
and specific properties of biological membranes, including the
presence of particular transporters.
The prediction of membrane permeability is also required

for the development and optimization of new drugs. The
primary goal of drug development is to enhance drug
efficiency, bioavailability, and delivery to the intended target
while reducing its toxicity and side effects. During the design of
promising drug candidates, optimization of their pharmaco-
logical efficiency is usually performed in parallel with selection
of leads with favorable pharmacokinetics, i.e. absorption,
distribution, metabolism, and excretion (ADME). Properties
that influence drug delivery and distribution, include water
solubility, metabolic stability, absorption, and the permeability
coefficient. The latter determines the rate at which drugs cross
permeability barriers, such as epithelial cell membranes from
the intestinal mucosal barrier or endothelial cell membranes of
the blood−brain barrier (BBB). Several in vitro experimental
systems have been developed to predict drug permeation
across the BBB or the intestinal barrier: black lipid membranes
(BLM), liposomes, parallel artificial membrane permeability
assay (PAMPA), cell-based Caco-2 (colon adenocarcinoma
cell line), or MDCK (Madin−Darby canine kidney cell line)
assays, as well as in situ rodent brain perfusion experi-
ments.14−17

As an alternative, diverse computational methods have been
proposed. These methods have an advantage over experimental
approaches for conducting high-throughput permeability
analysis. At the early stages of drug discovery, the filtering of
candidates that more likely exhibit poor permeation is
routinely based on the violation of two or more physicochem-
ical criteria of drug-likeness, known as Lipinski’s “rule-of-five”
(MW < 500, calculated octanol−water partition coefficient < 5,
number of H-bond donors ≤ 5; number of H-bond acceptors
≤ 10).18 However, this rule is not quantitative; it focuses
mainly on the oral drug space and does not apply to natural
products (NP) or substrates of transporters. Besides, up to 6%
of FDA-approved oral drugs that are not NPs violate two or
more of these criteria.19 To refine this rule, quantitative
estimates of drug-likeness were proposed.19

Quantitative structure−activity relationship (QSAR) and
structure−permeability relationship (QSPR) models are
regarded as primary quantitative tools for ADME optimiza-
tion.20−23 Statistically based QSPR models of drug absorption
use correlations between the experimental cell permeability
and physicochemical descriptors related to experimentally
derived molecular properties. Improved multidimensional
QSAR models have been developed that use addition levels
of chemical structure representation, including molecular
topology (2D-QSAR), information from 3D-structures (3D-
QSAR), combination of 3D-coordinates and sampling of
conformations (4D-QSAR), or mutual orientation and
dynamics (4D-6D QSAR).20−24 Some models, such as the
MI-QSAR models developed by Hopfinger, complement
properties of solutes by descriptors for membrane interactions

calculated by MD simulations.25 More general QSPR
models26−28 predict partition and permeability coefficients of
solutes using a set of five Abraham solvation parameters.
The QSPR models are usually trained on limited sets of

compounds and show good performance for classes of similar
molecules but have poor transferability to compounds with
different molecular skeletons.21 The statistical relationships
derived from limited training sets of chemicals do not
encompass numerous newly approved drugs, including orally
available NP-inspired compounds which lay outside the
traditional drug property space but can passively penetrate
through membranes.18,29,30 Importantly, the QSPR models for
drug transport do not allow deriving a physically accurate
picture of the permeation process through the lipid bilayers.
Optimization of permeability coefficients of structurally

diverse and complex leads, including large permeants violating
Lipinski’s rules, requires a theoretical model that adequately
describes different aspects of drug−membrane interactions,
such as the anisotropic lipid environment, membrane binding
and dissociation, rotational and translational diffusion, and
conformational changes.31 For relatively large and structurally
flexible molecules, it is important to address the existence of
multiple conformations32,33 and their spatial positioning in
membranes that may influence calculated partitioning and
permeability coefficients.5

Several general physics-based computational methods have
been applied to overcome these problems. All-atom molecular
dynamics (MD) simulations,31,34−41 multiscale (CG/MD)
simulations,42,43 Monte Carlo simulations,44 and simulations
with milestoning algorithms45,46 were used to obtain detailed
information on the dynamics of small molecules in
phospholipid bilayers. MD simulations in explicit lipid bilayers
were used to calculate free-energy profiles of small molecules in
membranes and their permeability coefficients,35−43 evaluate
their optimal orientations in the bilayer,47 and predict BBB-
permeable drugs.48,49 However, high computational cost
hampers application of MD simulations with explicit solvent
models for high-throughput drug screening.
Simulations of molecules in the membrane treated as a low-

dielectric continuum50−53 are less computationally extensive.
Such an approach was applied in the SMx-based54,55 and
COSMO-based methods.56−61 The anisotropic complexity of
the lipid bilayer was approximated by a low-dielectric slab with
either isotropic or anisotropic properties along the normal.62,63

Implicit solvent models have been successfully applied for
prediction of transfer free energies and partition coefficients of
neutral and ionic solutes from water to organic solvents,
micelles, and lipid bilayers.57,60,62−65 More recently, physical
models of passive membrane permeation based on solubility−
diffusion and barrier domain approaches were developed by
Leung et al.,32,33 Swift and Amaro,66,67 and Brocke et al.68

These models assume that the passive membrane permeability
primarily depends on the free energy change of barrier
crossing, ΔG. The value of ΔG can be calculated as the
solvation energy difference between global minimum con-
formations evaluated in water and in implicit nonpolar organic
solvent32,33 or by integration of transbilayer profiles of the free
energy of membrane insertion using heterogeneous dielectric
generalized Born (HDGB) or dynamic HDGB (DHGDB)
implicit membrane models.68 An extended solubility-diffusion
model was proposed by Ferrarini et al.69 to describe
translocation across membrane using complex free energy
landscapes, multiple permeation paths, and the mechanical
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properties of membranes, such as lateral pressure and acyl
chain ordering. Despite rigorous treatment of conformational
distributions of permeants32 or advanced models for lipid
membranes,68 the performance of these methods against
PAMPA permeability coefficients for sufficiently large data
sets (≥70 compounds) was unremarkable, with correlation
coefficients (R2) below 0.60 and highly variable slopes (ranging
from 0.5 to 5) and intercepts (from −9 to 15) of correlation
plots for different data sets.32,68

Here we present a novel physics-based computational
method, PerMM, that calculates the passive transmembrane
translocation pathways and permeability coefficients of
structurally diverse molecules (first reported as a conference
abstract70). It is based on the solubility−diffusion model5 and
our computational method PPM (positioning of proteins in
membranes) that was developed for analysis of interactions of
arbitrary organic molecules with the lipid bilayer.63,71 The
PPM method was parametrized to reproduce free energies of
transfer for a large set of small molecules from water to various
isotropic organic solvents or anisotropic solvent environments,
such as the lipid bilayer. Unlike most other implicit solvent
models, it accounts not only for the hydrophobic interactions
and electrostatic solvation energy, but also for the solute−
solvent hydrogen bonding. The corresponding dielectric and
hydrogen bonding polarity profiles were derived from the
distributions of different lipid groups that were experimentally
determined for DOPC and other bilayers by X-ray and neutron
scattering. PPM has been successfully applied to predict
membrane binding affinities and spatial positions in mem-
branes of small molecules, peptides, and proteins.63,71,72 The
PerMM method calculates (1) the spatial arrangement of
solutes in membranes, including the selective accumulation of
amphiphilic molecules on the membrane/water interface; (2)
the solvation free energy changes of compounds as they move
along the translocation pathway in the fluid DOPC bilayer;
and (3) the permeability coefficient across the artificial (BLM,
PAMPA) and natural (Caco-2/MDCK and BBB) lipid
membranes. The method was not trained using any data sets
but relies on a general approach to calculating the energy of
atomic solvation and electrostatic interactions of solutes
translocated across the implicit membrane with anisotropic
properties. It successfully reproduced the experimental
permeability coefficients of large sets of compounds across
different membrane systems with R2 ranging from 0.52 (Caco-
2/MDCK cells) to 0.88 (BLM) and root-mean-square errors
(rmses) ranging from 0.69 (BBB) to 1.59 (PAMPA-DS) log
units. The method has been implemented into an open-access
PerMM web server (https://permm.phar.umich.edu/server).

■ METHODS

Calculation of Membrane Permeability Coefficients.
The overall membrane resistance (R), which is inverse to the
permeability coefficient (Pm), was calculated based on the
inhomogeneous solubility-diffusion model5 as the integral of
the local resistance across the membrane:

∫= =
−

R
P

z
K z D z

1 d
( ) ( )m d

d

/2

/2

(1)

where K(z) and D(z) are partition and diffusion coefficients,
respectively, which depend on the z position of the solute
along the bilayer normal and d is the membrane thickness.

The K(z) value was calculated from the Gibbs free energy of
a solute in membrane:

= −ΔK z e( ) z RTG ( )/transf (2)

where ΔGtransf(z) is the transfer free energy of the molecule
from water to the position z along the bilayer normal (the
energy was averaged for a set of conformers). The profile
ΔGtransf(z) reflects the solute affinity to the different membrane
regions and determines the lowest free energy translocation
pathway.
Diffusion coefficients of molecules in membranes cannot be

measured experimentally but can be approximated by their
diffusion coefficients in water or organic solvents73 or assessed
from MD simulations.35−43,74 According to MD simulations,
the diffusion coefficient profiles, D(z), are relatively flat along
the bilayer normal, with values that are several times lower
than in water or at the water−lipid interface.35,36,42 A notable
exception includes small molecules (e.g., water, ammonia,
oxygen) that demonstrate an increased diffusivity at the center
of the membrane.74 Hence, we assumed that the diffusion
coefficient Di for an organic molecule i can be considered
invariable along the lipid bilayer but dependent on the
permeant size. The dependence of diffusion coefficient Di on
the volume of a permeant molecule, Vi, is frequently described
as in the publication by Xiang and Anderson:6

η=D
D
V
( )

i
i
n

0

(3)

where D0 is a constant for a particular membrane type
characterized by its microviscosity η. The parameter n was
suggested to be ∼2/3 because the diffusion coefficient depends
mainly on the cross-sectional area of the permeant.75 However,
fitting to experimental permeability data for bilayers suggested
a slightly higher value of n ∼ 0.8.6

To simplify the calculations, we used the total accessible
surface area of the molecule (ASA), instead of molecular
volume, as another parameter related to the cross-section area:

η=D k
D ( )
ASAi

i
n

0

(4)

Based on eqs 1−4, the log of calculated membrane
permeability coefficient for compound i, can be written as

= + ΣP a b Plog logm i i, (5)

where a = log kD0(η) and

∫= −Σ −
P

z
K z

log log ASA
d
( )i i

n

d

d

i/2

/2

(6)

Parameters “a” and “b” can be empirically determined by a
linear fit of experimental permeability coefficients for N
compounds and the corresponding calculated log PΣi values.
We also tested a simplified version of the model, without

molecular size correction, where D(z) was considered constant
and independent of molecular size. We found that including
the cross-section area-dependent contribution ASAn leads to
only a minor improvement of the fit, and the results are not
sensitive to the value of n in (4). Hence, we used n = 1.
The calculation of the free energy profiles, ΔGtransf(z), was

performed in the interval from −30 to +30 Å distance from the
lipid bilayer center. The permeability barriers (positive values
of ΔGtransf relative to the aqueous solution) were observed only
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in the hydrophobic lipid core but not in the headgroup regions
for all compounds, hydrophilic and hydrophobic. Therefore,
the integral in eq 6 was calculated through the hydrocarbon
core of the lipid bilayer, i.e. in the interval from −15 to +15 Å
distance relative to the bilayer center with a step of 1 Å. This
part of the lipid bilayer includes the acyl chains and lipid
carbonyls with some residual water (Figure S1). Extending the
integration interval did not lead to significant changes in the
calculated permeability coefficients or to a better agreement
with experimental data. We did not include the unstirred water
layers outside membrane boundaries, also known as aqueous
boundary layer (ABL). While calculating the permeability
coefficients of highly hydrophobic compounds, we focused on
their intrinsic permeability coefficients, omitting ABL-effects.
Free Energy of Transfer from Water to the Lipid

Bilayer. The energy of transfer of a molecule from water to
different positions (z) in membrane, ΔGtransf(z), was calculated
by the PPM 2.0 method, as previously described.63

Calculations were based on our version of the universal
solvation model65 and the anisotropic solvent model of the
lipid bilayer,63 which account for contributions of ionizable
groups and the dependence of atomic solvation parameters σ
and η on the atom position along the bilayer normal (z). The
energy was represented as a sum of a short-range ASA-
dependent term (hydrogen bonding, van der Waals, and
hydrophobic interactions), long-range electrostatic contribu-
tions of dipole moments (μ), and energy of deionization of
ionizable groups in the nonpolar environment:

φ τ σ

η μ

Δ = Σ + Σ

+ Σ

{Δ Δ }

=
→

=

→
=

G d z

z

E E

( , , ) ( )ASA

( )

min ,

i

N

i i i
j

M

j j j k

k k

transf
1

wat bil

1

wat bil

1

L

ion neutr
(7)

where σi(zi) is an atomic solvation parameter describing
transfer energy (per squared angstrom) of atom i from water to
the point zi along the bilayer normal, ASAi is a solvent-
accessible surface area of atom i, η(zj) is an energy penalty of
transferring the dipole moment of 1D from water to point zj, μj
is a dipole moment of group j, Ek

ion and Ek
neutr are energies of

ionizable group k in ionized and neutral states, respectively, N
is the number of atoms in the molecule, M is the number of
group dipoles, L is the number of ionizable groups, and
parameters d, φ, and τ define spatial position of the molecule
with respect to the lipid bilayer, as previously described.71

Thus, for each ionizable group, the lowest energy ionization
state (charged or uncharged one) was automatically selected at
the given position in the membrane. The transfer energy of an
ionizable group k in neutral state was calculated as a sum of the
deionization energy of the group and ASA-dependent transfer
energies of the corresponding atoms (Lk is the number of
atoms in ionizable group k):

σΔ = Δ + Σ
=

→E G z( )ASAk k
l

L

l l l
neutr deionization

1

wat bilk

(8)

The energy cost of deionization during transfer from water to
the nonpolar environment was defined by the Henderson−
Hasselbalch equation:

Δ = −G RT2.3 (pH pK )k k
deionization

a (9)

The transfer energy in the ionized state was described by the
following equation:

σΔ = − + Σ
=

→E
e
r

F F z z
166

( ) ( )ASAk
k

k
l

L

l l l
ion Born

Abe
wat

Abe
1

,ion
wat bilk

(10)

where σl,ion is solvation parameter of O or N atoms in a
charged state; eBorn is a weight factor of long-range electrostatic
contribution to transfer energy; rk is an ionic radius. The
dielectric function for ions was described by the Born equation
modified by Abe:76

ε ε ε
= − −F z

z z z
( )

1
ln ( )

1
( )ln ( )

1Abe
(11)

Dipolar contribution was calculated using the Block−Walker
dielectric function of the media, FBW(ε):

77

η = −→ z e F z F( ) ( ( ) )wat bil
dip,BW BW

bil
BW
wat

(12)

ε ε
ε ε ε ε

=
− +

− −F
3 ln

( ln 1)
6
ln

2BW
(13)

All types of atoms (26 types) with their solvation parameters
and atomic radii were chosen as described previously.65 We
assumed that all charged and dipolar groups with ASA > 0.1 Å
are in contact with the surrounding solvent and, therefore,
their electrostatic contributions to solvation energy should be
included.
The atomic solvation parameters σi depend on the polarity

parameters of the lipid bilayer:

σ σ
ε ε

α α β β

= − −

+ − + −

→ z
z

a z b z

( ) e
1
( )

1

( ( ) ) ( ( ) )

i i i

i i

wat bil 0

bil wat

bil wat bil wat
(14)

where αbil(z), βbil(z), and εbil(z) are transbilayer profiles of
hydrogen bonding donor and acceptor capacities and dielectric
constant, respectively, and αwat, βwat, and εwat are the
corresponding values in water. The values of coefficients
eBorn, σ

0, ei, ai, bi, edip,π, and edip,BW (from eqs 10, 12, and 14)
were defined previously.63

The profiles of hydrogen bonding donor and acceptor
capacities (αbil(z), βbil(z)), dielectric constant (εbil(z)), and
dipolarity/polarizability parameter (πbil* (z)) were calculated for
several artificial membranes from distributions of groups in
lipids and membrane protein structures along the bilayer
normal.78 In this work, we used profiles obtained for the fluid
DOPC bilayer based on the distributions of lipid segments
determined by X-ray and neutron scattering78,79 (Figure S1).
Here, we modified the original PPM method to work with

small molecules. The adapted PPM version automatically
defines atom types and assigns dipole moments to all polar
groups. The program uses a library of dipole moments for
different standard functional groups, taken from the previously
published tabulations of group dipole moments.80,81 In
addition, the pKa values of ionizable groups should be included
in the coordinate file. The experimental pKa values were taken
from the compilation by Avdeef82 and from the literature.83−85

In a few cases, the values were not experimentally determined
and, therefore, they were calculated using Marvin Suite
(ChemAxon). All pKa values for compounds used in this
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work can be found in the PerMM database (https://permm.
phar.umich.edu/).
Calculation of Transmembrane Translocation Path-

way. To determine the lowest energy pathway of a molecule
across the lipid bilayer, we used two options. The first option
was the “drag” method for finding saddle points.86 The transfer
energy was locally minimized with respect to rotational
variables of the molecule in every z + Δz point of the
transmembrane pathway, starting from the optimal rotational
orientation calculated in the previous point z. Hence, the
rotational position of a molecule was gradually changing during
its movement along the membrane normal. This method
produced an asymmetric energy curve.
As an alternative approach, we tested an option of “global

rotational optimization” of transfer energy with respect to
rotational variables of the molecule at every point (z) along the
membrane normal. Step Δz was taken as 1 Å. To sample
different orientations, the permeant was rotated using 2° steps
in the intervals [0°, 360°] and [0°, 180°] in the rotational (φ)
and tilt (τ) angles relative to the membrane normal, and the
solvation energy was locally minimized with respect to the φ
and τ variables starting from each rotational position. The
lowest energy orientation was selected automatically for each z
value. This approach produced a symmetric energy curves, but
it nullified the energy barrier for flip-flop of the molecule in the
middle of the membrane. Therefore, the “drag” optimization is
preferable for calculation of permeability coefficients.
The location of a molecule along membrane normal was

defined by the coordinate z of a “reference atom” representing
the atom closest to the center of mass of polar groups of the
molecule. To simultaneously move an ensemble of multiple
conformations through the membrane, we superimposed
conformations through four common atoms that are the
closest to the “reference atom”. The local rotational
optimization was accomplished for each conformer, and the
Boltzmann average value of ΔGtransf(z) was calculated for the
set of conformers. For local energy minimization, we used the
Davidon−Fletcher−Powell method with analytically calculated
partial derivatives of the transfer energy (as implemented in
the original PPM method63), where each conformer was
considered as a rigid body.
The free energy profiles for 506 compounds that were used

in this work can be obtained by running the PerMM web
server with source coordinate files provided in the PerMM
database. The web server and the database are described in
more detail in the accompanying paper.97 The PerMM source
code will be provided by the authors upon request, after
receiving permission from the owners of the program
NACCESS used for ASA calculations.
Generating Structures of Molecules. The 3D structures

of compounds used in this study were downloaded from the
PubChem databases in the structure data format (sdf),
converted into the pdb format using PyMol (https://pymol.
org/2/). The PubChem structures were already energetically
optimized.87 Only in a few cases, the 3D structures were taken
from the Protein Data Bank (PDB)88 or the Cambridge
Structural Database (CSD).89 For example, 3D structures of
the 11-residue cyclic peptide cyclosporine A were downloaded
from PDB (PDB IDs 2mrc, 1ikf) and CSD (CSD ID
KERNAU). The coordinates of several molecules not found
in public databases were generated using molecular modeling
modules of QUANTA software package for molecular
mechanics simulations (BIOVIA-Accerlys Inc.).

The analysis of flexible molecules requires conformational
sampling.33,90 To increase the speed of calculations, a set of
low-energy conformers was precalculated for every conforma-
tionally flexible molecule, and each conformer was considered
as a rigid body. As described above, the multiple conformers
were superimposed and moved through the membrane to
calculate their average transfer energy from water. We found
that it is sufficient to include only 6 to 15 significantly
dissimilar conformers for medium-size flexible molecules.
Further increasing the conformational ensemble did not affect
the values of calculated permeability coefficients. For
compounds used in this study, we selected conformers that
were the lowest energy representatives of different structural
clusters identified using the Conformational Search module of
QUANTA. A grid scan in the space of torsion angles was
followed by ABNR local energy minimization was conducted
with CHARMm27 (100 steps, ε = 10) and cluster analysis.
Multiple conformers of a molecule were included into an input
coordinate file (in pdb format) as multiple models, using
MODEL records.

Experimental Permeability Coefficients. Using reliable
experimental data from publications is critical for development
and testing of a new permeability model. Our work is focused
on modeling of passive permeability across the fluid DOPC
bilayer. Thus, to verify our method, we compared our
calculations with permeability coefficients measured in vitro
through artificial lipid bilayers. After collecting available data
from publications and a critical assessment of the data quality,
we obtained 132 permeability coefficients through BLM and
liposomes: 111 intrinsic permeability coefficients (log P0exp

BLM in
Table S1) and 21 membrane permeability coefficients for
ionized compounds (log Pmexp

BLM in Table S1). These data
originated from many reputable research groups (e.g., those of
Xiang and Anderson, Finkelstein, Walter and Gutknecht, Pohl,
Antonenko, and others; see the Supporting Information for
references). The main data set included 58 log P0exp

BLM values for
the un-ionized species and 20 log Pmexp

BLM values for the ionized in
water species obtained in comparable experimental conditions
(eggPC and DOPC, 25 °C). Data obtained in slightly modified
experimental conditions were included in the additional data
set.
Data for more complex membrane systems were taken from

a compilation by Avdeef15−17 who provided the intrinsic
permeability, P0, which refers to the membrane permeability of
the neutral form of ionized molecules, i.e., the maximum
possible value that the membrane permeability can reach.
Overall, we used ∼700 intrinsic permeability coefficients
through PAMPA-DS, BBB, and Caco-2/MDCK cells that
Avdeef collected from reliable publications and processed
using the pCEL-X computer program (http://www.in-adme.
com/pcel_x.html).
Hence the intrinsic permeability data obtained in vivo for

BBB (log P0exp
BBB) (Table S3) were taken from Avdeef’s

compilation.16 Most data were obtained from in situ rodent
brain perfusion studies and referred to permeation from saline
at pH 7.4 and corrected for ionization, while some were based
on in vivo intravenous injections (i.v.). The i.v. data were not
used for lipophilic compounds that are known to bind plasma
proteins. The in situ brain perfusion technique is used for the in
vivo measurement of the initial rate of brain penetration at the
luminal BBB membrane.16 The permeability−surface area
product, PS, is the product of the luminal permeability, Pc (cm
s−1), and the endothelial surface area, S (cm2 g−1). PS is the
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transfer constant for the initial brain transport of a drug
corrected for the velocity of the perfusion flow. Data were
selected for efflux-minimized conditions, in which PS values
were measured during inhibition of carrier- or transporter-
mediated permeability or in knockout mouse models.
Intrinsic permeability data for intestinal cellular membranes

(log P0exp
Caco‑2/MDCK) (Table S4) were taken from Avdeef’s

database17 that collects high-quality Papp values measured in
Caco-2 and MDCK epithelial cell lines. These data were
collected by Avdeef from 55 reliable publications and corrected
for all non-trans-cellular effects using the pCEL-X computer
program (http://www.in-adme.com/pcel_x.html). To cancel
contributions from active or facilitated transport, the average
was taken between apical-to-basolateral and basolateral-to-
apical measurements for compounds that are known as
substrates for efflux/uptake carrier-mediated transport.
The parallel artificial membrane permeability assay

(PAMPA) is another experimental assay quantifying the
passive diffusive permeability of artificial membrane systems
(log P0exp

PAMPA‑DS). Here we used values obtained by Avdeef in
PAMPA-DS assay using the lecithin-based double sink model
(with 0.5% DMSO in donor chamber, surfactant in acceptor
chamber), where the membrane retention of hydrophobic
compounds is greatly reduced (Table S5).15 These exper-
imentally obtained permeability coefficients were additionally
corrected by Avdeef for permeability through the ABL adjacent
at both sides of the membrane.
Experimental permeability coefficients for 506 compounds

measured in different membrane systems can be found in our
PerMM database (https://permm.phar.umich.edu/, see the
accompanying paper97).

■ RESULTS
We assessed the performance of the PerMM method using
large sets of organic compounds, FDA-approved drugs, and
similar molecules, for which permeability coefficients were
experimentally determined in artificial (BLM/liposomes and
PAMPA-DS) and natural (BBB and Caco-2/MDCK cells)
membrane systems (Tables S1−S9). For each molecule
studied, the program calculated a series of its optimized
spatial arrangements as a permeant moves along the membrane

normal. The free energy profile (ΔGtransf(z)) along the
permeation pathways was produced by optimizing the free
energy of transfer of the molecule from water to each position
within the lipid bilayer combined with the search for its
optimal conformer from precalculated variants. Integration of
the obtained transfer energy profile along the membrane
normal (eqs 5 and 6) allows calculating the permeability
coefficient.
Such energy profiles were calculated for more than 500

permeants, most of which were included in this work. The
representative examples of transbilayer energy profiles obtained
for five BBB-penetrating drugs, a cyclic peptide, and 17 organic
molecules from the initial testing set are shown in the Figures
1, S2, and S3, respectively. For hydrophilic molecules, the free
energy profile has a maximum at the bilayer center, which
constitutes the main barrier for their permeation (Figure 1B).
For hydrophobic molecules, the transbilayer profiles of ΔGtransf
are negative at all depths, with a minimum at the membrane
center, so that the partition is more favored in the hydrophobic
core of the lipid bilayer than at the lipid−water interface. In
contrast, all amphiphilic molecules have two minima with
negative ΔGtransf values at the water−lipid interfaces and a
maximum in the membrane center. Similar free energy profiles
for small organic molecules and drugs were obtained in MD
simulations,35,41,43,47,48,91 except that small energy barriers
were found in the lipid headgroup region for some hydro-
phobic compounds in a number of studies.35,38,42,92,93 During
the movement, the permeant molecule rotates to place its
nonpolar groups deeper to the lipid acyl chain region and to
orient the most polar atoms toward the membrane boundaries
(see Figure 1A). The predicted changes in spatial orientations
along the translocation pathway of 506 permeants can be
inspected using the interactive GL mol viewer included in the
PerMM database.

Performance of PerMM for Model Lipid Bilayers. The
current version of PerMM was developed using polarity
parameters of the DOPC bilayer. Therefore, the performance
of the method was initially assessed using data for similar lipid
bilayer systems, such as BLM or liposomes primarily composed
of phosphatidylcholine (PC), rather than data for more
complex PAMPA, Caco-2/MDCK, and BBB membranes.

Figure 1. Spatial positions, optimized orientations (A), and transfer energy profiles (B) calculated for several drug molecules as they move through
the DOPC bilayer. Calculations of transbilayer energy profiles were performed by the publicly available PerMM web server (https://permm.phar.
umich.edu/server) using the “global rotational optimization” option. The locations of hydrocarbon core boundaries between the acyl chains and
head groups of lipids (at ±15 Å distances from the membrane center) are approximated by planes and shown as dummy atoms (A).
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Hence, we compared the permeability coefficients calculated
by PerMM with the corresponding experimental data
measured in PC-based BLM or liposomes (Tables S1 and
S2). First, we used a main set of the most frequently cited data
determined by Anderson and co-workers, Walter and
Gutknecht, and several other groups. It included 58 intrinsic
permeability coefficients published for uncharged forms of
permeants (log P0exp

BLM for 42 acids, 3 bases, and 13 neutral
molecules) and 20 membrane permeability coefficients for
molecules ionized in water (log Pmexp

BLM for 11 acids, 5 bases, and
4 zwitterions). The PPM solvation model considers the
equilibrium between charged and neutral states of ionizable
groups, depending on their pKa and pH values (eqs 7−13),63
thus allowing ionizable groups to diffuse through the
membrane in the neutral state. The ionized species can still
be present in the membrane region at 10−15 Å distance from
the membrane center, where the protonation or deprotonation
takes place. The deionization energy cost was estimated using
the Henderson−Hasselbalch equation. This energy was not
included in calculation of permeability coefficients for the
neutral states of acids, bases, and zwitterions.
We found a good correlation (R2 = 0.88) between integrals

(log PΣ
BLM) calculated according to eq 6 and experimental

permeability coefficients (log P0exp
BLM) of 58 un-ionized and 20

ionized compounds combined, which covered a wide range of
experimental permeability values, from −13 to +1 log units
(Figure 2A). The linear fitting of the scatter plot allowed us to
find parameters “a” (intercept) and “b” (slope) in eq 5.
Importantly, the slope b was found to be close to 1, as
expected. The intercept value a represents a constant related to
the diffusion coefficient in membrane with the viscosity η that
depends on the lipid composition. The following linear
regression model (eq 15) was included into the PerMM
method for the prediction of permeability coefficients of
molecules crossing lecithin-based bilayers (e.g., BLM):

= +ΣP Plog 1.063log 3.669calc
BLM BLM

(15)

Equation 15 was applied for scaling the log PΣ
BLM values to

experimental BLM data so that a and b became 0 and 1,
respectively. This transformation resulted in rmse value of 1.15
log units between experimental and estimated permeability
coefficients (Figure 2B).
We found that it was important to have a sufficiently large

set of compounds (>50) to obtain a reliable calibration curve
(Figure 2A). For example, two separate linear regression fits
for 58 un-ionized and 20 ionized molecules were described by
the equations: log P0calc

BLM = 1.03 log PΣ
BLM + 3.71 (n = 58, R2 =

0.88) and log Pmcalc
BLM = 0.83 log PmΣ

BLM + 0.58 (n = 20, R2 = 0.79),
respectively (Figure S4). The regression function for the first
data set of 58 compounds was similar to that for the larger set
of 78 compounds (Figure 2A) but different for the data set of
20 molecules. The parameters of regression varied for small
data sets from individual publications.
To validate the linear model described by eq 15, we

increased the main data set by including 54 additional
compounds that were studied in BLM and liposomes under
more variable experimental conditions. The linear regression fit
for the extended set of 132 compounds was described by
equation log Pcalc

BLM = 0.86 log PΣ
BLM + 1.91 (n = 132, R2 = 0.82)

(Figure S5A). After excluding three outliers (represented using
green triangles in Figure S5A), the equation did not change
significantly, but the correlation improved: log Pcalc

BLM = 0.90 log
PΣ
BLM + 2.24 (n = 129, R2 = 0.85). Thus, after addition of 51

experimental data points obtained in slightly altered exper-
imental conditions, R2 only slightly decreased, but the slope
remained close to 1. The estimated rmse for sets of 129 and
132 compounds were of 1.40 and 1.56 log units, respectively.
Thus, we defined as outliers three additional compounds
(nitric acid, hydrofluoric acid, and lysine), which significantly
increased the rmse.

Figure 2. Prediction of the permeability of artificial lipid bilayers to organic molecules. (A) Comparison of experimental (log Pexp
BLM) and calculated

(log PΣ
BLM) permeability coefficients across unilamellar lipid bilayers of 58 un-ionized (black circles) and 20 ionized in water (open circles) organic

molecules. The corresponding data values are from Tables S1 and S2. (B) Plot of experimental BLM permeability coefficients (log Pexp
BLM) vs the

calculated ones (log Pcalc
BLM) for 78 organic molecules. Dashed lines indicate ideal line and residual line limits (using a cutoff of |3.1| that corresponds

to 2.0 rmse for ionized molecules). Predicted permeability coefficients, log Pcalc
BLM, in B were calculated using eq 15. The log PΣ

BLM values were
calculated using eq 6. For ionized species, the integral log PmΣ

BLM accounted for the deionization penalty of ionizable groups at the specified pH. The
number of molecules “n” is indicated in parentheses.
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Importantly, our model was able to evaluate the intrinsic
permeability coefficients for highly hydrophobic compounds
with P0 ≫ PABL, whose measurable permeability coefficients
are limited by diffusion through ABL (PABL of 15−30 × 10−6

cm/s).15 For example, PerMM-calculated permeability coef-
ficients through the DOPC bilayer (log P0calc

BLM) for imipramine,
desipramine, and chlorpromazine were 2.70, 2.63, and 1.39,
respectively, whereas experimental values through the DOPC
bilayer (log P0exp

BLM) provided by Avdeef (Figures 7.26 and 7.30
in ref 15) were 5.1, 1.74, and 1.62, respectively.
We also tested the influence of the conformational flexibility

of molecules with multiple rotating bonds on the results of our
calculations. We found that the use of multiple precalculated
conformations of compounds slightly changed the permeability
coefficients of some conformationally flexible compounds
(Figure S2). For example, the optimal membrane-bound
conformation of the cyclic peptide cyclosporine A was oval-
shaped and stabilized by four intramolecular hydrogen bonds
(CSD ID KERNAU), while the optimal conformations in
water and at the water−membrane interface were more round-
shaped (PDB IDs 2rmc, 1ikf) with one intramolecular
hydrogen bond. The application of three dissimilar con-
formations of cyclosporine A in our PerMM calculation
decreased the BLM permeability coefficient by ∼0.6 log units
as compared to calculations with just one round-shaped
conformation. For the whole data set, the use of a
conformational ensemble instead of a single conformation
did not significantly improve the accuracy of calculations
(Figure S4). Nevertheless, we opted to use multiple
conformations for flexible compounds in all subsequent
calculations.
Comparison of Experimental Permeability Coeffi-

cients in Different Membrane Systems. To investigate
how permeability data depend on the experimental method
applied, we compared experimental permeability coefficients of

the same compounds measured in different artificial (BLM and
PAMPA-DS) and natural (BBB and Caco-2/MDCK) mem-
branes. To simplify the analysis, we considered only intrinsic
permeability coefficients with log P0exp values ranging from −7
to 0 (Tables S7−S9).
Such comparisons lead to several important conclusions.

First, we found a sufficiently good correlation between the
intrinsic permeability coefficients obtained using in situ BBB
assay and in vitro cell-based Caco-2/MDCK assays (73
compounds, Figure 3A). The linear regression curve had a
slope b close to 1, the intercept a close to zero, and R2 of 0.78
This is consistent with the general expectation that Caco-2 or
MDCK cell-based assays can be used as models for predicting
BBB permeability of drugs.94

Second, we found a good correlation (R2 of 0.82 and slope b
of 0.81) between experimental permeability coefficients
measured in BLM and in “efflux minimized” BBB assay or
Caco-2/MDCK assays after correction for nontrancellular
effects (set of 32 compounds, Figure 3B). The regression
function was

= −P Plog 0.81log 1.880calc
PM

0calc
BLM

(16)

The significant intercept value (a = −1.88) in the linear
regression line can be explained by the difference in lipid
composition between epithelial membranes and BLM. The
presence of cholesterol and sphingomyelin in epithelial
membranes could be a cause of the much lower permeability
(by 1.88 log units) of natural membranes as compared to
lecithin-based BLM. Indeed, the addition of cholesterol
(CHOL) to BLM formed by PC in experiments performed
by Finkelstein95 and Xiang et al.,96 reduced the experimental
permeability coefficients by ∼0.6 log units, while addition of
both cholesterol and sphingomyelin (CHOL+SM) decreased
these coefficients by ∼1.9 log units, which appeared as a
decrease of the intercept values in corresponding plots (Figure

Figure 3. Comparison of experimental permeability data for natural and artificial membrane systems. (A) Correlation between intrinsic
permeability coefficients obtained in situ rodent brain perfusion experiments (log P0exp

BBB) vs Caco-2/MDCK assays (log P0exp
Caco‑2/MDCK). (B)

Correlation between intrinsic BBB or Caco-2/MDCK permeability coefficients vs intrinsic permeability coefficients through BLM/liposomes (log
P0exp
BLM). Colors indicate different types of molecules: red for acids, blue for bases, gray for neutral molecules, and yellow for zwitterions. The number

of molecules “n” is indicated in parentheses. Experimental BLM, BBB, and Caco-2/MDCK permeability coefficients are from Tables S7 and S8.
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S5B). The PM-correction in accordance with eq 16 was
included to predict the permeability coefficients through the
plasma membranes.
Finally, we compared permeability coefficients measured in

PAMPA-DS vs BLM assays for the set of 24 compounds
(Figure 4A). We found a slightly lower correlation between
experimental data obtained in both assays (R2 = 0.62, slope b
of 0.94). The regression function, based on PAMPA-DS data,
was

= −P Plog 0.94log 1.750calc
PM

0calc
BLM

(17)

The value of the intercept a indicated the lower permeability
coefficients (by 1.75 log units) through PAMPA-DS
membranes as compared to BLM, which is reminiscent of
the decreased permeability of cholesterol- and SM-rich
epithelial membranes of Caco-2/MDCK cells and the BBB.
Such a permeability difference could be attributed to a larger
width and different lipid composition (20% lipid mixture of
PC, PE, PI, PA, and triglycerides)15 of a hydrophobic barrier in
PAMPA-DS relative to that in BLM. Equation 17 was used
instead of eq 16 for PM-correction, while calculating data for
the PAMPA-DS assay.

Figure 4. Experimental and calculated permeability data for PAMPA-DS. (A) Correlation between intrinsic permeability coefficients obtained in
PAMPA-DS assays and using BLM or liposomes (log P0exp

BLM). Experimental PAMPA-DS and BLM data were taken from Table S9. (B) Correlation
between permeability coefficients through the plasma membrane and PAMPA-DS. Intrinsic permeability coefficients of molecules through the
plasma membrane (log P0calc

PM ) were calculated using eq 17. Experimental data for PAMPA-DS (log P0calc
PAMPA‑DS) were taken from Table S5. Colors

indicate different types of molecules: red for acids, blue for bases, gray for neutral molecules, and yellow for zwitterions. The number of molecules
“n” is indicated in parentheses.

Figure 5. Correlation between calculated intrinsic permeability coefficients through the plasma membrane (PM) and experimental intrinsic
permeability coefficients through BBB (A) and Caco-2/MDCK cells (B). Intrinsic permeability coefficients of molecules through the plasma
membrane (log P0calc

PM ) were calculated using eq 16. Experimental data were taken from Tables S3 for BBB (log P0exp
BBB) and Table S4 for Caco-2/

MDCK assays (log P0exp
Caco‑2/MDCK). Colors indicate different types of molecules: red for acids, blue for bases, gray for neutral molecules, and yellow

for zwitterions. The number of molecules “n” is indicated in parentheses.
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Prediction of Permeability Coefficients for BBB, Caco-
2/MDCK, and PAMPA-DS Assays. In this work, we used
three sets of experimental intrinsic permeability coefficients
(log P0exp) that were compiled by Avdeef for PAMPA-DS,
BBB, and Caco-2/MDCK assays.15−17 They included 322, 199,
and 185 data points, respectively. The intrinsic permeability
coefficients of these compounds ranged from −12 to +2 for
PAMPA-DS, from −9 to +1 for BBB, and from −7 to −2 for
Caco-2/MDCK assays.
To reproduce these data, log PΣ

BLM values were calculated for
all compounds in the neutral form using eq 6. For each of three
data sets, we then compared experimental log P0exp values with
calculated integrals (log PΣ

BLM) in three subsets: (1) the whole
data set; (2) the core set, excluding outliers; and (3) the
reduced set, excluding outliers and zwitterions (Figure S6). We
considered data points as outliers if they deviated by more than
2 rmse from the value predicted by the linear regression line
(i.e., the cutoff of 2 in absolute value for standardized
residuals) and their one-by-one exclusion significantly
improved the correlation coefficient and decreased the rmse.

Such an approach allowed us to exclude 42 compounds from
the PAMPA-DS data set (13% outliers), 17 compounds from
the BBB data set (8.5% outliers), and 20 compounds from the
Caco-2/MDCK data set (10.8% outliers) (shown as green
triangles on Figures S6 and S7). Interestingly, excluding
zwitterions from these sets did not significantly improve the R2

for BBB data and even decreased the R2 for PAMPA-DS and
Caco-2/MDCK data. Therefore, during subsequent calcu-
lations, we used the core sets of 280, 182, and 165 compounds
for PAMPA-DS, BBB, and Caco-2/MDCK data, respectively.
As follows from the experimental data (Figures 3B and 4A),

the permeability of plasma membranes (PM) of the BBB and
Caco-2/MDCK cells and of PAMPA membranes is lower by
∼1.8 log units as compared to permeability of the lecithin-
based BLM. Therefore, we used corrected log P0calc

PM values for
PM in all subsequent comparisons. The calculation of log P0calc

PM

values can be viewed as a two-step linear transformation. First,
the permeability coefficients through BLM (log P0calc

BLM) were
estimated using eq 15. Then, we applied eq 16 to obtain PM-

Figure 6. Prediction of intrinsic permeability coefficients through different membrane systems. Plot of experimental vs calculated permeability
coefficients through BLM (A), PAMPA-DS (B), BBB (C), and Caco-2/MDCK cells (D). The formula above each panel relates the calculated
intrinsic log P0calc values for each systems and the integral log PΣ

BLM values of molecules in the neutral state determined by integration of eq 6.
Dashed lines indicate the ideal line and residual line limits with cutoffs of |3.2| (A and B) and |2.0| (C and D). Colored circles indicate different
charge classes of molecules: red for acids, blue for bases, gray for neutral molecules, and yellow for zwitterions. The number of molecules “n” is
indicated in parentheses.
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corrected log P0calc
PM values for BBB and Caco-2/MDCK or eq

17 for PAMPA-DS data.
The scatter plots for experimental permeability coefficients

for PAMPA-DS, BBB, and Caco-2/MDCK assays versus log
P0calc
PM are shown in Figures 4B and 5. We found a sufficiently

good correlation (R2 = 0.75, b ∼ 1, a ∼ 0) between
experimental intrinsic PAMPA-DS permeability coefficients
(log P0exp

PAMPA‑DS) for 280 diverse molecules (50 acids, 122 base,
72 neutral molecules, and 36 zwitterions) and the correspond-
ing PM-corrected permeability values (log P0calc

PM ) (Figure 4 B).
The linear regression model for PAMPA-DS was

= +‐P Plog 0.98log 0.490exp
PAMPA DS

0calc
PM

(18)

Using this model for scaling calculated data produced the rmse
value of 1.59 log units (Figures 6B and S6B).
The relationships between experimental and PM-corrected

permeability coefficients of 182 compounds (18 acids, 80
bases, 60 neutral molecules, and 24 zwitterions) studied in the
BBB assay and 165 compounds (10 acids, 69 bases, 53 neutral
molecules, and 33 zwitterions) studied in Caco-2/MDCK
assays can be described by the linear regression lines with R2 of
0.69 and 0.52, respectively, and slopes b of 0.43 and 0.32,
respectively (Figure 5A, B). The observed deviation of slopes
from 1 can be attributed to the presence of diverse transporters
in natural membranes, which, despite experimental efforts to
minimize their contribution, may not be completely elimi-
nated. The presence of influx and efflux transporters would
increase the uptake of low-permeable polar molecules and
decrease the inward translocation (by promoting the outward
efflux) of highly permeable hydrophobic molecules. The linear
regression models for BBB and Caco-2/MDCK data were the
following:

= −P Plog 0.43log 2.080exp
BBB

calc
PM

(19)

= −‐P Plog 0.32log 2.890exp
Caco 2/MDCK

0calc
PM

(20)

Using eqs 19 and 20 for scaling calculated data to experimental
data to get linear regression line with a = 0 and b = 1 produced
the rmse values of 0.87 log units for BBB data and 0.89 log
units for Caco-2/MCDK data (Figures 6C, D and S6C, D).
Hence, the resulting equations to relate the integrals over

transfer energy profiles (log PΣ
BLM) for the neutral forms and

calculated intrinsic permeability coefficients (log P0calc)
through PAMPA-DS, BBB, and Caco-2/MDCK membranes
were the following (Figures 6 and S6):

= +‐
ΣP Plog 0.981log 2.1590calc

PAMPA DS BLM
(21)

= −ΣP Plog 0.375log 1.6000calc
BBB BLM

(22)

= −‐
ΣP Plog 0.272log 2.5410calc

Caco 2/MDCK BLM
(23)

Equations 15 and 21 can be also applied to predict
membrane permeability coefficients through artificial mem-
branes of compounds ionized in water. In this case, the
corresponding integrals of transbilayer energy profiles (log
PmΣ
BLM) will account for contribution from deionization penalty

for ionizable group(s) with specified pKa at indicated pH.
Indeed, membrane permeability coefficients for ionized
compounds were satisfactory reproduced for artificial bilayers,
BLM and liposomes (Figures 2, S4, and S5), and the PAMPA-
DS system (Figure S8). In the latter case, a reasonably good
prediction of PAMPA-DS log Pmexp values at pH 6.5 and 7.4

(with rmse of 1.77 and 1.69 log units; R2 of 0.58 and 0.69,
respectively) was obtained for weak acids and bases from
Avdeef’s data set15 (Table S6), excluding zwitterions.
To predict membrane permeability coefficients of ionized

compounds through the BBB membranes, the following
equation was obtained:

= −−P Plog 0.229log 0.830m m7.4calc
BBB BLM

(24)

The accuracy of the prediction of BBB membrane permeability
coefficients (log PPSexp

BBB ) using eq 24 was moderate (rmse of
0.65 log units; R2 of 0.60) for the set of 79 bases and 23 acids
from the Avdeef’s database.16

Finally, we assessed the ability of PerMM to distinguish
compounds able to cross BBB by passive diffusion (BBB+)
from BBB-impermeable molecules (BBB−). We analyzed the
range of permeability coefficients for both types of compounds
(Figure S9) and found that the predicted intrinsic permeability
coefficients of BBB-impermeable compounds were less than
−4.35 log units.
Thus, the compounds with higher permeability coefficients

(log P0calc
BBB ≥ −4.35) are expected to cross the BBB and serve as

central nervous system-active agents, unless they are substrates
for efflux transporters, such as P-glycoprotein or other ABC
transporters.
Equations 7 and 13−15 were included in our PerMM

program and the web server for prediction of permeability
coefficients of organic chemicals and drug-like molecules
through different membrane systems based on integration of
transfer energy profiles over the permeation pathway. Using
these equations, PerMM reproduced experimental permeability
coefficients in different systems well: BLM and liposomes (78
compounds, R2 = 0.88, rmse = 1.15 log units), PAMPA-DS
assay (280 compounds, R2 = 0.75, rmse = 1.59 log units),
Caco-2/MDCK assays (165 compounds, R2 = 0.52, rmse =
0.89 log units), and in situ brain perfusion experiments (182
compounds, R2 = 0.69, rmse = 0.87 log units) (Figure 6).

Comparison of PerMM with Other Computational
Methods. To assess the utility and the predictive power of the
PerMM method, we compared it with other computational
methods, in particular, with the physics-based methods
recently developed by Leung et al.32 and Brocke et al.
(implemented in the MemDrugPerm web server).68 These
methods were applied for the relatively large and structurally
diverse sets of compounds, many of which were also calculated
by PerMM. We also compared results of calculations by
PerMM, with predictions by the QSPR-based QikProp method
(Schrödinger) and by the machine learning algorithm
developed by Brocke et al.68 as an alternative approach to
MemDrugPerm. Comparison of performances of these
methods is shown in Figures S10 and S11. We evaluated the
intrinsic permeability coefficients of compounds that were
common for our and other data sets against the experimental
intrinsic log P0exp values compiled for PAMPA-DS and Caco-2
assays by Avdeef,15,17 rather than against diverse data sets
obtained by various authors in dissimilar experimental
conditions.
We founds that PerMM outperformed both physics-based

methods with respect to R2 and rmse values and demonstrated
better accuracy than the statistically based QikProt method
and the machine learning algorithm. For the set of 58 common
compounds, PerMM predicted PAMPA-DS permeability
coefficients with R2 of 0.67 and rmse of 1.51 log units, while
the HDGB and DHDGB models of Brocke et al. demonstrated
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rmse of 1.99 and 1.73 log units and R2 of 0.50 and 0.49,
respectively (Figure S10A, C, D). Results of the machine
learning algorithm were less impressive with R2 of 0.40 and
rmse of 2.28 log units, though rmse decreased to 1.68 log units
after scaling the calculated values to the experimental values to
get a linear regression line with a = 0, b = 1 (Figure S10B).
Importantly, the slopes (b) of the regression lines were rather
close to 1 for PerMM and the HDGB model but smaller for
the DHDGB model (b = 0.66) and much smaller for the
machine learning algorithm (b = 0.23), while intercepts
increased from 0 for PerMM to ∼0.5 for both HDGB and
DHDGB models and to ∼4 for the machine learning approach.
Scaling the calculated values to experimental values for HDGB
and DHGB models did not improve rsme values (Figure S10C
and D).
The performance of the method by Leung et al. for the

prediction of PAMPA-DS permeability was also moderate. The
scatter plot of predicted vs experimental data for 73
compounds was fitted by the regression line with R2 of 0.38,
b of 1.31, and a of −9.12. The significant intercept value was
likely due to the extremely low permeability coefficients
predicted by Leung’s model (in the range from −28 to −4 log
units) (Figure S11C). For the same set of compounds, the
accuracy of PerMM predictions was much better: the linear
regression line had R2 of 0.68, b close to 1, and a close to 0
(Figure S10A). The accuracy of the Leung’s and QikProp
methods for prediction of Caco-2 permeability for 44
compounds was also lower than that of PerMM: R2 values
were of 0.30, 0.27, and 0.59, respectively (Figure S11B, D, and
F).

■ DISCUSSION

In this study, we developed a novel physics-based computa-
tional method PerMM for predicting passive membrane
permeation of structurally diverse molecules through the
phospholipid bilayer. In addition to estimating the perme-
ability coefficients, this method provides visualization of the
transmembrane translocation pathway for a compound of
interest. By describing the thermodynamics of membrane-
solute interactions, such an approach helps to understand the
mechanisms of permeability of drug candidates, which may
assist in optimization of their ADME properties.
Our data set included nonpolar and polar nonelectrolytes

and weak electrolytes. According to results of our calculations,
the ionized species of weak acids and bases become uncharged
in the lipid carbonyl region and cross the lipid bilayer in the
neutral form. Consistent with experimental studies,4 we found
that the permeability barriers are located in the hydrophobic
domain of the lipid bilayer but not outside this region.
To verify the method, we compared the results of our

calculations for the DOPC bilayer with permeability
coefficients measured in unilamellar phospholipid bilayers
(Figures 2 and S4). This comparison covered a wide range of
log P0 values (from −12 to +2) and produced R2 of 0.88 and
the slope b close to 1 (Figure 2 A), as expected. A comparison
of experimental and calculated permeability coefficient through
BBB and Caco-2/MDCK cells demonstrated a smaller slope (b
of 0.43 and 0.32, respectively) and lower R2 values (0.69 and
0.52, respectively) (Figure 5). Although these correlations can
be used for evaluation of permeability of BBB and Caco-2/
MDCK systems, the prediction accuracy is lower than that for
model phospholipid bilayers (Figures 2 and 6C, D).

We assume that the observed permeability differences
between artificial and natural membrane systems could be
due to the presence of the facilitated molecular transport in
biological membranes. To reduce the effect of transporters, a
significant effort was made by Avdeef in collecting “efflux-
minimized” BBB permeability data16 and including Caco-2/
MDCK data that represent the averages of apical-to-basolateral
and basolateral-to-apical measurements canceling out some of
carrier-mediated contributions.17 Nevertheless, the efflux and
influx effects can still be present or not completely eliminated
for a number of permeants due to the presence of multiple
transporters. In fact, the vast majority of drugs included in our
data set can interact with a variety of influx and efflux
transporters8 (see pages for individual molecules in the
PerMM database). The possible effect of influx transporters
is expected to result in a higher permeability of polar
permeants than that predicted from passive diffusion. The
possible effect of efflux transporters would decrease the
measured permeability of highly hydrophobic permeants
relative to predictions based on passive diffusion. Thus, both
effects would results in the observed slope b < 1 of the linear
regression fits for BBB and Caco-2/MDCK data (in addition
to possible scattering), as we actually observed (Figure 5).
Similar to other physics-based methods, PerMM operates

with atomic structures of molecules moving across the lipid
bilayer and uses the solubility-diffusion framework for
estimating the molecular permeability. However, our and
other methods employ different approaches for calculating the
free energy change of barrier crossing and the corresponding
permeability coefficients of permeants. For example, Leung et
al.32 represent the lipid bilayer as an implicit organic solvent
and calculate the solvation energy difference between global
minimum conformations evaluated in water and chloroform.
Brocke et al.68 describe the implicit membrane by varying
dielectric profiles along the membrane normal, based on either
standard HDGB or dynamic (D)HDGB models, and calculates
membrane insertion energy profiles and their integrals to
derive permeability coefficients. The PerMM method uses a
general anisotropic solvent representation of the lipid bilayer
that has been previously developed and extensively tested to
study spatial positioning in membranes of peptides, proteins,
and small molecules.63,71,72 Furthermore, similar to Brocke’s
method, PerMM calculates permeability coefficients by
integration over transfer energy profiles instead of using a
simple barrier approximation as in the Leung method.
There are other methodological differences between these

methods, including treatment of conformational flexibility of
permeants and calculation of their diffusivity in membranes.
For better computational efficiency, PerMM utilizes precalcu-
lated structures of permeants, similar to that in Brocke’s
method.68 To account for the conformational dynamics, we
use a limited set of structurally diverse conformations for
flexible molecules, instead of performing the more exhaustive
conformational sampling proposed by Leung et al.32 We found
that including conformational flexibility only slightly improves
the permeability coefficients of conformationally flexible
molecules but does not significantly affect the overall accuracy
of permeability predictions (Figures S2 and S4). Similar to
other methods, we consider the size-dependence of permeant
diffusion in membranes. However, instead of diffusivity profiles
along the membrane normal, we assume a constant diffusivity
of a solute throughout the membrane. This is a reasonable

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00224
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

L

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.9b00224/suppl_file/ci9b00224_si_001.pdf
http://dx.doi.org/10.1021/acs.jcim.9b00224


approximation, because the exact shape of D(z) was shown not
to be important for permeability prediction.68

As described in Results, PerMM demonstrated better
performance than two other recently developed physics-
based methods, as well as the machine learning algorithm by
Brocke et al. and the regression-based QikProp method. We
found that PerMM outperformed these methods in terms of R2

and rmse for prediction of PAMPA or Caco-2 permeability
coefficients for relatively large data sets (Figures S10 and S11).
The MemDrugPerm method68 showed the closest accuracy to
PerMM against PAMPA data.
The advantages of our approach are likely due to the better

parametrization of atomic solvation (σ) and dipolar (η)
parameters for different chemical groups in our universal
solvation model, as described in our previous publication65 and
to the use of dielectric and hydrogen bonding parameter
profiles for the DOPC bilayer in the PPM method.63 The
correct evaluation of the solvation energy in the heterogeneous
environment is critical, because permeability depends
exponentially of this energy.
It is of note that PerMM has broad applicability: it allows

quantitative calculation of permeability coefficients in different
membrane systems, including BLM, PAMPA, Caco-2/MDCK
cells, and the BBB. It demonstrated the best accuracy (R2 =
0.88, rmse of 1.15 log units) for pure lecithin-based unilamellar
membranes. This was expected because the method imple-
ments the dielectric and polarity parameters of the DOPC
bilayer. PerMM also showed a reasonably good performance in
predicting BBB and Caco-2/MDCK permeability coefficients
with accuracy within 1 log unit (rmse of 0.87 and 0.87 log
units, respectively), even though the permeability of a number
of compounds in such systems could be affected by the active
efflux and influx and carrier-facilitated transport, in addition to
passive diffusion. Our results suggest that plasma membranes
of Caco-2/MDCK and the BBB cellular systems are less
permeable than the lecithin-based bilayers or DOPC by ∼1.8
log P0 units, probably due to the presence of cholesterol and
sphingomyelin.
The PerMM method properly reproduced experimental

permeability coefficients for a large set of 506 compounds,
which differed in sizes, structural scaffolds, and chemical
classes. This demonstrates the transferability of our approach,
similar to other physics-based methods. Importantly, the
PerMM allows predicting the absolute values of intrinsic
permeability coefficients, especially for the phospholipid
bilayers, rather than the relative permeability data for a series
of compounds, as is customary in other methods. We also
found that correlations between calculated and experimental
permeability coefficients for molecules from different charge
classes (acids, bases, neutral molecules) can be described by
the same regression line, as should be expected for calculations
with any physics-based model.
In summary, the PerMM method can be useful for

prediction of intrinsic permeability coefficients through lipid
membranes of a wide spectrum of drug candidates, including
natural product-derived compounds with large molecular
weight. However, our method is still approximate, as it
employs the flat diffusion coefficient profiles across the
membrane, does not account for the mechanical properties
and the lipid composition of membranes, especially in the
headgroup region, and does not include effects of dipole and
surface membrane potentials, as well as the influence of
permeants on properties of the lipid bilayer. We envision

addressing these issues in the future, which may improve the
method’s accuracy. To facilitate practical use of our method by
the scientific community, we have implemented it as a publicly
available web server with a supplementary database, as
described in the accompanying paper.97
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FIGURES 

 

 

Figure S1. Distributions of chemical groups and polarity profiles in artificial lipid bilayers. (A) Volume 
fractions of lipid segments determined by X-ray and neutron scattering for fluid DOPC membrane 1. (B) 
Profiles of hydrogen-bonding donor (α) and acceptor (β) capacities, and dipolarity/polarizability 
parameter ( *) calculated for DOPC bilayers 2. Abbreviations: “PC”, phosphate groups; “CG”,  carbonyl-
glycerol groups; “CH”, double-bond region. The acyl chain core region is colored brown; midpolar regin 
is colored light brown. 
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Figure S2. Influence of conformational flexibility of cyclosporine A on calculated permeability 
coefficients and energy profiles. The use of multiple conformers and averaging of their transfer energies 
improves the calculated permeability coefficient ( ) from -2.26 to -1.63. The program 
automatically selects the conformer with the lowest energy in every point of the transmembrane 
trajectory. Left panel illustrates the process of selection of the optimal conformation of a permeant, and 
right panel shows its translocation pathway across membrane. The conformation “1” (PDB ID: 2rmc) with 
round shape has the lowest solvation energy in water and at water/membrane interface. The 
conformation “2” (CSD ID: KERNAU) with elongated ovale shape and four intramolecular H-bonds is 
energetically preferred in the middle of membrane. The conformation “3” (PDB ID: 1ikf) with round 
shape is optimal at the distance of 10 to 20 Å from the membrane center. The locations of hydrocarbon 
core boundaries between acyl chains and head groups of lipids (at ±15 Å-distance from the membrane 
center) are approximated by planes and shown by dummy atoms. 
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Figure S3. Transfer energy profiles along the DOPC bilayer for organic chemicals (A-C) and correlation 
curve between their experimental and calculated permeability coefficients (D).  Intrinsic permeability 
coefficients ( ) for 17 unionized permeants studied in BLM were taken from publication by 
Walter and Gutknecht (1986). Calculation of intrinsic permeability coefficients ( ) was based on 
equation (15). Calculations of transbilayer energy profiles were performed by the PerMM web server 
(https://permm.phar.umich.edu/server) using the “drag” option. 

 

 

https://permm.phar.umich.edu/server
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Figure S4. Weak Influence of multiple conformations of flexible compounds on calculated permeability 
across the lipid bilayer. Correlation between experimental and calculated permeability coefficients 
across the artificial lipid bilayer (BLM or liposomes): (A) intrinsic permability coefficients for 58 unionized 
( vs ) and (B) membrane permability coefficients for 20 ionized permeants ( vs 

). The permeability coefficients were calculated using single (colored black) or multiple (colored 
red) conformations. The integral  values were calculated using equation (6). For the ionized 
species, the integral  included deionization penalty of ionizable groups at specified pH. 
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Figure S5. Prediction of permeability of pure phospholipid bilayers. (A) Correlation between calculated 
and experimental permeability coefficients through BLM and liposomes. The  values were 
calculated using equation (6). For the ionized species, the integral  accounted for the 
deionization penalty of ionizable groups at specified pH. Black solid regression line corresponds to the 
initial set of 78 compounds, purple dashed line corresponds to the extended set of 129 compounds (76 
acids shown by red circles, 19 bases shown by blue circles, 26 neutral molecules shown by gray circles, 
and 8 zwitterions shown by yellow circles), green dashed line corresponds to the extended set 132 
compounds with 3 outliers shown by green triangles. Number of molecules “n” is indicated in 
parenthesis. (B) Influence of cholesterol and sphingomyelin on BLM permeability. Experimental 
permeability coefficients decrease by ~1.9 log units upon addition of cholesterol and sphingomyelin in 
the lipid bilayer, as follows from measurements by Finkelstein 3 and Xiang et al. 4.  
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Figure S6. Selection of data sets for permeability calculations. (A) Correlation between experimental 
intrinsic PAMPA-DS (A), BBB (B) and Caco-2/MDCK (C) permeability coefficients vs calculated integral 

 values (eq. 6) for different sets of compounds (n is the number of compounds). Colored circles 
indicate different charge classes of molecules: red for acids, blue for bases, and gray for neutral 
molecules, yellow for zwitterions; green triangles represent outliers. Number of molecules “n” is 
indicated in parenthesis. Black solid linear regression lines in all panels indicate models for all compounds 
without outliers, green dashed lines in panels (A, C, E) corresponds to extended sets of compounds with 
outliers, but in panels (B, D, F) they correspond to decreased sets of compounds that exclude outliers 
and zwitterions. The complete data sets without outliers were chosen for testing the PerMM method.  
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Figure S7. Prediction of permeability coefficients through different membranes. Plot of experimental 
vs calculated permeability coefficients through BLM (A), PAMPA-DS (B), BBB (C), and Caco-2/MDCK cells 
(D). For BLM, intrinsic permeability coefficeins ( ) were calculated for 108 unionized compounds 
and membrane permeability coefficients ( ) for 21 ionized compounds. Intrinsic permeability 
coefficeins ( ) were compared with 322, 199, and 185 experimenat data obtained in PAMPA-DS, 
BBB, and Caco-2/MDCK assays, respectively. Dashed lines indicate the ideal line and residual line limits 
with cutoff of |3.2| (A and B) and |2| (C and D). Colored circles indicate different charge classes of 
molecules: red for acids, blue for bases, gray for neutral molecules, and yellow for zwitterions; green 
triangles are for outliers. Numbers of molecules of each class are indicated in parenthesis. 
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Figure S8. Prediction of intrinsic (A) and membrane (B, C) permeability coefficients of organic 
molecules through PAMPA-DS system. Plots of experimental vs calculated PAMPA-DS permeability 
coefficients of organic molecules in the unionized state (  vs ) (A) and the 
ionized states at pH 6.5 (  vs ) (B) and pH=7.4 (  vs ) 
(C). Dashed lines indicate ideal line and residual line limits with cutoff of |3.2|. Colored circles indicate 
different charge classes of molecules: red for acids and blue for bases. Numbers of molecules “n” is 
shown in parenthesis. Experimental intrinsic ( ) and membrane permeability coefficients 
( ) for PAMPA-DS at pH 6.5 and 7.4 were compiled by Avdeef5.  
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Figure S9. Prediction of intrinsic BBB permeability of organic molecules. (A) Plot of experimental 
( ) vs calculated ( ) permeability coefficients of 56 BBB-permeable (BBB+, red circles) and 
16 BBB-impermeable (BBB-, blue circles) compounds, excluding zwitterions. BBB-permeable compounds 
demonstrate permeability higher than the threshold, . Dashed lines indicate ideal line 
and residual line limits (cutoff = |1.76|). “Efflux minimized” data for intrinsic BBB permeability 
coefficients corrected for ionization ( ) obtained by in situ rodent brain perfusion, were taken 
from Table S3, where (+) and (-) symbols indicated BBB+ and BBB- compounds, respectively. Number of 
molecules “n” is indicated in parenthesis.  
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Figure S10. Comparison of the accuracy of prediction of PAMPA permebility coefficents by PerMM (A), 
Machine Learning algorythm (B) and MemDrugPerm (C, D). The predicted permeability coefficients 
were evaluated against the experimental intrinsic  values for PAMPA-DS assays compiled 
by Avdeef5. Permeability data for 58 compounds calculated by MemDrugPerm and Machine Learing 
Algorithm were taken from Table S7 in reference6. The rmse* values in parenthesis for panels B, C, and 
D were obtained after scaling the calculated values to the experimental values to get linear regression 
line with “a”=0, “b”=1. Number of molecules “n” is indicated in parenthesis. 
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Figure S11. Comparison of the accuracy of prediction of PAMPA and Caco-2 permebility coefficents by 
different computational methods: PerMM (A, B), Leung’s model (B, C), and QikProp (E, F). The predicted 
permeability coefficients were evaluated against the experimental intrinsic permeability coefficients 
obtained in PAMPA-DS ( ) and Caco-2/MDCK ( ) assays and compiled by 
Avdeef 5, 7. Results of caclulation by Leung’s model and QikProp for 73 and 44 compounds, which were 
also analysed in this study by PerMM, were taken from Table S2 in reference8. Number of molecules “n” 
is indicated in parenthesis.  
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TABLES 

Table S1. Experimental ( ) and calculated ( ) intrinsic permeability coefficients of 
unionized molecules through artificial lipid membranes (BLM and liposomes).  
 

Compound Name Group   * Ref. Experimental Conditions 

Main set (58 compounds: 42 acids, 3 bases, 13 neutrals) 

1-Naphthoic acid Acids 0.36 -3.10 0.37 9 BLM, eggPC, 25°C 
2-Naphthoic acid Acids 1.23 -3.07 0.40 9 BLM, eggPC, 25°C 
4-Carboxymethylphenyl 
acetyl_NHMe 

Acids -4.47 -6.60 -3.35 10 LUV, DOPC:DOPA=96:4, 
25°C 

4-Carboxymethylphenyl 
acetyl-Gly-NMe2 

Acids -5.80 -7.74 -4.56 10 LUV, DOPC:DOPA=96:4, 
25°C 

4-Carboxymethylphenyl 
acetyl-NMe2 

Acids -3.48 -6.44 -3.18 10 LUV, DOPC:DOPA=96:4, 
25°C 

4-Hydroxybenzoic acid Acids -3.08 -6.53 -3.27 11 BLM, eggPC, 25°C 
4-Methylbenzoic acid Acids 0.04 -3.53 -0.08 9, 12 BLM, eggPC, 25°C 
4-Methylphenyl acetic 
acid 

Acids -0.15 -3.19 0.28 10 LUV, DOPC:DOPA=96:4, 
25°C 

9-Anthroic acid Acids 0.51 -2.02 1.52 9 BLM, eggPC, 25°C 
Acetic acid Acids -2.30(-2.16) -5.37 -2.04 9 (13) BLM, eggPC, 25°C 
alpha-Carbamoyl-
methylhippuric acid 

Acids -8.00 -10.40 -7.39 10 LUV, DOPC:DOPA=96:4, 
25°C 

alpha-Carbamoyl-p-Toluic 
acid 

Acids -4.39 -7.86 -4.69 9, 12 BLM, eggPC, 25°C 

alpha-Carboxy-p-
methylhippuric acid 

Acids -6.77 -9.46 -6.39 10 LUV, DOPC:DOPA=96:4, 
25°C 

alpha-Carboxy-p-Toluic 
acid 

Acids -3.74 -6.79 -3.55 9, 12 BLM, eggPC, 25°C 

alpha-Chloro-p-
methylhippuric acid 

Acids -3.46 -7.05 -3.83 10 LUV DOPC:DOPA=96:4 

alpha-Chloro-p-Toluic acid Acids -0.19 -4.19 -0.79 9, 12 BLM, eggPC, 25°C 
alpha-Cyano-p-
methylhippuric acid 

Acids -5.04 -8.72 -5.60 10 LUV, DOPC:DOPA=96:4, 
25°C 

alpha-Cyano-p-Toluic acid Acids -1.57 -6.21 -2.93 9, 12 BLM, eggPC, 25°C 
alpha-Hydroxy-p-
methylhippuric acid 

Acids -6.26 -9.37 -6.29 10 LUV, DOPC:DOPA=96:4, 
25°C 

alpha-Hydroxy-p-Toluic 
acid 

Acids -2.80 -6.77 -3.53 9, 12 BLM, eggPC, 25°C 

alpha-Methoxy-
methylhippuric_acid 

Acids -4.00 -8.34 -5.20 10 LUV, DOPC:DOPA=96:4, 
25°C 

alpha-Methoxy-p-Toluic 
acid 

Acids -0.46 -5.40 -2.07 9, 12 BLM, eggPC, 25°C 

Benzoic acid Acids -0.24(-0.26) -3.85 -0.43 9 (13) BLM, eggPC, 25°C 
Butyric acid Acids -1.02 -4.55 -1.17 13 BLM, eggPC, 25°C 
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Caproic (hexanoic) acid Acids 0.04 -3.83 -0.40 13 BLM, eggPC, 25°C 
L-Lactic acid Acids -4.30 -7.54 -4.35 13 BLM, eggPC, 25°C 
Propionic acid Acids -1.46 -4.86 -1.50 13 BLM, eggPC, 25°C 
Salicylic acid Acids -0.11 -4.99 -1.64 13 BLM, eggPC, 25°C 
Thiocyanic acid Acids 0.41 -4.35 -0.96 13 BLM, eggPC, 25°C 
Tol-Ala Acids -2.64 -5.34 -2.01 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Ala-Ala Acids -4.96 -6.95 -3.72 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Ala-Ala-Ala Acids -7.02 -8.65 -5.53 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly Acids -3.19 -6.39 -3.13 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly-Gly Acids -6.38 -7.84 -4.67 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly-Gly-Gly Acids -8.77 -10.92 -7.94 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly-Gly-Sar Acids -7.31 -9.60 -6.54 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly-Sar Acids -4.72 -8.05 -4.89 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Gly-Sar-Gly Acids -7.32 -9.39 -6.32 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Sar Acids -2.82 -6.36 -3.09 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Sar-Gly Acids -5.49 -7.87 -4.70 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Sar-Gly-Gly Acids -7.85 -9.77 -6.72 10 LUV, DOPC:DOPA=96:4, 

25°C 
Tol-Sar-Sar-Gly Acids -7.12 -9.71 -6.66 10 LUV, DOPC:DOPA=96:4, 

25°C 
Codeine Bases -0.85 -4.62 -1.24 13, 14 BLM, eggPC, 25°C 
Ethylamine Bases -0.92 -4.43 -1.04 13 BLM, eggPC, 25°C 
Methylamine Bases -1.10 -5.62 -2.31 13 BLM, eggPC, 25°C 
1,4-Butanediol Neutral -3.57 -7.24 -4.03 13 BLM, eggPC, 25°C 
2,3-Dideoxyadenosine Neutral -4.20 -9.34 -6.26 9 BLM, eggPC, 25°C 
2-Deoxyadenosine Neutral -6.03 -11.71 -8.78 9 BLM, eggPC, 25°C 
Acetamide Neutral -3.54(-3.77) -6.37 -3.10 9 (13) BLM, eggPC, 25°C 
Adenine Neutral -4.86 -7.86 -4.69 9 BLM, eggPC, 25°C 
Ethylene glycol Neutral -4.06 -7.94 -4.77 13, 14 BLM, eggPC, 25°C 
Formamide Neutral -4.00 -7.36 -4.16 13 BLM, eggPC, 25°C 
Glycerol Neutral -5.27 -10.05 -7.02 13 BLM, eggPC, 25°C 
Hydrocortisone Neutral -3.25 -8.24 -5.09 9 BLM, eggPC, 25°C 
Prednisolone Neutral -3.82 -8.37 -5.23 9 BLM, eggPC, 25°C 
Propylene glycol Neutral -3.55 -6.76 -3.52 13, 14 BLM, eggPC, 25°C 
Urea Neutral -5.40 -9.62 -6.56 13 BLM, eggPC, 25°C 
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Water Neutral -2.72(-2.47) -7.51 -4.32 9 (13) BLM, eggPC, 25°C 

Additional set (51 compounds: 23 acids, 11 bases, 13 neutrals, 4 zwitterions) 

2,4-Dihydroxybenzoic acid Acids -3.33 -7.76 -4.58 11 BLM, eggPC, 25°C 
2-Hydroxybutyric acid Acids -3.91 -6.97 -3.74 11 BLM, eggPC, 25°C 
2-Hydroxycaproic acid Acids -3.67 -6.23 -2.96 11 BLM, eggPC, 25°C 
2-Hydroxyvaleric acid Acids -3.53 -6.59 -3.34 11 BLM, eggPC, 25°C 
Acetylsalicylic acid Acids -0.82 -3.32 0.14 15 BLM, eggPC, 24°C 
Bromoacetic acid Acids -2.91 -4.67 -1.30 11 BLM, eggPC, 25°C 
Chloroacetic acid Acids -2.94 -5.91 -2.62 11 BLM, eggPC, 25°C 
Citric acid Acids -10.51 -12.97 -10.12 16 MLV, 

eggPC:PA=9:1,25°C,pH7 
Epinephrine Acids -5.57 -8.60 -5.48 17 Liposomes, eggPC, pH7 
Formic acid Acids -2.54(-2.14) -6.07 -2.79 9 (13) BLM 2%eggPC 
Hydrochloric acid Acids 0.46 -2.57 0.94 13 BLM, eggPC, 25°C 
Iodoacetic acid Acids -2.96 -5.52 -2.20 11 BLM, eggPC, 25°C 
Isobutyric acid Acids -3.03 -4.32 -0.92 11 BLM, eggPC, 25°C 
Isovaleric acid Acids -2.88 -4.10 -0.69 11 BLM, eggPC, 25°C 
Malic acid Acids -7.92 -11.20 -8.24 16 MLV, 

eggPC:PA=9:1,25°C,pH7 
n-Octylmalonic acid Acids -3.00 -5.38 -2.05 18 BLM, DPhPC, pH6, 21-

23°C 
Phenylacetic acid Acids -3.09 -3.61 -0.17 11 BLM, eggPC, 25°C 
Pivalic acid Acids -3.62 -3.82 -0.39 11 BLM, eggPC, 25°C 
Sebacic acid Acids -3.00 -5.76 -2.46 18 BLM, DPhPC, pH6, 21-

23°C 
Tiglic acid Acids -2.87 -3.90 -0.48 11 BLM, eggPC, 25°C 
Valeric acid Acids -1.10 -4.18 -0.78 19 GUV,DPPC:DOPC:CH=1:1:

1,pH7 
Vanillic acid Acids -3.58 -7.75 -4.57 11 BLM, eggPC, 25°C 
Phloretin Acids -3.62 -9.00 -5.90 20 BLM, DPhPC  
Ammonia Bases -1.28(-0.89) -6.75 -3.51 21 

(13) 
BLM, soyPC 

Chlorpromazine Bases 0.59 -2.14 1.39 22 LUV, POPC, pH5.9  
Desipramine Bases 0.65 -0.98 2.63 22 LUV, POPC, pH5.9  
Domperidone Bases -2.60 -6.49 -3.23 22 LUV, POPC, pH5.9  
Ethanolamine Bases -4.89 -7.82 -4.65 23 renal lisosomes 
Histamine Bases -4.46 -6.57 -3.32 24 BLM, eggPC:CHOL=2:1, 

24°C, pH9.8-10.6 
Labetalol Bases -2.10 -4.91 -1.55 22 LUV, POPC, pH5.9  
Loperamide Bases -0.42 -1.22 2.37 22 LUV, POPC, pH5.9  
Propranolol Bases 0.19 -0.23 3.42 22 LUV, POPC, pH5.9  
Tryptamine Bases -0.76 -4.34 -0.95 24 BLM, eggPC:CHOL=2:1, 

24°C, pH7.5-10 
Verapamil Bases 0.01 -5.88 -2.58 22 LUV, POPC, pH5.9  
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1,6-Hexanediol Neutral -3.65 -5.22 -1.88 3 BLM, 
eggPC:CHOL=1:2,24°C, 
pH5.6 

D-Fructose Neutral -9.40 -13.29 -10.46 25 LUV, eggPC, 25°C, pH7.5 
D-Glucose Neutral -10.52 -14.87 -12.14 25 LUV, eggPC, 25°C, pH7.5 
Butanol Neutral -2.92 -3.91 -0.49 26 GUV, 

SOPC:SOPS=99.5:0.5 
Ethanol Neutral -4.42 -4.68 -1.31 26 GUV, 

SOPC:SOPS=99.5:0.5 
Isobutyramide Neutral -3.70 -5.40 -2.07 3 BLM, 

eggPC:CHOL=1:2,24°C, 
pH5.6 

n-Butyramide Neutral -3.52 -5.49 -2.17 3 BLM, 
eggPC:CHOL=1:2,24°C, 
pH5.6 

Pentanamide Neutral -3.74 -5.30 -1.97 27 Liposomes, eggPC,  
Propanol Neutral -3.55 -4.24 -0.84 26 GUV, 

SOPC:SOPS=99.5:0.5 
Propionamide Neutral -4.21 -5.81 -2.51 27 Liposomes, eggPC, 24°C 
Erythritol Neutral -6.40 -11.99 -9.08 28 LUV, 

POPC:CH:PA=20:15:2, 
23°C  

Sucrose Neutral -13.10 -18.41 -15.91 25 LUV, eggPC, 25°C, pH7.5 
Theophylline Neutral -3.53 -8.99 -5.89 24 BLM, eggPC:CHOL=2:1, , 

pH7.7-9.4 
Enrofloxacin Zwitterions -3.91 -6.49 -3.23 29 GUV, DPhPC, pH=7 
Fleroxacin Zwitterions -4.96 -9.25 -6.17 29 GUV, DPhPC, pH=7 
Norfloxacin Zwitterions -6.23 -8.06 -4.90 29 GUV, DPhPC, pH=7 
Pefloxacin Zwitterions -4.28 -7.68 -4.50 29 GUV, DPhPC, pH=7 

Outliers (2 compounds) 

Hydrofluoric acid Acids -3.51 -3.24 0.22 13 BLM, eggPC, 25°C 
Nitric acid Acids -3.04 -2.07 1.47 13 BLM, eggPC, 25°C 

 
* - Calulation of intrinsic permeability coefficients through BLM/liposomes of the inionized species was 
performed using the equation      . 
Notes:  
1. Selecting the main set, we combined data obtained under similar experimental conditions. Data 
obtained in slightly different experimental conditions were included in the additional set. We also took 
into account that very small solutes (hydrochloric acid, hydrofluoric acid, ammonia, formic acid) 
permeate 2 to 15 times faster than predicted based on their partition coefficients, as found by Walter 
and Gutknecht.13 Therefore, these data were also placed to the additional set, except the hydrofluoric 
and nitric acids that were considered as outliers. The outliners were selected using the cutoff of 2 for 
standardized residuals.  
2. For references included in parenthesis, the experimental permeability coefficients are indicated in 
parenthesis.   
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Table S2. Experimental ( ) and calculated ( ) membrane permeability coefficients of 
ionized molecules through artificial lipid membranes (BLM and liposomes) at specified pH.  
 

Compound Name Group   * Ref. Experimental 
Conditions 

Parameterization set (20 compounds: 11 acids, 5 bases, 4 zwitterions) 

12-Hydroxydodecanoic 
acid 

Acids -4.70 -6.42 -3.16 30 BLM, DphPC, 37°C, 
pH7.2 

2-Aminobenzoic acid Acids -8.73 -11.00 -8.03 31 LUV,eggPC, 25°C,pH7 
2-Hydroxynicotinic acid Acids -6.78 -11.13 -8.17 31 LUV,eggPC, 25°C,pH7 
3,5-Dichlorobenzoic acid Acids -7.17 -8.61 -5.49 31 LUV,eggPC, 25°C,pH7 
alpha-Carbamoyl-
methylhippuric acid 

Acids -12.70 -13.82 -11.03 32 LUV, eggPC, 
25°C,10%gA,pH>9 

alpha-Carboxy-p-
methylhippuric acid 

Acids -12.52 -12.65 -9.78 32 LUV, eggPC, 
25°C,10%gA,pH>9 

alpha-Cyano-p-
methylhippuric acid 

Acids -10.02 -12.13 -9.23 32 LUV, eggPC, 
25°C,10%gA,pH>9 

alpha-Hydroxy-p-
methylhippuric acid 

Acids -11.66 -12.77 -9.91 32 LUV, eggPC, 
25°C,10%gA,pH>9 

alpha-Methoxy-
methylhippuric acid 

Acids -9.82 -11.62 -8.69 32 LUV, eggPC, 
25°C,10%gA,pH>9 

Salicylic acid Acids -6.94** -10.23 -7.21 31 LUV,eggPC, 25°C,pH7 
Tol-Gly Acids -9.36 -9.71 -6.66 32 LUV, eggPC, 

25°C,10%gA,pH>9 
Methylamine Bases -6.00 -7.91 -4.74 33 MLV,eggPC,25°C, pH7.1 
Ethylamine Bases -6.15 -8.22 -5.07 33 MLV,eggPC,25°C, pH7.1 
1-Butylamine Bases -4.28 -7.04 -3.82 33 MLV,eggPC,25°C, pH7.1 
1-Propylamine Bases -5.37 -7.28 -4.07 33 MLV,eggPC,25°C, pH7.1 
Pentylamine Bases -3.40 -6.40 -3.14 33 MLV,eggPC,25°C, pH7.1 
Glycine Zwitterions -11.24 -15.22 -12.51 34 MLV,eggPC, 20-22°C, 

pH7 
L-Tryptophan Zwitterions -9.39 -13.30 -10.47 34 MLV,eggPC, 20-22°C, 

pH7 
L-Phenylalanine Zwitterions -9.60 -12.91 -10.06 34 MLV,eggPC, 20-22°C, 

pH7 
L-Serine Zwitterions -11.26 -17.05 -14.46 34 MLV,eggPC, 20-22°C, 

pH7 
Outlier 

L-Lysine Zwitterions -11.29 -8.68 -5.56 34 MLV,eggPC, 20-22°C, 
pH7 

* - Calulation of actual membrane permeability coefficients through BLM/liposomes (  ) of 
ionized species in water was performed using the equation   , 
where the integral of transbilayer energy profile, , included deionization penalties of 
ionizable compounds at pH 7 or 9. 
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** -The experimental value   for salicylic acid was reported by Thomae et al.31  as 
being valid for the neutral form. This became a matter of criticism35 and controversy as compared to 
the intrinsic premability coefficient of salicylic acid that was previously reported by Walter and 
Gutknecht13 ( , Table S1). We believe this controversy can be resolved by 
assuming that Thomae et al. actually measured the membrane permeability coefficient (  ), 
which depends on both solvation and deionization energy terms.   



S20 
 

Table S3. Experimental ( ) and calculated ( ) intrinsic permeability coefficients of 
unionized molecules through BBB membranes.  
 

Compound Name Group *   ** *** 

Main set (158 compounds: 18 acids, 80 bases, 60 neutral, 24 zwitterions) 

2-Aminobenzoic acid Acids -4.91 -4.97 -3.19 -3.46 
Butyric acid Acids -2.15 -4.55 -2.83 -3.31 
Caproic acid Acids -1.31 -3.83 -2.21 -3.04 
Flurbiprofen Acids -0.58 -2.48 -1.04 -2.53 
Fluvastatin (+) Acids -2.28 -4.85 -3.09 -3.42 
Glyburide Acids -3.74 -9.05 -6.70 -4.99 
Ibuprofen (+) Acids -1.22 -1.91 -0.55 -2.32 
Kynurenic acid Acids -5.42 -7.35 -5.24 -4.36 
Naringenin Acids -3.96 -8.08 -5.87 -4.63 
Octanoic (caprylic) acid Acids -1.14 -3.13 -1.60 -2.77 
Probenecid (+) Acids -2.55 -5.42 -3.58 -3.63 
Quercetin (-) Acids -4.03 -10.26 -7.75 -5.45 
Quinolinic acid Acids -6.26 -8.82 -6.50 -4.91 
Taurocholic acid Acids -6.10 -11.11 -8.48 -5.77 
Thiothixene Acids -2.35 -6.04 -4.11 -3.87 
Tolbutamide Acids -3.53 -6.09 -4.15 -3.88 
Valproic acid Acids -2.00 -2.62 -1.16 -2.58 
Warfarin (+) Acids -1.56 -3.31 -1.76 -2.84 
Alfentanil Bases -2.98 -4.73 -2.98 -3.37 
Amantadine Bases -0.86 -1.99 -0.62 -2.35 
Aminoguanidine Bases -5.85 -6.48 -4.49 -4.03 
Amitriptyline (+) Bases -1.13 0.11 1.19 -1.56 
Amoxapine (+) Bases -2.75 -3.59 -2.00 -2.95 
Astemizole (+) Bases -2.61 -1.87 -0.52 -2.30 
Atomoxetine Bases -1.27 -0.69 0.50 -1.86 
Bremazocine (+) Bases -2.76 -2.64 -1.18 -2.59 
Brompheniramine Bases -1.58 -1.81 -0.47 -2.28 
Bupropion Bases -2.09 -1.73 -0.40 -2.25 
Buspirone (+) Bases -2.53 -4.75 -3.00 -3.38 
Chlorpheniramine (+) Bases -1.84 -2.05 -0.67 -2.37 
Chlorpromazine (+) Bases -1.23 -2.14 -0.75 -2.40 
Cimetidine (+) Bases -5.61 -6.89 -4.84 -4.18 
Citalopram (+) Bases -2.07 -4.57 -2.84 -3.31 
Clemastine (+) Bases -0.95 0.15 1.22 -1.54 
Clozapine Bases -3.11 -3.70 -2.10 -2.99 
Codeine (+) Bases -3.80 -4.62 -2.89 -3.33 
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CP-141938 Bases -3.98 -5.25 -3.43 -3.57 
Diltiazem (+) Bases -2.81 -4.46 -2.75 -3.27 
Diphenhydramine (+) Bases -1.90 -0.65 0.53 -1.84 
Dipyridamole Bases -4.59 -10.91 -8.30 -5.69 
Domperidone (+) Bases -4.45 -6.49 -4.50 -4.03 
Donepezil Bases -1.68 -3.43 -1.86 -2.89 
Dopamine Bases -2.68 -6.91 -4.86 -4.19 
Doxepin Bases -1.24 -1.45 -0.16 -2.14 
Ergotamine Bases -3.82 -7.20 -5.11 -4.30 
Fentanyl (+) Bases -2.24 0.29 1.34 -1.49 
Fluoxetine (+) Bases -0.93 -1.48 -0.18 -2.16 
Fluphenazine Bases -3.35 -4.91 -3.14 -3.44 
Galantamine Bases -3.21 -4.97 -3.19 -3.46 
Guanidine Bases -5.60 -9.29 -6.91 -5.08 
Haloperidol (+) Bases -2.46 -2.87 -1.38 -2.68 
Hydroxyzine (+) Bases -3.04 -4.39 -2.69 -3.25 
Imatinib (+) Bases -3.70 -5.43 -3.59 -3.64 
Indinavir Bases -5.37 -5.59 -3.72 -3.70 
Lidocaine (+)  Bases -3.24 -2.00 -0.63 -2.35 
Loperamide (+) Bases -2.52 -1.22 0.04 -2.06 
Loxapine (+)  Bases -3.36 -3.37 -1.81 -2.86 
Meperidine (+)  Bases -2.08 -2.03 -0.66 -2.36 
Mepyramine (+) Bases -2.04 -3.18 -1.65 -2.79 
Mesoridazine Bases -1.41 -3.63 -2.03 -2.96 
Methadone (+) Bases -2.02 -0.66 0.52 -1.85 
Metoclopramide Bases -2.86 -6.70 -4.68 -4.11 
Midazolam (+) Bases -3.11 -2.68 -1.22 -2.61 
Mirtazapine Bases -2.75 -1.93 -0.57 -2.32 
Misonidazole Bases -5.00 -7.93 -5.74 -4.57 
Morphine (+) Bases -4.86 -5.66 -3.78 -3.72 
Naltrindole (+) Bases -3.03 -3.82 -2.20 -3.03 
Olanzapine Bases -2.73 -3.12 -1.60 -2.77 
Oxycodone (+) Bases -3.48 -6.42 -4.44 -4.01 
Pentazocine Bases -3.69 -1.23 0.03 -2.06 
Pergolide Bases -1.14 -1.10 0.14 -2.01 
Perphenazine Bases -2.61 -4.95 -3.17 -3.46 
Pramipexole Bases -2.57 -4.90 -3.13 -3.44 
Prazosin Bases -4.36 -9.71 -7.27 -5.24 
Propranolol (+) Bases -1.42 -0.23 0.89 -1.69 
Pyrimethamine Bases -3.57 -6.63 -4.62 -4.09 
Quetiapine Bases -3.06 -5.26 -3.44 -3.57 
Quinidine (+) Bases -2.82 -4.57 -2.84 -3.31 
Quinine Bases -3.45 -4.62 -2.89 -3.33 
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Rimantadine Bases 0.13 -1.41 -0.12 -2.13 
Risperidone Bases -2.94 -2.66 -1.20 -2.60 
Rizatriptan (+) Bases -4.43 -5.52 -3.66 -3.67 
Saquinavir Bases -4.63 -7.85 -5.67 -4.54 
Selegiline Bases -3.12 -1.63 -0.31 -2.21 
Sertraline Bases -1.99 -0.85 0.36 -1.92 
Sufentanil (+) Bases -3.87 -1.50 -0.20 -2.16 
Sumatriptan (+) Bases -5.06 -7.29 -5.19 -4.33 
Tacrine Bases -1.51 -2.77 -1.29 -2.64 
Terfenadine (+) Bases -0.92 0.53 1.55 -1.40 
Thioridazine (+) Bases -1.95 -1.19 0.07 -2.05 
Trazodone Bases -3.13 -4.36 -2.66 -3.24 
Trifluoperazine Bases -3.00 -3.24 -1.70 -2.82 
U69593 (+) Bases -2.10 -1.20 0.06 -2.05 
Venlafaxine (+) Bases -1.66 -3.45 -1.88 -2.89 
Verapamil (+) Bases -2.26 -5.88 -3.97 -3.81 
Vinblastine Bases -4.81 -6.54 -4.54 -4.05 
Vincristine (-) Bases -5.60 -8.08 -5.87 -4.63 
Ziprasidone (+) Bases -3.25 -4.99 -3.21 -3.47 
1,4-Butanediol Neutral -5.03 -7.24 -5.14 -4.32 
Aldosterone Neutral -5.46 -8.81 -6.50 -4.90 
Alfuzosin (-) Neutral -4.64 -9.37 -6.98 -5.11 
Aminophenazone Neutral -3.30 -4.07 -2.41 -3.13 
Antipyrine (+) Neutral -4.00 -2.74 -1.27 -2.63 
Arabinose Neutral -6.63 -12.68 -9.83 -6.36 
Butanol Neutral -2.88 -3.91 -2.28 -3.07 
Caffeine (-) Neutral -4.00 -7.74 -5.57 -4.50 
Carbamazepine Neutral -3.26 -2.92 -1.42 -2.70 
Colchicine (-) Neutral -5.14 -8.53 -6.26 -4.80 
Corticosterone Neutral -4.29 -6.40 -4.42 -4.00 
Creatinine (-) Neutral -6.69 -9.72 -7.28 -5.25 
Cyclosporine A Neutral -4.17 -4.93 -3.15 -3.45 
D-Fructose Neutral -6.80 -13.29 -10.35 -6.58 
Dianhydrogalactitol Neutral -5.60 -10.03 -7.55 -5.36 
Diazepam (+) Neutral -3.01 -3.87 -2.24 -3.05 
Digoxin (-) Neutral -6.30 -9.60 -7.18 -5.20 
Erythritol (-) Neutral -6.57 -11.99 -9.24 -6.10 
Estradiol (+) Neutral -2.83 -2.74 -1.27 -2.63 
Ethanol (+) Neutral -3.28 -4.68 -2.94 -3.36 
Ethosuximide Neutral -4.46 -6.39 -4.41 -4.00 
Ethylene glycol Neutral -4.99 -7.94 -5.75 -4.58 
Etoposide Neutral -5.91 -13.60 -10.62 -6.70 
Formamide Neutral -5.72 -7.36 -5.25 -4.36 
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Galactitol Neutral -6.41 -15.48 -12.24 -7.41 
Hispidulin Neutral -3.11 -7.66 -5.51 -4.47 
Hydrocortisone Neutral -5.85 -8.24 -6.01 -4.69 
Hydroxyurea Neutral -6.00 -7.59 -5.45 -4.45 
Hypoxanthine (-) Neutral -5.49 -9.26 -6.88 -5.07 
Iodoacetamide Neutral -4.06 -6.52 -4.52 -4.05 
Iodoantipyrine Neutral -3.07 -2.77 -1.29 -2.64 
Isocarboxazid (+) Neutral -3.22 -3.06 -1.54 -2.75 
Isopropanol Neutral -3.66 -3.65 -2.05 -2.97 
Lamotrigine Neutral -4.67 -8.06 -5.85 -4.62 
Loratadine Neutral -3.48 -3.07 -1.55 -2.75 
Mannitol Neutral -6.27 -15.56 -12.31 -7.44 
Meprobamate (-) Neutral -5.09 -11.04 -8.42 -5.74 
Methanol Neutral -3.66 -5.87 -3.96 -3.80 
Methylurea Neutral -5.70 -8.66 -6.37 -4.85 
Metronidazole Neutral -4.85 -6.97 -4.91 -4.21 
Niacinamide Neutral -4.88 -7.34 -5.23 -4.35 
Pemoline (-) Neutral -5.45 -7.64 -5.49 -4.47 
Phenytoin Neutral -4.15 -5.69 -3.81 -3.73 
Procarbazine Neutral -4.62 -4.17 -2.50 -3.16 
Progesterone Neutral -3.74 -1.73 -0.40 -2.25 
Propylene glycol Neutral -4.49 -6.76 -4.73 -4.14 
Ralimetinib dimesylate Neutral -2.93 -2.99 -1.48 -2.72 
Ritonavir Neutral -4.87 -6.15 -4.21 -3.91 
Sucrose Neutral -7.27 -18.41 -14.76 -8.50 
Temazepam Neutral -3.35 -5.70 -3.82 -3.74 
Testosterone (+) Neutral -3.10 -2.72 -1.25 -2.62 
Theobromine (-) Neutral -5.00 -9.08 -6.73 -5.01 
Theophylline Neutral -5.24 -8.99 -6.65 -4.97 
Thiourea (+) Neutral -5.30 -7.29 -5.19 -4.33 
Thymidine Neutral -5.84 -12.60 -9.76 -6.33 
Thymine (-) Neutral -3.93 -8.23 -6.00 -4.69 
Urea Neutral -6.12 -9.62 -7.19 -5.21 
Xanthine (-) Neutral -5.62 -11.77 -9.05 -6.01 
Zaleplon Neutral -4.25 -5.45 -3.60 -3.64 
Zidovudine (-) Neutral -5.99 -9.90 -7.43 -5.31 
DPDPE Zwitterions -5.97 -14.63 -11.51 -7.09 
Gabapentin Zwitterions -4.34 -5.41 -3.57 -3.63 
Glycine Zwitterions -5.50 -8.47 -6.20 -4.78 
Grepafloxacin Zwitterions -4.86 -6.19 -4.24 -3.92 
L-Alanine Zwitterions -5.50 -7.28 -5.18 -4.33 
L-Arginine Zwitterions -4.64 -11.08 -8.45 -5.76 
L-Aspartic acid Zwitterions -6.66 -10.41 -7.87 -5.50 
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L-Dopa Zwitterions -3.99 -9.60 -7.18 -5.20 
L-Glutamic acid Zwitterions -6.26 -10.35 -7.82 -5.48 
L-Glutamine Zwitterions -5.28 -11.45 -8.77 -5.89 
L-Histidine Zwitterions -4.28 -9.56 -7.14 -5.19 
L-Isoleucine Zwitterions -4.16 -5.91 -4.00 -3.82 
L-Kynurenine Zwitterions -6.16 -8.46 -6.19 -4.77 
L-Leucine Zwitterions -3.63 -5.98 -4.06 -3.84 
L-Lysine Zwitterions -4.93 -8.68 -6.38 -4.86 
L-Methionine Zwitterions -4.39 -6.90 -4.85 -4.19 
L-Ornithine Zwitterions -4.68 -9.53 -7.12 -5.17 
L-Phenylalanine Zwitterions -4.13 -5.41 -3.57 -3.63 
L-Threonine Zwitterions -5.21 -9.17 -6.81 -5.04 
L-Tryptophan Zwitterions -4.22 -6.95 -4.89 -4.21 
L-Tyrosine Zwitterions -3.90 -8.03 -5.82 -4.61 
L-Valine Zwitterions -4.68 -6.19 -4.24 -3.92 
Melphalan Zwitterions -5.27 -6.50 -4.51 -4.04 
Tiagabine Zwitterions -4.45 -2.78 -1.30 -2.64 

Outliers (17 compounds:7 acids, 3 bases, 5 neutrals, 2 zwitterions) 

Ascorbic acid Acids -2.54 -13.80 -10.79 -6.78 
Chlorambucil Acids -0.80 -3.82 -2.20 -3.03 
Indomethacin Acids -1.06 -5.69 -3.81 -3.73 
Methotrexate Acids -5.57 -17.84 -14.27 -8.29 
Naproxen Acids -0.77 -3.78 -2.16 -3.02 
Neotrofin Acids -3.80 -12.11 -9.34 -6.14 
Salicylic acid Acids -1.02 -4.99 -3.21 -3.47 
Daunorubicin Bases -2.40 -13.82 -10.81 -6.78 
Doxorubicin Bases -3.35 -15.94 -12.64 -7.58 
Mitoxantrone Bases -3.06 -12.42 -9.61 -6.26 
Adenosine Neutral -4.42 -15.77 -12.49 -7.51 
D-Glucose Neutral -4.82 -14.87 -11.72 -7.18 
Methylprednisolone Neutral -7.00 -8.11 -5.89 -4.64 
Paclitaxel Neutral -6.63 -7.56 -5.42 -4.44 
Phenelzine Neutral -4.32 -0.76 0.44 -1.89 
Cetirizine Zwitterions -5.63 -4.27 -2.59 -3.20 
Fexofenadine Zwitterions -5.94 -2.63 -1.17 -2.59 

*- “efflux minimized” intrinsic BBB permeability coefficients , which were obtained by the in situ 
rodent brain perfusion technique and corrected for ionization, were compiled by Avdeef in Table 9.7 36. 
“+” sign indicates BBB-permeable compounds (BBB+), “-“ sign indicates BBB-impermeable compounds 
(BBB-) used in Figure S8.  
** - Calulation of intrinsic permeability coefficients of unionized species through PM was performed 
using the equation . 
*** - Calulation of intrinsic permeability coefficients of unionized species through BBB was performed 

using the equation .  
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Table S4. Experimental ( ) and calculated ( ) intrinsic permeability 
coefficients of unionized molecules through Caco-2/MDCK cell membranes.  
  

Compound Name Group *    ** *** 

Main set (165 compounds: 10 acids, 69 bases, 53 neutrals, 33 zwitterions) 

Flumequine Acids -2.47 -5.02 -3.23 -3.91 
Acetylsalicylic acid Acids -1.53 -3.32 -1.77 -3.44 
Ampicillin Acids -7.08 -9.37 -6.98 -5.09 
Ceftibuten Acids -5.32 -13.98 -10.95 -6.34 
Cephaloridine Acids -6.53 -8.54 -6.26 -4.86 
Chlorothiazide Acids -6.62 -12.28 -9.48 -5.88 
Fluorescein Acids -2.29 -6.12 -4.18 -4.20 
Furosemide Acids -3.50 -8.49 -6.22 -4.85 
Losartan Acids -3.96 -1.81 -0.47 -3.03 
Warfarin Acids -1.54 -3.31 -1.76 -3.44 
Alfentanil Bases -3.54 -4.73 -2.98 -3.83 
Amodiaquine Bases -2.88 -4.39 -2.69 -3.73 
Bremazocine Bases -2.86 -2.64 -1.18 -3.26 
Brompheniramine Bases -2.70 -1.81 -0.47 -3.03 
Chlorpheniramine Bases -2.72 -2.05 -0.67 -3.10 
Clemastine Bases -2.50 0.15 1.22 -2.50 
Dextromethorphan Bases -2.6 -2.00 -0.63 -3.08 
Dextrorphan Bases -2.53 -2.99 -1.48 -3.35 
Diphenhydramine Bases -3.12 -0.65 0.53 -2.72 
Ephedrine Bases -2.91 -3.49 -1.91 -3.49 
Hydroxyzine Bases -4.13 -4.39 -2.69 -3.73 
Lincomycin Bases -6.51 -12.13 -9.36 -5.84 
Loxapine Bases -4.23 -3.37 -1.81 -3.46 
Nicotine Bases -3.62 -3.55 -1.97 -3.51 
Practolol Bases -3.43 -3.91 -2.28 -3.60 
Pumafentrine Bases -3.36 -2.40 -0.98 -3.19 
Rizatriptan Bases -4.18 -5.52 -3.66 -4.04 
Scopolamine Bases -4.57 -4.74 -2.99 -3.83 
Sulpiride Bases -4.16 -8.90 -6.57 -4.96 
Tolafentrine Bases -4.59 -5.84 -3.94 -4.13 
Acebutolol Bases -4.19 -5.54 -3.68 -4.05 
Alprenolol Bases -2.23 -1.40 -0.11 -2.92 
Amantadine Bases -2.17 -1.99 -0.62 -3.08 
Amiloride Bases -4.75 -12.19 -9.41 -5.85 
Amoxapine Bases -3.84 -3.59 -2.00 -3.52 
Atenolol Bases -4.34 -6.07 -4.14 -4.19 
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Chloroquine Bases -1.18 -1.78 -0.44 -3.02 
Cimetidine Bases -6.06 -6.89 -4.84 -4.41 
Citalopram Bases -2.99 -4.57 -2.84 -3.78 
Desipramine Bases -1.67 -0.98 0.25 -2.81 
Diltiazem Bases -3.12 -4.46 -2.75 -3.75 
Dipyridamole Bases -3.86 -10.91 -8.30 -5.51 
Domperidone Bases -4.46 -6.49 -4.50 -4.30 
Erythromycin Bases -4.24 -7.94 -5.75 -4.70 
Famotidine Bases -6.41 -11.50 -8.81 -5.67 
Guanabenz Bases -2.86 -6.93 -4.88 -4.42 
Imipramine Bases -1.82 -0.91 0.31 -2.79 
Indinavir Bases -4.72 -5.59 -3.72 -4.06 
Labetalol Bases -4.27 -4.91 -3.14 -3.88 
Loperamide Bases -3.43 -1.22 0.04 -2.87 
Mepyramine Bases -2.84 -3.18 -1.65 -3.41 
Metoclopramide Bases -2.54 -6.70 -4.68 -4.36 
Metoprolol Bases -1.85 -2.24 -0.84 -3.15 
Midazolam Bases -3.44 -2.68 -1.22 -3.27 
Morphine Bases -4.55 -5.66 -3.78 -4.08 
Nadolol Bases -4.47 -5.27 -3.45 -3.97 
Nalbuphine Bases -3.30 -4.07 -2.41 -3.65 
Nelfinavir Bases -3.67 -2.39 -0.97 -3.19 
Pindolol Bases -2.22 -4.26 -2.58 -3.70 
Pirenzepine Bases -5.11 -7.70 -5.54 -4.63 
Prazosin Bases -4.54 -9.71 -7.27 -5.18 
Propranolol Bases -1.54 -0.23 0.89 -2.60 
Quinidine Bases -3.31 -4.57 -2.84 -3.78 
Quinine Bases -2.83 -4.62 -2.89 -3.80 
Ranitidine Bases -5.27 -5.16 -3.35 -3.94 
Saquinavir Bases -5.35 -7.85 -5.67 -4.67 
Sotalol Bases -4.60 -5.88 -3.97 -4.14 
Sumatriptan Bases -4.29 -7.29 -5.19 -4.52 
Terbutaline Bases -5.23 -6.83 -4.79 -4.40 
Terfenadine Bases -3.74 0.53 1.55 -2.40 
Timolol Bases -2.42 -6.63 -4.62 -4.34 
Topotecan Bases -4.77 -10.37 -7.84 -5.36 
Trimethoprim Bases -3.95 -10.83 -8.24 -5.48 
Venlafaxine Bases -2.84 -3.45 -1.88 -3.48 
Verapamil Bases -2.18 -5.88 -3.97 -4.14 
Vinblastine Bases -4.50 -6.54 -4.54 -4.32 
Vincristine Bases -5.54 -8.08 -5.87 -4.74 
Ziprasidone Bases -4.75 -4.99 -3.21 -3.90 
Zolmitriptan Bases -4.26 -8.09 -5.88 -4.74 
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Antipyrine Neutral -4.05 -2.74 -1.27 -3.29 
Benserazide Neutral -5.58 -13.22 -10.29 -6.13 
Chloramphenicol Neutral -4.47 -8.21 -5.98 -4.77 
DMP-450 Neutral -3.80 -5.09 -3.29 -3.92 
Erythritol Neutral -6.56 -11.99 -9.24 -5.80 
Ethosuximide Neutral -4.91 -6.39 -4.41 -4.28 
Guanfacine Neutral -4.73 -7.23 -5.14 -4.51 
Hydrochlorothiazide Neutral -6.32 -12.25 -9.46 -5.87 
Isocarboxazid Neutral -4.54 -3.06 -1.54 -3.37 
Meprobamate Neutral -4.94 -11.04 -8.42 -5.54 
Minoxidil Neutral -5.68 -7.25 -5.15 -4.51 
Netivudine Neutral -6.20 -14.44 -11.35 -6.47 
Pemoline Neutral -5.30 -7.64 -5.49 -4.62 
Praziquantel Neutral -3.44 -3.98 -2.34 -3.62 
Primidone Neutral -5.59 -6.61 -4.60 -4.34 
Propylthiouracil Neutral -3.76 -5.01 -3.22 -3.90 
Ralimetinib 
dimesylate 

Neutral -3.99 -2.99 -1.48 -3.35 

Thiabendazole Neutral -3.51 -3.72 -2.11 -3.55 
Water Neutral -6.00 -7.51 -5.38 -4.58 
Acetaminophen Neutral -4.34 -5.63 -3.76 -4.07 
Aciclovir Neutral -5.87 -13.72 -10.73 -6.27 
Alfuzosin Neutral -4.27 -9.37 -6.98 -5.09 
Amprenavir Neutral -4.38 -7.33 -5.22 -4.53 
Bromocriptine Neutral -4.67 -6.54 -4.54 -4.32 
Caffeine Neutral -4.14 -7.74 -5.57 -4.64 
Carbamazepine Neutral -3.69 -2.92 -1.42 -3.33 
Clonidine Neutral -3.91 -5.42 -3.58 -4.01 
Creatinine Neutral -5.90 -9.72 -7.28 -5.18 
Cyclosporine A Neutral -5.24 -4.93 -3.15 -3.88 
Dexamethasone Neutral -4.65 -8.79 -6.48 -4.93 
Diazepam Neutral -4.20 -3.87 -2.24 -3.59 
Digoxin Neutral -5.43 -9.60 -7.18 -5.15 
Etoposide Neutral -6.11 -13.60 -10.62 -6.24 
Famciclovir Neutral -4.79 -9.07 -6.72 -5.01 
Flavone Neutral -4.48 -1.18 0.08 -2.86 
Ganciclovir Neutral -6.99 -15.73 -12.46 -6.82 
Genistein Neutral -2.59 -7.67 -5.51 -4.63 
Hydrocortisone Neutral -4.63 -8.24 -6.01 -4.78 
Lamivudine Neutral -5.79 -11.23 -8.58 -5.59 
Lamotrigine Neutral -4.45 -8.06 -5.85 -4.73 
Lansoprazole Neutral -3.76 -8.86 -6.54 -4.95 
Loratadine Neutral -4.75 -3.07 -1.55 -3.38 
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Methylprednisolone Neutral -4.63 -8.11 -5.89 -4.75 
Omeprazole Neutral -3.86 -10.60 -8.04 -5.42 
Paclitaxel Neutral -5.26 -7.56 -5.42 -4.60 
Phenol red Neutral -6.64 -7.57 -5.43 -4.60 
Phenytoin Neutral -4.16 -5.69 -3.81 -4.09 
Resveratrol Neutral -4.82 -6.14 -4.20 -4.21 
Ritonavir Neutral -4.10 -6.15 -4.21 -4.21 
Testosterone Neutral -3.58 -2.72 -1.25 -3.28 
Theophylline Neutral -4.17 -8.99 -6.65 -4.98 
Urea Neutral -6.00 -9.62 -7.19 -5.16 
Zidovudine Neutral -4.97 -9.90 -7.43 -5.23 
CNV97100 Zwitterions -5.05 -7.72 -5.56 -4.64 
CNV97102 Zwitterions -4.38 -6.88 -4.83 -4.41 
CNV97103 Zwitterions -4.45 -6.49 -4.50 -4.30 
CNV97104 Zwitterions -4.53 -6.10 -4.16 -4.20 
Gly-Pro Zwitterions -5.18 -9.72 -7.28 -5.18 
Me-ciprofloxacin Zwitterions -3.70 -7.42 -5.30 -4.56 
Moxifloxacin Zwitterions -3.25 -7.70 -5.54 -4.63 
Sarafloxacin Zwitterions -5.24 -6.79 -4.76 -4.39 
5-Aminolevulinic acid Zwitterions -4.96 -7.99 -5.79 -4.71 
Amoxicillin Zwitterions -5.70 -11.97 -9.22 -5.79 
Cefaclor Zwitterions -6.02 -10.83 -8.24 -5.48 
Cefadroxil Zwitterions -6.07 -12.75 -9.89 -6.01 
Cefatrizine Zwitterions -5.57 -12.40 -9.59 -5.91 
Cefsulodin Zwitterions -6.78 -16.08 -12.76 -6.91 
Cephalexin Zwitterions -6.03 -10.11 -7.62 -5.29 
Cephaloglycin Zwitterions -6.33 -11.19 -8.55 -5.58 
Cephradine Zwitterions -6.11 -9.99 -7.51 -5.26 
Cetirizine Zwitterions -5.31 -4.27 -2.59 -3.70 
Ciprofloxacin Zwitterions -5.22 -7.78 -5.61 -4.66 
Enalaprilat Zwitterions -5.55 -5.39 -3.55 -4.01 
Gatifloxacin Zwitterions -4.81 -7.62 -5.47 -4.61 
Gly-Sar Zwitterions -5.54 -10.80 -8.21 -5.48 
Grepafloxacin Zwitterions -4.23 -6.19 -4.24 -4.22 
L-Alanine Zwitterions -5.74 -7.28 -5.18 -4.52 
L-Dopa Zwitterions -6.11 -9.60 -7.18 -5.15 
Levofloxacin Zwitterions -3.58 -7.83 -5.65 -4.67 
Lisinopril Zwitterions -5.68 -7.14 -5.06 -4.48 
L-Leucine Zwitterions -5.45 -5.98 -4.06 -4.17 
Lomefloxacin Zwitterions -4.54 -7.66 -5.51 -4.62 
L-Phenylalanine Zwitterions -4.63 -5.41 -3.57 -4.01 
Norfloxacin Zwitterions -5.54 -8.06 -5.85 -4.73 
Ofloxacin Zwitterions -4.49 -8.56 -6.28 -4.87 
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Sparfloxacin Zwitterions -4.16 -7.36 -5.25 -4.54 

Outliers (20 compounds: 14 acids, 2 bases, 1 neutral, 3 zwitterions) 

Diclofenac Acids -1.07 -4.27 -2.59 -3.70 
Fluvastatin Acids -1.33 -4.85 -3.09 -3.86 
Glipizide Acids -2.47 -7.90 -5.71 -4.69 
Ibuprofen Acids -0.53 -1.91 -0.58 -3.06 
Indomethacin Acids -0.81 -5.69 -3.80 -4.09 
Isoxicam Acids -1.68 -7.52 -5.36 -4.58 
Ketoprofen Acids -1.23 -3.48 -1.91 -3.49 
L-Lactic acid Acids -1.92 -7.54 -5.38 -4.59 
Naproxen Acids -0.95 -3.78 -2.18 -3.57 
Piroxicam Acids -2.01 -8.27 -6.00 -4.79 
Quercetin Acids -3.20 -10.26 -7.75 -5.33 
Salicylic acid Acids -0.43 -4.99 -3.21 -3.90 
Sulfasalazine Acids -2.66 -8.41 -6.15 -4.83 
Zomepirac Acids -1.51 -5.76 -3.86 -4.11 
Doxorubicin Bases -4.12 -15.94 -12.54 -6.87 
Mitoxantrone Bases -2.86 -12.42 -9.54 -5.92 
Pantoprazole Neutral -3.87 -13.27 -10.26 -6.15 
Acrivastine Zwitterions -5.74 -2.89 -1.42 -3.33 
Fexofenadine Zwitterions -6.46 -2.63 -1.20 -3.26 
Gabapentin Zwitterions -6.57 -5.41 -3.56 -4.01 

*- experimental intrinsic Caco-2/MDCK permeability coefficients corrected for nontrancellular effects 
were compiled by Avdeef in Table 8.6.7 Some of these data were averages of apical-to-basolateral and 
basolateral-to-apical measurements that may cancel out some of contribution due to efflux/uptake 
carrier-mediated processes. 
** - Calulation of intrinsic permeability coefficients of unionized species through PM was performed 
using the equation . 
*** - Calulation of intrinsic permeability coefficients of unionized species through Caco-2/MDCK cells 
was performed using the equation: . 
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Table S5. Experimental ( ) and calculated ( ) intrinsic permeability 
coefficients of unionized molecules through double-sink Parallel Artificial Membrane Permeability 
Assay (PAMPA-DS).  
 

Compound Name Group *  ** *** 

Main set (280 compounds: 50 acids, 122 bases, 72 neutral, 36 zwitterions) 

13-cis-Retinoic acid Acids 0.37 0.52 2.22 2.67 
2-Naphthoic acid Acids -2.72 -3.07 -1.37 -0.85 
3,4-Dihydroxyphenylacetic acid Acids -6.15 -7.73 -6.03 -5.42 
3-Hydroxyphenylacetic acid Acids -4.25 -6.26 -4.56 -3.98 
3-Phenylpropionic acid Acids -3.89 -3.33 -1.63 -1.11 
4-Methylbenzoic acid Acids -3.51 -3.53 -1.83 -1.30 
Acetylsalicylic acid Acids -4.45 -3.32 -1.62 -1.10 
alpha-Carbamoyl-p-Toluic acid Acids -5.91 -7.86 -6.16 -5.55 
alpha-Carboxy-p-Toluic acid Acids -4.51 -6.79 -5.09 -4.50 
alpha-Chloro-p-Toluic acid Acids -3.03 -4.19 -2.49 -1.95 
alpha-Cyano-p-Toluic acid Acids -4.33 -6.21 -4.51 -3.93 
alpha-Hydroxy-p-Toluic acid Acids -5.02 -6.77 -5.07 -4.48 
alpha-Methoxy-p-Toluic acid Acids -4.13 -5.40 -3.70 -3.14 
Ampicillin Acids -7.43 -9.37 -7.67 -7.03 
Benazepril Acids -3.28 -2.31 -0.61 -0.11 
Benzoic acid Acids -3.94 -3.85 -2.15 -1.62 
Benzthiazide Acids -6.43 -9.84 -8.14 -7.49 
Biochanin A Acids -2.58 -6.94 -5.24 -4.65 
Cephaloridine Acids -7.33 -8.54 -6.84 -6.22 
Cerivastatin Acids -3.01 -5.30 -3.60 -3.04 
Diclofenac Acids -1.37 -4.27 -2.57 -2.03 
Flufenamic acid Acids -1.19 -4.05 -2.35 -1.81 
Flumequine Acids -3.85 -5.02 -3.32 -2.77 
Fluorescein Acids -3.01 -6.12 -4.42 -3.84 
Flurbiprofen Acids -1.78 -2.48 -0.78 -0.27 
Fluvastatin Acids -2.73 -4.85 -3.15 -2.60 
Furosemide Acids -4.03 -8.49 -6.79 -6.17 
Gemfibrozil Acids -1.59 -1.71 -0.01 0.48 
Glipizide Acids -4.41 -7.90 -6.20 -5.59 
Ibuprofen Acids -2.11 -1.91 -0.21 0.29 
Indomethacin Acids -1.65 -5.69 -3.99 -3.42 
Isoxicam Acids -3.20 -7.52 -5.82 -5.22 
Kaempferol Acids -5.66 -10.14 -8.44 -7.79 
Ketoprofen Acids -2.67 -3.48 -1.78 -1.25 
L-Lactic acid Acids -6.20 -7.54 -5.84 -5.24 
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Mefenamic acid Acids -1.41 -1.36 0.34 0.82 
Nalidixic Acid Acids -3.88 -6.04 -4.34 -3.77 
Naproxen Acids -2.30 -3.78 -2.08 -1.55 
Naringenin Acids -3.71 -8.08 -6.38 -5.77 
Oxolinic acid Acids -4.66 -8.76 -7.06 -6.43 
Phenylbutazone Acids -1.96 -1.07 0.63 1.11 
Piroxicam Acids -3.32 -8.27 -6.57 -5.95 
Probenecid Acids -1.83 -5.42 -3.72 -3.16 
Quercetin Acids -4.77 -10.26 -8.56 -7.91 
Rosmarinic acid Acids -7.39 -10.80 -9.10 -8.44 
Salicylic acid Acids -2.64 -4.99 -3.29 -2.74 
Sulfasalazine Acids -4.44 -8.41 -6.71 -6.09 
Torasemide Acids -4.34 -8.40 -6.70 -6.08 
Warfarin Acids -2.59 -3.31 -1.61 -1.09 
Zomepirac Acids -2.61 -5.76 -4.06 -3.49 
4-Phenylbutylamine Bases -0.59 -2.14 -0.44 0.06 
Acebutolol Bases -3.39 -5.54 -3.84 -3.28 
Albuterol Bases -4.92 -6.73 -5.03 -4.44 
Alfentanil Bases -3.53 -4.73 -3.03 -2.48 
Alprenolol Bases 0.02 -1.40 0.30 0.79 
Amantadine Bases -1.21 -1.99 -0.29 0.21 
Amiloride Bases -7.38 -12.19 -10.49 -9.80 
Amiodarone Bases 2.58 -0.36 1.34 1.81 
Amitriptyline Bases 1.30 0.11 1.81 2.27 
Amodiaquine Bases -0.21 -4.39 -2.69 -2.15 
Amoxapine Bases -1.66 -3.59 -1.89 -1.36 
Astemizole Bases 1.00 -1.87 -0.17 0.32 
Atenolol Bases -5.06 -6.07 -4.37 -3.80 
Bepridil Bases 1.63 0.72 2.42 2.87 
Bremazocine Bases -1.49 -2.64 -0.94 -0.43 
Brompheniramine Bases -0.35 -1.81 -0.11 0.38 
Bupivacaine Bases -2.07 -0.95 0.75 1.23 
Buspirone Bases -2.48 -4.75 -3.05 -2.50 
Butacaine Bases 0.25 -2.22 -0.52 -0.02 
Carvedilol Bases 0.05 -4.30 -2.60 -2.06 
Chloroquine Bases 1.09 -1.78 -0.08 0.41 
Chlorpheniramine Bases -0.60 -2.05 -0.35 0.15 
Chlorpromazine Bases 1.62 -2.14 -0.44 0.06 
Chlorprothixene Bases 1.44 -1.23 0.47 0.95 
Cimetidine Bases -6.20 -6.89 -5.19 -4.60 
Cinnarizine Bases 0.64 1.17 2.87 3.31 
Citalopram Bases -0.95 -4.57 -2.87 -2.32 
Clemastine Bases 1.96 0.15 1.85 2.31 



S32 
 

Clofazimine Bases 2.79 -0.12 1.58 2.04 
Clotrimazole Bases -1.31 -0.63 1.07 1.54 
Clozapine Bases -0.39 -3.70 -2.00 -1.47 
Cyproheptadine Bases 0.44 0.20 1.90 2.36 
Desipramine Bases 1.74 -0.98 0.72 1.20 
Dextromethorphan Bases -0.18 -2.00 -0.30 0.20 
Dextrorphan Bases -1.34 -2.99 -1.29 -0.77 
Diltiazem Bases -1.33 -4.46 -2.76 -2.22 
Diphenhydramine Bases -0.71 -0.65 1.05 1.52 
Disopyramide Bases -1.14 -2.46 -0.76 -0.25 
Domperidone Bases -2.78 -6.49 -4.79 -4.21 
Doxepin Bases 0.44 -1.45 0.25 0.74 
Ephedrine Bases -2.90 -3.49 -1.79 -1.26 
Ergonovine Bases -4.14 -6.86 -5.16 -4.57 
Erythromycin Bases -2.40 -7.94 -6.24 -5.63 
Famotidine Bases -7.75 -11.50 -9.80 -9.12 
Fendiline Bases 1.62 2.18 3.88 4.30 
Galantamine Bases -3.15 -4.97 -3.27 -2.72 
Guanabenz Bases -1.34 -6.93 -5.23 -4.64 
Haloperidol Bases 0.05 -2.87 -1.17 -0.66 
Hydroxyzine Bases -1.50 -4.39 -2.69 -2.15 
Imatinib Bases -1.40 -5.43 -3.73 -3.17 
Imipramine Bases 0.98 -0.91 0.79 1.27 
Indinavir Bases -3.57 -5.59 -3.89 -3.32 
Ketoconazole Bases -1.41 -5.76 -4.06 -3.49 
Labetalol Bases -4.94 -4.91 -3.21 -2.66 
Lidocaine Bases -1.42 -2.00 -0.30 0.20 
Loperamide Bases 0.15 -1.22 0.48 0.96 
Loxapine Bases -1.09 -3.37 -1.67 -1.15 
Meperidine Bases 0.79 -2.03 -0.33 0.17 
Mepyramine Bases -0.42 -3.18 -1.48 -0.96 
Methadone Bases 0.08 -0.66 1.04 1.51 
Metipranolol Bases 0.30 -3.73 -2.03 -1.50 
Metoclopramide Bases -1.94 -6.70 -5.00 -4.41 
Metoprolol Bases -1.17 -2.24 -0.54 -0.04 
Mexiletine Bases -0.45 -2.37 -0.67 -0.17 
Miconazole Bases -0.45 -3.03 -1.33 -0.81 
Midazolam Bases -2.47 -2.68 -0.98 -0.47 
Morantel Bases -2.05 -2.74 -1.04 -0.53 
Morphine Bases -3.59 -5.66 -3.96 -3.39 
Nadolol Bases -4.34 -5.27 -3.57 -3.01 
Nalbuphine Bases -2.56 -4.07 -2.37 -1.83 
Naltrindole Bases -0.94 -3.82 -2.12 -1.59 
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Nelfinavir Bases -3.27 -2.39 -0.69 -0.19 
Nicardipine Bases -0.79 -4.79 -3.09 -2.54 
Nicotine Bases -3.42 -3.55 -1.85 -1.32 
Nortriptyline Bases 2.02 0.02 1.72 2.18 
Ondansetron Bases -2.38 -3.48 -1.78 -1.25 
Orphenadrine Bases 0.06 -0.78 0.92 1.39 
Oxprenolol Bases -0.60 -3.86 -2.16 -1.63 
Papaverine Bases -2.44 -5.20 -3.50 -2.94 
Penbutolol Bases 1.70 -1.44 0.26 0.75 
Phenazopyridine Bases -2.66 -6.91 -5.21 -4.62 
Pilocarpine Bases -4.88 -4.89 -3.19 -2.64 
Pindolol Bases -1.75 -4.26 -2.56 -2.02 
Pirenzepine Bases -3.46 -7.70 -6.00 -5.39 
Practolol Bases -3.40 -3.91 -2.21 -1.68 
Pramocaine Bases -0.99 -3.00 -1.30 -0.78 
Procaine Bases -2.46 -4.16 -2.46 -1.92 
Procyclidine Bases 1.70 -0.74 0.96 1.43 
Promethazine Bases 0.96 -1.45 0.25 0.74 
Propafenone Bases 0.72 -3.47 -1.77 -1.25 
Propoxyphene Bases 0.72 -0.19 1.51 1.97 
Propranolol Bases 0.43 -0.23 1.47 1.93 
Protriptyline Bases 2.43 0.01 1.71 2.17 
Pumafentrine Bases 0.59 -2.40 -0.70 -0.20 
Pyridoxine Bases -6.62 -9.90 -8.20 -7.55 
Quetiapine Bases -1.85 -5.26 -3.56 -3.00 
Quinidine Bases -1.56 -4.57 -2.87 -2.32 
Quinine Bases -1.05 -4.62 -2.92 -2.37 
Ranitidine Bases -5.14 -5.16 -3.46 -2.90 
Risperidone Bases -2.01 -2.66 -0.96 -0.45 
Rizatriptan Bases -2.76 -5.52 -3.82 -3.26 
Saquinavir Bases -3.69 -7.85 -6.15 -5.54 
Scopolamine Bases -3.00 -4.74 -3.04 -2.49 
Sertraline Bases 2.10 -0.85 0.85 1.33 
Sotalol Bases -4.83 -5.88 -4.18 -3.61 
Sulpiride Bases -4.57 -8.90 -7.20 -6.57 
Sumatriptan Bases -4.18 -7.29 -5.59 -4.99 
Tamoxifen Bases 1.98 0.75 2.45 2.89 
Terbutaline Bases -7.25 -6.83 -5.13 -4.54 
Terfenadine Bases 2.63 0.53 2.23 2.68 
Thioridazine Bases 1.81 -1.19 0.51 0.99 
Tolafentrine Bases -0.17 -5.84 -4.14 -3.57 
Topotecan Bases -5.12 -10.37 -8.67 -8.01 
Triflupromazine Bases 1.63 -2.50 -0.80 -0.29 
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Trihexyphenidyl Bases 2.09 -0.42 1.28 1.75 
Trimipramine Bases 1.58 -0.46 1.24 1.71 
U69593 Bases 0.37 -1.20 0.50 0.98 
Venlafaxine Bases -1.63 -3.45 -1.75 -1.23 
Vincristine Bases -2.72 -8.08 -6.38 -5.77 
Zimelidine Bases -0.43 -2.75 -1.05 -0.54 
Ziprasidone Bases -0.61 -4.99 -3.29 -2.74 
Zolpidem Bases -3.06 -2.83 -1.13 -0.62 
11beta-Hydroxyprogesterone Neutral -3.46 -3.51 -1.81 -1.28 
11-Dehydrocorticosterone Neutral -4.36 -6.77 -5.07 -4.48 
11-Deoxycortisol Neutral -3.80 -6.51 -4.81 -4.23 
2,4-Dibromoestradiol Neutral -3.21 -2.86 -1.16 -0.65 
Acetaminophen Neutral -5.81 -5.63 -3.93 -3.36 
Aciclovir Neutral -10.00 -13.72 -12.01 -11.30 
Albendazole Neutral -3.12 -6.97 -5.27 -4.68 
Aldosterone Neutral -4.88 -8.81 -7.11 -6.48 
Alfuzosin Neutral -4.34 -9.37 -7.67 -7.03 
Aminoglutethimide Neutral -3.76 -7.15 -5.45 -4.86 
Amprenavir Neutral -3.64 -7.33 -5.63 -5.03 
Aniline Neutral -3.71 -3.16 -1.46 -0.94 
Beclomethasone Neutral -3.70 -8.55 -6.85 -6.23 
Bendroflumethiazide Neutral -5.27 -9.32 -7.62 -6.98 
Benserazide Neutral -10.70 -13.22 -11.51 -10.81 
Bromocriptine Neutral -4.04 -6.54 -4.84 -4.26 
Budesonide Neutral -2.62 -6.61 -4.91 -4.33 
Caffeine Neutral -5.55 -7.74 -6.04 -5.43 
Carbamazepine Neutral -3.73 -2.92 -1.22 -0.71 
Chloramphenicol Neutral -5.30 -8.21 -6.51 -5.90 
Chlorthalidone Neutral -6.64 -9.95 -8.25 -7.60 
Clonidine Neutral -3.00 -5.42 -3.72 -3.16 
Corticosterone Neutral -3.86 -6.40 -4.70 -4.12 
Cortisone Neutral -4.46 -8.67 -6.97 -6.35 
Creatinine Neutral -7.52 -9.72 -8.02 -7.38 
Cyclosporine A Neutral -3.21 -4.93 -3.23 -2.68 
Cyclothiazide Neutral -5.46 -9.09 -7.39 -6.76 
Danazol Neutral -1.79 -1.12 0.58 1.06 
Deoxycorticosterone Neutral -2.85 -4.59 -2.89 -2.34 
Dexamethasone Neutral -4.05 -8.79 -7.09 -6.46 
Diazepam Neutral -2.44 -3.87 -2.17 -1.64 
Digoxin Neutral -5.78 -9.60 -7.90 -7.26 
DMP-450 Neutral -3.61 -5.09 -3.39 -2.83 
Erythritol Neutral -8.56 -11.99 -10.29 -9.60 
Ethosuximide Neutral -5.20 -6.39 -4.69 -4.11 
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Famciclovir Neutral -4.59 -9.07 -7.37 -6.74 
Felodipine Neutral -3.48 -4.52 -2.82 -2.28 
Flavone Neutral -2.10 -1.18 0.52 1.00 
Genistein Neutral -4.69 -7.67 -5.97 -5.37 
Griseofulvin Neutral -3.61 -8.96 -7.26 -6.63 
Guanfacine Neutral -2.56 -7.23 -5.53 -4.93 
Hydrochlorothiazide Neutral -8.30 -12.25 -10.55 -9.86 
Hydrocortisone Neutral -4.32 -8.24 -6.54 -5.92 
Itraconazole Neutral -0.29 -3.66 -1.96 -1.43 
Lamotrigine Neutral -5.87 -8.06 -6.36 -5.75 
Lansoprazole Neutral -3.89 -8.86 -7.16 -6.53 
Loratadine Neutral -0.66 -3.07 -1.37 -0.85 
Meprobamate Neutral -5.71 -11.04 -9.34 -8.67 
Methylprednisolone Neutral -4.38 -8.11 -6.41 -5.80 
Metolazone Neutral -4.85 -6.84 -5.14 -4.55 
Mifepristone Neutral -1.37 -2.04 -0.34 0.16 
Minoxidil Neutral -4.62 -7.25 -5.55 -4.95 
Nifedipine Neutral -3.35 -5.52 -3.82 -3.26 
Nitrendipine Neutral -1.80 -4.56 -2.86 -2.31 
Pemoline Neutral -4.93 -7.64 -5.94 -5.34 
Phenol red Neutral -3.89 -7.57 -5.87 -5.27 
Phenytoin Neutral -4.37 -5.69 -3.99 -3.42 
Praziquantel Neutral -2.78 -3.98 -2.28 -1.75 
Prednisolone Neutral -4.46 -8.37 -6.67 -6.05 
Prednisone Neutral -4.33 -8.80 -7.10 -6.47 
Primidone Neutral -5.44 -6.61 -4.91 -4.33 
Progesterone Neutral -2.55 -1.73 -0.03 0.46 
Propylthiouracil Neutral -5.36 -5.01 -3.31 -2.76 
Quintozene Neutral -2.20 -4.73 -3.03 -2.48 
Ralimetinib dimesylate Neutral -0.99 -2.99 -1.29 -0.77 
Resveratrol Neutral -4.38 -6.14 -4.44 -3.86 
Ritonavir Neutral -1.68 -6.15 -4.45 -3.87 
Testosterone Neutral -2.83 -2.72 -1.02 -0.51 
Theophylline Neutral -5.99 -8.99 -7.29 -6.66 
Thiabendazole Neutral -3.45 -3.72 -2.02 -1.49 
Valdecoxib Neutral -4.10 -4.14 -2.44 -1.90 
Zidovudine Neutral -5.79 -9.90 -8.20 -7.55 
Acrivastine Zwitterions -4.07 -2.89 -1.19 -0.68 
Amoxicillin Zwitterions -6.80 -11.97 -10.27 -9.58 
Cefaclor Zwitterions -7.61 -10.83 -9.13 -8.47 
Cefadroxil Zwitterions -8.87 -12.75 -11.05 -10.35 
Cefatrizine Zwitterions -9.81 -12.40 -10.70 -10.01 
Cefsulodin Zwitterions -12.30 -16.08 -14.37 -13.62 
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Cephalexin Zwitterions -7.53 -10.11 -8.41 -7.76 
Cephaloglycin Zwitterions -7.80 -11.19 -9.49 -8.82 
Cephradine Zwitterions -7.98 -9.99 -8.29 -7.64 
Cetirizine Zwitterions -4.13 -4.27 -2.57 -2.03 
Ciprofloxacin Zwitterions -5.47 -7.78 -6.08 -5.47 
CNV97100 Zwitterions -5.32 -7.72 -6.02 -5.41 
CNV97102 Zwitterions -4.32 -6.88 -5.18 -4.59 
CNV97103 Zwitterions -3.81 -6.49 -4.79 -4.21 
CNV97104 Zwitterions -3.34 -6.10 -4.40 -3.83 
Enoxacin Zwitterions -4.90 -7.96 -6.26 -5.65 
Gabapentin Zwitterions -3.36 -5.41 -3.71 -3.15 
Gatifloxacin Zwitterions -4.50 -7.62 -5.92 -5.32 
Gly-Pro Zwitterions -10.40 -9.72 -8.02 -7.38 
Gly-Sar Zwitterions -10.50 -10.80 -9.10 -8.44 
Grepafloxacin Zwitterions -4.49 -6.19 -4.49 -3.91 
L-Alanine Zwitterions -8.07 -7.28 -5.58 -4.98 
L-Arginine Zwitterions -5.82 -11.08 -9.38 -8.71 
L-Dopa Zwitterions -7.52 -9.60 -7.90 -7.26 
Lisinopril Zwitterions -6.43 -7.14 -5.44 -4.85 
L-Leucine Zwitterions -7.19 -5.98 -4.28 -3.71 
Lomefloxacin Zwitterions -4.73 -7.66 -5.96 -5.36 
L-Phenylalanine Zwitterions -5.36 -5.41 -3.71 -3.15 
L-Tryptophan Zwitterions -8.00 -6.95 -5.25 -4.66 
Me-ciprofloxacin Zwitterions -4.44 -7.42 -5.72 -5.12 
Melphalan Zwitterions -3.45 -6.50 -4.80 -4.22 
Norfloxacin Zwitterions -6.16 -8.06 -6.36 -5.75 
Ofloxacin Zwitterions -5.21 -8.56 -6.86 -6.24 
Sarafloxacin Zwitterions -4.84 -6.79 -5.09 -4.50 
Sparfloxacin Zwitterions -4.04 -7.36 -5.66 -5.06 
Trovafloxacin Zwitterions -3.75 -7.71 -6.01 -5.40 

Outliers  (42 compounds: 4 acids, 19 bases, 14 neutrals, 5 zwitterions) 

Ceftibuten Acids -7.64 -13.98 -12.27 -11.56 
Chlorothiazide Acids -6.58 -12.28 -10.58 -9.89 
Meloxicam Acids -2.86 -8.48 -6.78 -6.16 
Montelukast Acids -6.47 -0.04 1.66 2.12 
Amlodipine Bases 0.62 -7.25 -5.55 -4.95 
Azythromycin Bases -10.00 -6.47 -4.77 -4.19 
Dipyridamole Bases -2.84 -10.91 -9.21 -8.54 
Doxorubicin Bases -3.67 -15.94 -14.23 -13.48 
Fentanyl Bases -0.95 0.29 1.99 2.44 
Fluvoxamine Bases 0.88 -4.95 -3.25 -2.70 
Hydralazine Bases -4.53 -1.43 0.27 0.76 
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Lincomycin Bases -5.10 -12.13 -10.43 -9.74 
Mitoxantrone Bases -3.82 -12.42 -10.72 -10.03 
Noscapine Bases -2.25 -8.45 -6.75 -6.13 
Perphenazine Bases 0.81 -4.95 -3.25 -2.70 
Prazosin Bases -2.58 -9.71 -8.01 -7.37 
Primaquine Bases 0.56 -5.24 -3.54 -2.98 
Timolol Bases -0.97 -6.63 -4.93 -4.35 
Triamterene Bases -3.58 -11.45 -9.75 -9.07 
Trimethoprim Bases -3.38 -10.83 -9.13 -8.47 
Verapamil Bases 0.26 -5.88 -4.18 -3.61 
Vinblastine Bases -0.42 -6.54 -4.84 -4.26 
Zolmitriptan Bases -1.71 -8.09 -6.39 -5.78 
Alprazolam Neutral -3.73 -1.38 0.32 0.81 
Antipyrine Neutral -5.69 -2.74 -1.04 -0.53 
Etoposide Neutral -5.22 -13.60 -11.89 -11.18 
Ganciclovir Neutral -8.26 -15.73 -14.02 -13.27 
Hesperetin Neutral -3.33 -9.42 -7.72 -7.08 
Isocarboxazid Neutral -4.75 -3.06 -1.36 -0.84 
Netivudine Neutral -7.26 -14.44 -12.73 -12.01 
Omeprazole Neutral -3.49 -10.60 -8.90 -8.24 
Paclitaxel Neutral -1.09 -7.56 -5.86 -5.26 
Pantoprazole Neutral -3.40 -13.27 -11.56 -10.86 
Probucol Neutral -3.18 1.78 3.48 3.91 
Silibinin Neutral -5.07 -13.91 -12.20 -11.49 
Triamcinolone Neutral -5.22 -10.92 -9.22 -8.55 
Trioxsalen Neutral -2.89 -1.51 0.19 0.68 
5-Aminolevulinic acid Zwitterions -9.88 -7.99 -6.29 -5.68 
Chlortetracycline Zwitterions -5.39 -12.79 -11.09 -10.39 
DPDPE Zwitterions -7.31 -14.63 -12.92 -12.19 
Enalaprilat Zwitterions -7.43 -5.39 -3.69 -3.13 
Fexofenadine Zwitterions -5.17 -2.63 -0.93 -0.42 

*- intrinsic permeability coefficients obtained in double-sink PAMPA-DS assay were compiled by Avdeef 
in Table 7.13.5 
** - Calulation of intrinsic permeability coefficients of unionized species through PM was performed 
using the equation . 
*** - Calulation of intrinsic permeability coefficients of unionized species through PAMPA-DS system 
was performed using the equation: . 
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Table S6. Experimental ( ) and calculated ( ) membrane permeability 
coefficients of ionized molecules through double-sink Parallel Artificial Membrane Permeability Assay 
(PAMPA-DS) at specified pH values.  
 

Compound name Group * * ** ** 

133 compounds: 40 acids, 93 bases 
13-cis-Retinoic acid Acids -1.47 -2.36 0.91 0.04 
2-Naphthoic acid Acids -4.92 -5.82 -2.98 -3.85 
3,4-Dihydroxyphenylacetic 
acid 

Acids -8.52 -10.00 -9.06 -9.95 

3-Hydroxyphenylacetic acid Acids -6.52 -7.40 -6.21 -7.09 
3-Phenylpropionic acid Acids -5.74 -6.70 -3.21 -4.09 
4-Methylbenzoic acid Acids -5.64 -6.52 -3.20 -4.07 
Acetylsalicylic acid Acids -7.46 -8.40 -4.93 -5.81 
alpha-Carbamoyl-p-Toluic 
acid 

Acids -8.40 -9.00 -7.64 -8.52 

alpha-Carboxy-p-Toluic 
acid 

Acids -9.00 -10.00 -8.43 -10.18 

alpha-Chloro-p-Toluic acid Acids -5.54 -6.40 -4.07 -4.95 
alpha-Cyano-p-Toluic acid Acids -6.70 -7.70 -5.87 -6.75 
alpha-Hydroxy-p-Toluic 
acid 

Acids -7.30 -8.00 -6.41 -7.29 

alpha-Methoxy-p-Toluic 
acid 

Acids -6.52 -7.40 -5.20 -6.08 

Benazepril Acids -4.80 -5.68 -3.79 -4.67 
Benzoic acid Acids -6.22 -7.00 -3.71 -4.58 
Benzthiazide Acids -6.52 -7.00 -8.23 -9.11 
Biochanin A Acids -2.68 -3.05 -5.59 -6.53 
Cerivastatin Acids -4.62 -5.51 -5.46 -6.35 
Diclofenac Acids -3.73 -4.64 -4.36 -5.25 
Flufenamic acid Acids -3.45 -4.36 -4.24 -5.12 
Flumequine Acids -4.10 -4.72 -3.70 -4.58 
Flurbiprofen Acids -4.10 -5.00 -2.71 -3.58 
Furosemide Acids -7.00 -7.70 -9.54 -10.43 
Gemfibrozil Acids -3.39 -4.28 -1.41 -2.28 
Ibuprofen Acids -4.03 -4.92 -1.74 -2.61 
Indomethacin Acids -3.59 -4.48 -5.13 -6.01 
Isoxicam Acids -5.47 -6.40 -8.17 -9.05 
Kaempferol Acids -6.30 -7.00 -8.30 -8.30 
Ketoprofen Acids -5.06 -5.96 -3.48 -4.35 
Mefenamic acid Acids -3.38 -4.28 -2.61 -3.49 
Nalidixic Acid Acids -4.38 -5.14 -4.07 -4.95 
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Naproxen Acids -4.48 -5.39 -3.59 -4.46 
Naringenin Acids -3.71 -3.71 -6.39 -6.89 
Phenylbutazone Acids -3.87 -4.77 -1.17 -2.04 
Piroxicam Acids -4.62 -5.49 -7.80 -8.68 
Probenecid Acids -5.17 -6.10 -6.04 -6.93 
Salicylic acid Acids -6.10 -7.00 -6.99 -7.88 
Sulfasalazine Acids -8.15 -9.00 -10.55 -11.44 
Torasemide Acids -4.55 -5.12 -6.22 -7.03 
Warfarin Acids -4.13 -5.00 -2.40 -3.29 
4-Phenylbutylamine Bases -4.59 -3.69 -3.81 -2.92 
Acebutolol Bases -6.40 -5.51 -5.90 -5.02 
Albuterol Bases -7.70 -6.74 -7.34 -6.45 
Alfentanil Bases -3.72 -3.56 -2.63 -2.63 
Alprenolol Bases -2.99 -2.10 -2.11 -1.25 
Amiodarone Bases 0.02 0.91 -1.93 -1.07 
Amitriptyline Bases -1.69 -0.79 0.63 0.79 
Astemizole Bases -1.19 -0.24 -1.85 -0.97 
Atenolol Bases -8.00 -7.22 -7.42 -6.53 
Bepridil Bases -0.86 0.03 0.50 1.27 
Bremazocine Bases -3.49 -2.62 -0.41 -0.41 
Bupivacaine Bases -3.49 -2.69 -0.20 0.68 
Buspirone Bases -3.61 -2.89 -2.38 -2.44 
Butacaine Bases -3.34 -2.44 0.45 0.45 
Carvedilol Bases -1.44 -0.63 -4.54 -3.66 
Chloroquine Bases -4.32 -3.42 -2.21 -1.37 
Chlorpromazine Bases -1.11 -0.22 0.08 0.08 
Chlorprothixene Bases -1.16 -0.27 -0.95 -0.08 
Cimetidine Bases -6.70 -6.30 -4.65 -4.05 
Cinnarizine Bases -0.58 0.17 2.56 3.24 
Clofazimine Bases -0.90 0.00 -0.69 0.19 
Clotrimazole Bases -1.43 -1.33 1.54 1.54 
Clozapine Bases -1.80 -1.00 -2.78 -1.89 
Cyproheptadine Bases -1.66 -0.79 0.85 1.73 
Desipramine Bases -1.91 -1.01 -2.46 -1.60 
Diltiazem Bases -2.86 -2.04 -3.71 -2.82 
Diphenhydramine Bases -3.30 -2.41 -0.93 -0.13 
Disopyramide Bases -4.96 -4.06 -0.03 -0.03 
Domperidone Bases -3.80 -3.12 -6.22 -5.34 
Doxepin Bases -2.51 -1.61 -2.19 -1.34 
Ergonovine Bases -4.70 -4.26 -4.98 -4.51 
Famotidine Bases -8.00 -8.00 -10.75 -9.41 
Fendiline Bases -1.08 -0.19 1.33 2.13 
Galantamine Bases -5.27 -4.39 -4.79 -3.93 
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Haloperidol Bases -2.11 -1.23 -1.14 -1.10 
Hydroxyzine Bases -2.56 -1.87 -3.15 -2.27 
Imatinib Bases -2.53 -1.81 -4.36 -3.48 
Imipramine Bases -2.03 -1.13 -1.58 -0.74 
Indinavir Bases -3.78 -3.60 -3.44 -3.44 
Ketoconazole Bases -1.71 -1.46 -3.08 -2.94 
Labetalol Bases -5.96 -5.28 -6.96 -6.08 
Lidocaine Bases -2.89 -2.08 -1.23 -0.35 
Loperamide Bases -2.05 -1.17 -1.33 -0.45 
Meperidine Bases -1.29 -0.42 -1.84 -0.99 
Methadone Bases -2.41 -1.52 1.46 1.46 
Metipranolol Bases -2.74 -1.84 -4.45 -3.57 
Metoprolol Bases -4.23 -3.33 -4.76 -3.87 
Mexiletine Bases -3.09 -2.19 -2.73 -1.84 
Miconazole Bases -0.59 -0.47 0.01 0.01 
Morantel Bases -7.40 -6.52 -5.72 -4.86 
Morphine Bases -5.22 -4.40 -5.99 -5.11 
Nadolol Bases -7.52 -6.70 -6.29 -5.40 
Nalbuphine Bases -4.28 -3.42 -6.68 -5.80 
Naltrindole Bases -2.74 -1.89 -4.28 -3.39 
Nicardipine Bases -1.54 -0.99 -2.50 -2.50 
Nicotine Bases -5.04 -4.21 -2.85 -1.97 
Nortriptyline Bases -1.60 -0.70 -1.29 -0.43 
Orphenadrine Bases -2.24 -1.36 -0.87 -0.03 
Oxprenolol Bases -3.67 -2.77 -4.61 -3.73 
Papaverine Bases -2.69 -2.48 -2.92 -2.92 
Penbutolol Bases -1.72 -0.82 -2.58 -1.73 
Phenazopyridine Bases -2.68 -2.67 -3.69 -3.69 
Pilocarpine Bases -5.57 -5.06 -2.96 -1.85 
Pindolol Bases -4.80 -3.89 -4.84 -3.95 
Pramocaine Bases -1.94 -1.29 -1.31 -0.71 
Procaine Bases -5.00 -4.11 -4.40 -3.56 
Procyclidine Bases -2.20 -1.30 -1.16 -0.37 
Promethazine Bases -1.54 -0.65 -1.73 -0.88 
Propafenone Bases -2.38 -1.48 -4.32 -3.44 
Propoxyphene Bases -1.84 -0.95 -0.45 0.32 
Propranolol Bases -2.60 -1.70 -2.87 -2.00 
Protriptyline Bases -1.43 -0.53 -1.72 -0.84 
Pyridoxine Bases -6.70 -6.70 -6.95 -6.95 
Quetiapine Bases -2.71 -2.10 -3.62 -3.01 
Quinidine Bases -3.61 -2.74 -4.11 -3.23 
Quinine Bases -3.10 -2.22 -4.11 -3.23 
Ranitidine Bases -7.00 -6.10 -2.98 -2.80 
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Risperidone Bases -3.43 -2.63 -2.10 -1.22 
Saquinavir Bases -4.17 -3.79 -6.56 -6.56 
Sertraline Bases -0.89 0.00 -1.10 -0.26 
Sulpiride Bases -7.00 -6.30 -9.40 -8.56 
Sumatriptan Bases -7.30 -6.40 -8.09 -7.24 
Tamoxifen Bases -0.09 0.78 0.96 1.84 
Terbutaline Bases -10.00 -8.52 -7.95 -7.06 
Terfenadine Bases -0.72 0.18 -0.64 0.22 
Thioridazine Bases -0.51 0.38 -2.11 -1.27 
Triflupromazine Bases -1.11 -0.22 -2.99 -2.13 
Trihexyphenidyl Bases -1.71 -0.81 -0.60 0.12 
Trimipramine Bases -1.32 -0.42 -1.04 -0.22 
U69593 Bases -2.43 -1.53 0.96 0.96 
Vincristine Bases -3.70 -3.02 -5.74 -5.74 
Zimelidine Bases -2.01 -1.18 -2.62 -1.74 
Zolpidem Bases -3.55 -3.16 -0.07 -0.07 

*- membrane permeability coefficients obtained in double-sink PAMPA-DS assay at pH 6.5 and 7.4 were 
corrected for ABL(aqueous boundary layer)-effect by Avdeef and compiled in Table 7.13.5 
** - Calulations of membrane permeability coefficients of ionized species through PAMPA-DS system at 
pH 6.5 and 7.4 were performed using the equation: . 
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Table S7. Data set fot comparison of intrinsic permeability coefficients measured in cell-based assays 
(Caco-2/MDCK) and by the in situ brain perfusion technique (BBB). 
 

Compound Name Group * ** 

73 compounds: 7 acids, 35 bases, 25 neutral, 6 zwitterions 

Quercetin Acids -3.2 -4.03 
Warfarin Acids -1.54 -1.56 
Fluvastatin Acids -1.33 -2.28 
Naproxen Acids -0.95 -0.77 
Indomethacin Acids -0.81 -1.06 
Ibuprofen Acids -0.53 -1.22 
Salicylic acid Acids -0.43 -1.02 
Cimetidine Bases -6.06 -5.61 
Vincristine Bases -5.54 -5.6 
Saquinavir Bases -5.35 -4.63 
Ziprasidone Bases -4.75 -3.25 
Indinavir Bases -4.72 -5.37 
Morphine Bases -4.55 -4.86 
Prazosin Bases -4.54 -4.36 
Vinblastine Bases -4.5 -4.81 
Domperidone Bases -4.46 -4.45 
Sumatriptan Bases -4.29 -5.06 
Loxapine Bases -4.23 -3.36 
Rizatriptan Bases -4.18 -4.43 
Hydroxyzine Bases -4.13 -3.04 
Doxorubicin Bases -4.12 -3.35 
Dipyridamole Bases -3.86 -4.59 
Amoxapine Bases -3.84 -2.75 
Alfentanil Bases -3.54 -2.98 
Midazolam Bases -3.44 -3.11 
Loperamide Bases -3.43 -2.52 
Quinidine Bases -3.31 -2.82 
Diltiazem Bases -3.12 -2.81 
Diphenhydramine Bases -3.12 -1.90 
Citalopram Bases -2.99 -2.07 
Mitoxantrone Bases -2.86 -3.06 
Bremazocine Bases -2.86 -2.76 
Mepyramine Bases -2.84 -2.04 
Venlafaxine Bases -2.84 -1.66 
Quinine Bases -2.83 -3.45 
Chlorpheniramine Bases -2.72 -1.84 
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Brompheniramine Bases -2.70 -1.58 
Metoclopramide Bases -2.54 -2.86 
Clemastine Bases -2.50 -0.95 
Verapamil Bases -2.18 -2.26 
Amantadine Bases -2.17 -0.86 
Propranolol Bases -1.54 -1.42 
Erythritol Neutral -6.56 -6.57 
Etoposide Neutral -6.11 -5.91 
Urea Neutral -6.00 -6.12 
Creatinine Neutral -5.90 -6.69 
Digoxin Neutral -5.43 -6.30 
Pemoline Neutral -5.3 -5.45 
Paclitaxel Neutral -5.26 -6.63 
Cyclosporine A Neutral -5.24 -4.17 
Zidovudine Neutral -4.97 -5.99 
Meprobamate Neutral -4.94 -5.09 
Ethosuximide Neutral -4.91 -4.46 
Loratadine Neutral -4.75 -3.48 
Hydrocortisone Neutral -4.63 -5.85 
Isocarboxazid Neutral -4.54 -3.22 
Lamotrigine Neutral -4.45 -4.67 
Alfuzosin Neutral -4.27 -4.64 
Diazepam Neutral -4.20 -3.01 
Theophylline Neutral -4.17 -5.24 
Phenytoin Neutral -4.16 -4.15 
Caffeine Neutral -4.14 -4.00 
Ritonavir Neutral -4.10 -4.87 
Antipyrine Neutral -4.05 -4.00 
Ralimetinib dimesylate Neutral -3.99 -2.93 
Carbamazepine Neutral -3.69 -3.26 
Testosterone Neutral -3.58 -3.10 
Fexofenadine Zwitterions -6.46 -5.94 
L-Alanine Zwitterions -5.74 -5.50 
L-Leucine Zwitterions -5.45 -3.63 
Cetirizine Zwitterions -5.31 -5.63 
L-Phenylalanine Zwitterions -4.63 -4.13 
Grepafloxacin Zwitterions -4.23 -4.86 

* – experimental intrinsic Caco-2/MDCK permeability coefficients corrected for non-trancellular effects 
( ) were compiled by Avdeef in Table 8.6.7 
**- “efflux minimized” intrinsic BBB permeability coefficients corrected for ionization, which were 
obtained by the in situ rodent brain perfusion technique ( ), were compiled by Avdeef in Table 
9.7.36 
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Table S8. Data set for comparison of intrinsic permeability coefficients measured in artificial 
membranes (BLM), cell-based assays (Caco-2/MDCK) and by the in situ brain perfusion technique 
(BBB). 
 

Name (experimental) Group * ** *** 

23 compounds: 5 acids, 7 bases, 11 neutral 

Acetylsalicylic acid Acids -0.82 
 

-1.53 
Butyric acid Acids -1.02 -2.15  
Hexanoic acid Acids 0.04 -1.31  
Octanoic acid Acids -0.76 -1.14  
Salicylic acid Acids -0.11 -1.02 -0.43 
Chlorpromazine Bases 0.59 -1.23  
Codeine Bases -0.85 -3.80  
Domperidone Bases -2.60 -4.45 -4.46 
Labetalol Bases -2.10 

 
-4.27 

Loperamide Bases -0.42 -2.52 -3.43 
Propranolol Bases 0.19 -1.42 -1.54 
Verapamil Bases 0.01 -2.60 -2.18 
1,4-Butanediol Neutral -3.57 -5.03  
Acetamide  Neutral -3.54 -4.98  
Erythritol Neutral -6.40 -6.57 -6.56 
Ethylene glycol Neutral -4.06 -4.39  
Formamide Neutral -4.00 -5.72  
Glycerol  Neutral -5.27 -5.25  
Hydrocortisone Neutral -3.25 -5.85 -4.63 
Propylene glycol Neutral -3.55 -4.49  
Theophylline Neutral -3.53 -5.24 -4.17 
Urea  Neutral -5.40 -6.12 -6.00 
Water Neutral -2.72 

 
-6.00 

* – experimental intrinsic BLM permeability coefficients ( ) for unionized molecules were 
compiled in Table S1. 
** –  “efflux minimized” intrinsic BBB permeability coefficients, which were obtained by the in situ rodent 
brain perfusion technique and corrected for ionization ( ), were compiled by Avdeef in Table 
9.7.36 
*** – experimental intrinsic Caco-2/MDCK permeability coefficients corrected for nontrancellular effects 
( )were compiled by Avdeef in Table 8.6.7 Some of these data were averages of apical-
to-basolateral and basolateral-to-apical measurements that may cancel out some of contribution due to 
efflux/uptake carrier-mediated processes. 
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Table S9. Data set for comparison of intrinsic permeability coefficients measured in unilamellar lipid 
bilayers (BLM) and double-sink Parallel Artificial Membrane Permeability Assay (PAMPA-DS). 
 

Compound Name Group * ** 

24 compounds: 12 acids, 7 bases, 4 neutral, 1 zwitterions 
2-Naphthoic acid Acids 1.23 -2.72 
4-Methylbenzoic acid Acids 0.04 -3.51 
Acetylsalicylic acid Acids -0.82 -4.45 
alpha-Carbamoyl-p-Toluic acid Acids -4.39 -5.91 
alpha-Chloro-p-Toluic acid Acids -0.19 -3.03 
alpha-Hydroxy-p-Toluic acid Acids -2.80 -5.02 
alpha-Carboxy-p-Toluic acid Acids -3.74 -4.51 
alpha-Methoxy-p-Toluic acid Acids -0.46 -4.13 
alpha-Cyano-p-Toluic acid Acids -1.57 -4.33 
Benzoic acid Acids -0.24 -3.94 
L-Lactic acid Acids -4.30 -6.20 
Salicylic acid Acids -0.11 -2.64 
Labetalol Bases -2.10 -4.94 
Domperidone Bases -2.60 -2.78 
Loperamide Bases -0.42 0.15 
Propranolol Bases 0.19 0.43 
Chlorpromazine Bases 0.59 1.62 
Desipramine Bases 0.65 1.74 
Verapamil Bases 0.01 0.26 
Erythritol Neutral -6.40 -8.56 
Theophylline Neutral -3.53 -5.99 
Prednisolone Neutral -3.82 -4.46 
Hydrocortisone Neutral -3.25 -4.32 
Norfloxacin Zwitterions -6.23 -6.16 

* – experimental intrinsic BLM permeability coefficients for unionized molecules  ( ) were 
compiled in Table S1. 
** - experimental intrinsic permeability coefficients obtained in double-sink PAMPA-DS assay  
( ) were compiled by Avdeef in Table 7.13.5 
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