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ABSTRACT

Earthquakes are known to occur beneath southern Tibet at depths up to ~95 km. Whether
these earthquakes occur within the lower crust thickened in the Himalayan collision or in
the mantle is a matter of current debate. Here we compare vertical travel paths expressed as
delay times between S and P arrivals for local events to delay times of P-to-S conversions from
the Moho in receiver functions. The method removes most of the uncertainty introduced in
standard analysis from using velocity models for depth location and migration. We show that
deep seismicity in southern Tibet is unequivocally located beneath the Moho in the mantle.
Deep seismicity in continental lithosphere occurs under normally ductile conditions and has
therefore garnered interest in whether its occurrence is due to particularly cold temperatures
or whether other factors are causing embrittlement of ductile material. Eclogitization in the
subducting Indian crust has been proposed as a cause for the deep seismicity in this area.
Our observation of seismicity in the mantle, falling below rather than within the crustal layer
with proposed eclogitization, requires revisiting this concept and favors other embrittlement
mechanisms that operate within mantle material.

INTRODUCTION

The Himalaya-Tibet continental collision
zone has featured prominently in a debate on
whether strength in the lithosphere resides in
two layers in the brittle crust and uppermost
mantle separated by a weak lower crust, or in a
single layer largely limited to the crust (Chen
etal., 1981, 2012; Chen and Molnar, 1983; Zhu
and Helmberger, 1996; Henry et al., 1997; Cat-
tin and Avouac, 2000; Jackson, 2002; Chen and
Yang, 2004; Beaumont et al., 2004; Monsalve
etal., 2006; de la Torre et al., 2007; Bendick and
Flesch, 2007; Liang et al., 2008; Priestley et al.,
2008; Craig et al., 2012). The distribution of
seismicity with depth in strained regions serves
as a proxy for the lithospheric strength profile
because the occurrence of earthquakes implies
sufficient strength to sustain brittle failure, due
to either cold conditions (e.g., Chen and Mol-
nar, 1983; Sloan and Jackson, 2012; Blanchette
et al., 2018) or local embrittlement processes
(e.g., Incel etal., 2017, 2019; Prieto et al., 2017).
The task is therefore to map where exactly local
earthquakes occur with respect to layers within
the crustal and uppermost mantle column. A
difficulty is posed by uncertainty in estimated
depths for both local seismicity and the Moho.
Crustal earthquake depths are more difficult to
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constrain than their epicenters because the sta-
tions used to locate them are on the surface and
there is a strong tradeoff between location depth
and P and S velocity structure above the events.

Intralithospheric interfaces such as the Moho
can be seen with teleseismic converted waves
(receiver functions), but determining their depth
suffers from the same tradeoff with velocity
structure above the interface as in estimating
earthquake depths. Comparing hypocentral
depths with structural depths is hampered by the
uncertainties in both parameters. The compari-
son is accurate only if the same velocity models
are used for depth determination for both data
sets. More typically, results are compared be-
tween different studies, and a lack of consistency
between the velocity models used exacerbates
the uncertainties. We propose a simple work-
around to the depth determination uncertainty
by comparing seismicity and structure directly
as delay times between shear and compressional
waves (“S minus P”, or S-P), rather than convert-
ing both to depth first.

DATA AND METHODS

We used data from the CE 2001-2003
HIMNT (Himalayan Nepal Tibet) seismic
broadband experiment (Fig. 1). Of the seismic-
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ity located using the network (Monsalve et al.,
2006), deep events are seen in Nepal just south
of the Lesser Himalaya (Fig. 1, cluster C) and
under Tibet (Fig. 1, clusters A and B). Figure
2B shows the same set of events on a previ-
ous structural depth profile from receiver func-
tions on a line crossing the collision zone in a
N18°E orientation perpendicular to the local
range strike (Schulte-Pelkum et al., 2005). The
Moho is visible as a contrast in isotropic veloc-
ity, and the Main Himalayan thrust as a con-
trast in anisotropy (Fig. 2B; Schulte-Pelkum
et al., 2005). Even in this best-case scenario,
with relocations and structural imaging done
with the same stations and the same velocity
models, the deep seismicity appears diffuse
in depth and is difficult to clearly assign to
crust or mantle.

Local earthquake depths are usually calcu-
lated from the travel-time difference between P
and S arrivals from the event at each station. In
receiver function studies, delays between tele-
seismic P and converted S are used to determine
depths to interfaces under the station. In both
cases, the S-P delay time is mapped to depth
by assuming P and S velocity models between
the event or converting interface and the station.
Teleseismic arrivals and local events close to the
station have similar steep incidence angles (Fig.
3C). Direct comparison of such S-P delay times
between the two data sets therefore avoids the
introduction of bias from using velocity models
for depth migration and from unaccounted-for
lateral variations, because the ray paths sample
similar volumes. The two comparison data sets
are constructed as follows.

Local Seismicity

For the local seismicity used in the S-P delay
comparison, we used a previously relocated and
published local event set of ~500 earthquakes
(Monsalve et al., 2006; Fig. 1), each located
with at least 10 P and S arrivals picked with
the HIMNT network; pick statistics are shown
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Figure 1. Map of study area, Himalaya-Tibet collision zone. Inset
map shows regional geographical context, with gray shading
showing topography for orientation. Blue circles in inset are 12
events from the compilation of Chen and Yang (2004) with depths
of 80 km or more. Magenta open circles in inset map are our deep
events 1-6 (Table DR1 [see footnote 1]). In large map, background
color is elevation shaded by topography. Small circles are best-
relocated local seismicity from 2001 to 2003 (Monsalve et al.,
2006,2008,2009). Large circles are the three deep events from the
compilation of Chen andYang (2004, their events T8,T9, and T12;
displayed here with event year and body wave magnitude) that
fall within the map area. Events are color coded by depth below
sea level. Small circles have thin white outline for events in the
initial catalog (Monsalve et al., 2009; white circles in Fig. 2B) and
thicker black outline for events used in delay-time analysis after
selection for station distance, location error, and pick uncertainty
(blue circles in Fig. 2B). Black triangles are HIMNT (Himalayan
Nepal Tibet) stations used in this study. Red line marks the profile
shown in Figures 2 and 3. White squares show locations of Kath-
mandu, Mount Everest, and Kanchenjunga. Black labeled ellipses
roughly outline clusters of deep seismicity A—C discussed in the
text; while the three larger events from Chen and Yang (2004) are
located near them, the clusters’ distribution in space, time, and
magnitude do not fit aftershock characteristics (see the Data Re-
pository). Dashed rectangle shows map area of Figure 4A, and
pale orange squares show receiver function piercing points at
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70 km depth for stations in Figure 4.

in Figure DR1 in the GSA Data Repository'.
For each event in this catalog located within the
network footprint, we selected stations with P
and S picks at epicentral distances of <35 km to
sample a near-station volume. For these event-
station pairs, we calculated the time difference
between S and P arrival pick times (S-P) and its
uncertainty. The S-P pick uncertainty was calcu-
lated by propagating the original uncertainty in
the P and S arrival picks. Pick uncertainty and
location error have long-tailed distributions, and
we chose their half-amplitude widths of ~0.2 s
(S-P uncertainty) and 1 km (location error) as
cutoff values (Fig. DR2), leaving 136 S-P dif-
ferential arrival times from 98 events (black out-
lines in Fig. 1; blue events in Figs. 2B and 2C).

Structure from Receiver Functions

We used a previously published teleseismic
Ps receiver function set from the HIMNT net-
work (Schulte-Pelkum et al., 2005) to determine
S-P times for the comparison to local seismicity.
We additionally processed receiver functions to
obtain a new higher-frequency set (Fig. 4) using
automated event and receiver function quality-
control criteria detailed by Schulte-Pelkum and
Mahan (2014). Arrival times for the Moho con-
version were picked from the original receiver
function set for each station after corrections
for slowness, with errors based on the width of
the arrival and azimuthal variations seen at the
station (Fig. 2C). A comparison with the second
higher-frequency receiver function set shows
close agreement in picked Moho times (exam-

IGSA Data Repository item 2019283, supplemen-
tary information (text, Figures DR1-DR4, and Table
DR1), is available online at http://www.geosociety.org
/datarepository/2019/, or on request from editing@
geosociety.org.

ples in Fig. 4B). A group of stations in southern
Tibet shows a positive amplitude arrival pre-
ceding the Moho peak (Fig. 4B), which marks
the top of a layer with elevated lower-crustal
velocities seen previously under this as well
as other networks along the Himalaya (Yuan
et al., 1997; Kind et al., 2002; Wittlinger et al.,
2009; Schulte-Pelkum et al., 2005; Nabélek
et al., 2009; Zhang et al., 2014). As in these
studies, we picked the later arrival as the Moho
at these stations because the resulting Moho is
contiguous with that determined at neighboring
stations. We also picked Main Himalayan thrust
arrival times on the peak amplitude of the first
azimuthal harmonic at each station (Schulte-
Pelkum and Mahan, 2014).

Distance Correction

The events selected as above as well as the
teleseismic receiver functions have steep ray
paths under the stations and therefore sam-
ple similar structure. The S-P delay time is a
function of the incidence angle. We applied a
moveout correction to vertical incidence to the
receiver function waveforms’ time axis prior to
picking the interface S-P times (Schulte-Pelkum
etal., 2005), and applied a correction to the local
event S-P time to mimic vertical incidence.
The correction requires assumption of average
crustal velocities between the event or interface
in question and the station:

2
At, = |AF —d* 1.1 ,
: v

(where At, is the vertical time difference, At is
the measured time difference, d is the epicentral
distance, and Vp and Vs are the P and S wave
speeds, respectively); so our S-P time compari-
son is not completely velocity free. However,
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Figure 3 demonstrates that the error introduced
by a possible bias in velocity model is of second
order because of the small epicentral distances
involved, whereas a velocity model bias leads to
a first-order error in depth determination.

After correcting all data to vertical incidence,
we plotted the vertical S-P delay times from
local seismicity and from teleseismic receiver
functions on the same range-perpendicular pro-
file (Fig. 2C). The profile is the same as the
distance-depth profile in Figure 2B, but the
vertical axis is now S-P delay time instead of
depth. This representation introduces a distor-
tion of the depth scale but minimizes the ef-
fect of the unknown velocity model (Fig. 3) and
shows the relative depth relationship between
the Moho and earthquake hypocenters. To test
for any influence of lateral variations in Moho
depth, we compare individual deep events to
nearby receiver-function Moho piercing points
in Figure 4.

RESULTS AND DISCUSSION

Potential mantle seismicity in the original set
of ~500 events (Fig. 1, dots with black or white
outlines) can be roughly grouped into three
clusters (Fig. 1). Cluster B, just northwest of
Kanchenjunga, falls outside our analysis set be-
cause of the lack of nearby stations. Deep events
in cluster C near the CE 1988 near-Moho Udaya-
pur earthquake (4650 km estimated depths;
summary in Ghimire and Kasahara, 2007) co-
incide with downtimes at HIMNT station GAIG
or exceed the location or pick error criteria. Five
events in cluster A (Fig. 1, dots with black out-
lines) pass our distance and uncertainty criteria,
and all of them plot below the Moho in the S-P
profile (Fig. 2C, between 0 and 50 km distance
on the profile). These best-constrained events
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Figure 2. Depth profile along red line in Fig-
ure 1. A: Elevation profile. Triangles show
HIMNT (Himalayan Nepal Tibet) seismic sta-
tion locations. Red stations have event picks
in the initial catalog, as well as Moho picks;
blue stations have Moho picks only. B: Depth
profile (depth relative to sea level). Above hori-
zontal black-and-white breaks, background
color shows polarized common-point-con-
version (CCP) stack from receiver functions
(Schulte-Pelkum et al., 2005); high amplitudes
(red) are interpreted as the shear zone asso-
ciated with the Main Himalayan thrust (MHT;
marked approximately with black lines). Be-
low black-and-white breaks, background color
shows standard unpolarized CCP stack, with
Moho traced in red. Seismicity in the initial
catalog is shown as white circles. Blue cir-
cles are subset of events used in the S-to-P
delay (S-P) profile after selection for station-
event distance, location error, and pick error.
C: Same profile as in B, but as function of
S-P time instead of depth (see Fig. 3C). Red
squares with error bars mark Moho pick times
from receiver functions, plotted under each
station. Red error bars are Moho pick uncer-
tainties estimated from pulse width and azi-
muthal variation at each station. Green dia-
monds with error bars mark Main Himalayan
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thrust picks, with error bars representing uncertainty of arrival based on pulse width and variation of the peak time with backazimuth at each
station. Blue circles with error bars are S-P pick times for blue events in B, plotted under each event epicenter (one event may have picks from
several stations). Error bars on picks are uncertainties propagated from P and S pick uncertainties. The Monsalve et al. (2006) Tibet model
is used for distance correction. Numbers 1-6 refer to events shown in Figure 4 and discussed in the text. Elevation correction is not applied
because it only amounts to 0.1 s delay time per 1 km of elevation difference, and nearby stations and events are compared.

are not the deepest in the depth profile (Fig. 2B).
An additional event just south of station RBSH
plots within RBSH’s Moho error bar on the S-P
profile (Fig. 2C, near —10 km profile distance).
The magnitudes of these six deep events range
from M 2.4 t0 2.9;

The larger error bar on the Moho time picked
at station RBSH is due to azimuthal variations
of the Moho pick in the receiver functions from
that station. To exclude the influence of lateral
variations in Moho depths or in velocities along
ray paths, we compared deep-event S-P times to
those from receiver functions with the closest
piercing points. Figure 4A shows the map loca-
tions of the five sub-Moho and one near-Moho
events in Figure 2C, as well as receiver function
piercing points at 75 km depth for nearby sta-
tions. Figure 4B compares the S-P delay times
of those events to receiver functions from nearby
piercing points (larger dots in Fig. 4A). Receiver
function stacks for those piercing points are
shown for the same frequency band as used in
the cross section in Figure 2B as well as for a
higher-frequency band to obtain sharper Moho
resolution. The shallower event south of RBSH
(event 6) is below even shallower Moho picks
for nearby piercing points. The considerable dif-
ference in Moho pick times between receiver
functions from southern compared to northern
back-azimuths at RBSH may represent actual
Moho topography, but may also be due to lateral
variations in velocity structure above the Moho.

The six deep events’ delay times are 0.3—
1.1 s larger than the Moho delay times (Fig.
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4B). Using uppermost mantle velocities from
the standard AK135 model (Kennett et al.,
1995) as well as those for Tibet from Monsalve
et al. (2006), this delay time range corresponds
to event depths of 3—-11 km below the Moho.
None of the deep events in southern Tibet that
pass the error and distance criteria plot above
the Moho. In an S-P profile with more events
including those with larger location errors and

Figure 3. A: Earthquake

pick uncertainties (Fig. DR3), only one event
plots above the error bar of the Moho in southern
Tibet despite more scatter overall.

Shallower seismicity is concentrated in the
southern Tibetan upper crust, with one event
just above the Main Himalayan thrust (Fig. 2C,
profile distances 0—150 km). No events are seen
in the Indian crust (below the Main Himalayan
thrust and above the Moho) under southern Tibet,
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Figure 4. A: Map of HIMNT
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identified in other studies cited in text.

from ~ —50 km profile distance to the north. This
bimodal depth distribution in seismicity and the
concentration of deep seismicity in cluster A per-
sists from the 2001-2003 recording period of the
HIMNT network (Monsalve et al., 2006; Huang
et al., 2009) through the 2003-2005 period of
the HI-CLIMB (Himalayan-Tibetan Continental
Lithosphere during Mountain Building) network
(Liang et al., 2008; Carpenter, 2010), which cov-
ered a footprint including that of HIMNT. Com-
bining this catalog for the 2001-2005 time span
with our placement of the deep seismicity below
the Moho, we conclude that the seismicity in the
Tibetan portion of the profile (north of the High
Himalaya) shows a seismogenic upper (Asian)
crust, an aseismic middle and lower (Indian)
crust, and a seismogenic mantle.

In Nepal, seismicity is focused near the Main
Himalayan thrust downdip from the locked por-

tion (profile distances —120 to —20 km), and is
distributed through all crustal levels south of the
Lesser Himalaya (distances —180 to —120 km).
Mantle seismicity in this area is seen in other
studies (Monsalve et al., 2006; Huang et al.,
2009) and is also suggested by our S-P pro-
file when including events with larger location
and pick errors (Fig. DR3). In contrast to the
bimodal depth distribution north of the High
Himalaya, the Indian plate therefore appears as
a single seismogenic layer in this region before
it begins its descent under the Himalaya.
Continental lower crust and mantle should
normally deform in the ductile regime, and
the presence of seismicity at these depths re-
quires either cold material (<~600 °C; Chen
and Molnar, 1983; Sloan and Jackson, 2012)
or mechanisms that allow brittle failure under
higher-than-normal temperature and pressure
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conditions (Thielmann et al., 2015; Incel et al.,
2017,2019). Eclogitization of a metastable sub-
ducting Indian continental lower crust in the
presence of water has been proposed as a source
for the deep seismicity under Tibet (Lund et al.,
2004; Jackson et al., 2004; Jamtveit et al., 2018).
While the presence of higher-than-average ve-
locities in the Indian lower crust under Tibet
supports eclogitization (Schulte-Pelkum et al.,
2005; Monsalve et al., 2006, 2008; Hetényi
etal., 2007; Huang et al., 2009), our observation
that the seismicity is in the mantle rather than
the lower crust in this location contradicts the
interpretation that eclogitization triggers deep
crustal seismicity.

While seismicity in the mantle has been
interpreted as requiring temperatures <600 °C
(e.g., Jackson et al., 2008), there are embrittle-
ment mechanisms in the mantle under ductile
conditions that do not require cold temperatures,
such as dehydration embrittlement, thermal
runaway shear, and grain-size reduction (e.g.,
Kelemen and Hirth, 2007; Thielmann et al.,
2015; Incel et al., 2017). Continental mantle
earthquakes have been observed in regions of
high temperatures (e.g., in southern California,
USA,; Inbal et al., 2016) and with rupture char-
acteristics supporting such mechanisms (e.g., for
the deep mantle seismicity under the Wyoming
province, USA; Prieto et al., 2017). The later-
ally clustered nature of the deep seismicity in
southern Tibet (Fig. 1; Monsalve et al., 2006,
2009; Huang et al., 2009; Carpenter, 2010) may
point toward such mechanisms operating locally.
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