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Abstract. The standard probabilistic perspective on machine learning gives rise to
empirical risk-minimization tasks that are frequently solved by stochastic gradient
descent (SGD) and variants thereof. We present a formulation of these tasks as classical
inverse or filtering problems and, furthermore, we propose an efficient, gradient-free
algorithm for finding a solution to these problems using ensemble Kalman inversion
(EKI). Applications of our approach include offline and online supervised learning
with deep neural networks, as well as graph-based semi-supervised learning. The
essence of the EKI procedure is an ensemble based approximate gradient descent in
which derivatives are replaced by differences from within the ensemble. We suggest
several modifications to the basic method, derived from empirically successful heuristics
developed in the context of SGD. Numerical results demonstrate wide applicability and
robustness of the proposed algorithm.
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1. Introduction

1.1. The Setting

The field of machine learning has seen enormous advances over the last decade. These
advances have been driven by two key elements: (i) the introduction of flexible
architectures which have the expressive power needed to efficiently represent the input-
output maps encountered in practice; (ii) the development of smart optimization tools
which train the free parameters in these input-output maps to match data. The text
[21] overviews the start-of-the-art.
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While there is little work in the field of derivative-free, paralellizable methods
for machine learning tasks, such advancements are greatly needed. Variants on the
Robbins-Monro algorithm [63], such as stochastic gradient descent (SGD), have become
state-of-the-art for practitioners in machine learning [21] and an attendant theory
(14, 3, 70, 48, 37] is emerging. However the approach faces many challenges and
limitations [20, 60, 78]. New directions are needed to overcome them, especially for
parallelization, as attempts to parallelize SGD have seen limited success [87].

A step in the direction of a derivative-free, parallelizable algorithm for the training
of neural networks was attempted in [11] by use of the the method of auxiliary
coordinates (MAC). Another approach using the alternating direction method of
multipliers (ADMM) and a Bregman iteration is attempted in [78]. Both methods
seem successful but are only demonstrated on supervised learning tasks with shallow,
dense neural networks that have relatively few parameters. In reinforcement learning,
genetic algorithm have seen some success (see [73] and references therein), but it is not
clear how to deploy them outside of that domain.

To simultaneously address the issues of parallelizable and derivative-free
optimization, we demonstrate in this paper the potential for using ensemble Kalman
methods to undertake machine learning tasks. Optimizing neural networks via Kalman
filtering has been attempted before (see [26] and references therein), but most have been
through the use of Extended or Unscented Kalman Filters. Such methods are plagued
by inescapable computational and memory constraints and hence their application has
been restricted to small parameter models. A contemporaneous paper by Haber et al [25]
has introduced a variant on the ensemble Kalman filter, and applied it to the training
of neural networks; our paper works with a more standard implementations of ensemble
Kalman methods for filtering and inversion [44, 35] and demonstrates potential for these
methods within a wide range of machine learning tasks.

1.2. Our Contribution
The goal of this work is two-fold:

e First we show that many of the common tasks considered in machine learning
can be formulated in the unified framework of Bayesian inverse problems. The
advantage of this point of view is that it allows for the transfer of theory and
algorithms developed for inverse problems to the field of machine learning, in
a manner accessible to the inverse problems community. To this end we give a
precise, mathematical description of the most common approximation architecture
in machine learning, the neural network (and its variants); we use the language
of dynamical systems, and avoid references to the neurobiological language and
notation more common-place in the applied machine learning literature.

e Secondly, adopting the inverse problem point of view, we show that variants
of ensemble Kalman methods (EKI, EnKF) can be just as effective at solving
most machine learning tasks as the plethora of gradient-based methods that
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are widespread in the field. We borrow some ideas from machine learning and
optimization to modify these ensemble methods, to enhance their performance.

Our belief is that by formulating machine learning tasks as inverse problems, and
by demonstrating the potential for methodologies to be transferred from the field of
inverse problems to machine learning, we will open up new ways of thinking about
machine learning which may ultimately lead to deeper understanding of the optimization
tasks at the heart of the field, and to improved methodology for addressing those tasks.
To substantiate the second assertion we give examples of the competitive application
of ensemble methods to supervised, semi-supervised, and online learning problems with
deep dense, convolutional, and recurrent neural networks. To the best of our knowledge,
this is the first paper to successfully apply ensemble Kalman methods to such a range of
relatively large scale machine learning tasks. Whilst we do not attempt parallelization,
ensemble methods are easily parallelizable and we give references to relevant literature.
Our work leaves many open questions and future research directions for the inverse
problems community:.

1.3. Notation and Overview

We adopt the notation R for the real axis, R, the subset of non-negative reals, and
N ={0,1,2,...} for the set of natural numbers. For any set A, we use A™ to denote
its n-fold Cartesian product for any n € N\ {0}. For any function f : A — B, we
use Im(f) = {y € B:y = f(x),forsomex € A} to denote its image. For any subset
V C X of a linear space X', we let dim V' denote the dimension of the smallest subspace
containing V. For any Hilbert space H, we adopt the notation || - ||% and (-, )3 to
be its associated norm and inner-product respectively. Furthermore for any symmetric,
positive-definite operator C' : D(C) € H — H, we use the notation || - [|¢ = [[C2 - ||
and (-, )c = <C’_%~,C’_%~,>H. For any two topological spaces X,), we let C(X,))
denote the set of continuous functions from X to ). We define

P" ={y e R" | |lylli = L,y1,...,ym > 0}

the set of m-dimensional probability vectors, and the subset

P ={y e R" | |lylli =1, 91, ,ym > 0}.

Section 2 delineates the learning problem, starting from the classical, optimization-
based framework, and shows how it can be formulated as a Bayesian inverse problem.
Section 3 gives a brief overview of modern neural network architectures as dynamical
systems. Section 4 outlines the state-of-the-art algorithms for fitting neural network
models, as well as the EKI method and our proposed modifications of it. Section 5
presents our numerical experiments, comparing and contrasting EKI methods with the
state-of-the-art. Section 6 gives some concluding remarks and possible future directions
for this line of work.
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2. Problem Formulation

Subsection 2.1 overviews the standard formulation of machine learning problems
with subsections 2.1.1, 2.1.2, and 2.1.3 presenting supervised, semi-supervised, and
online learning respectively. Subsection 2.2 sets forth the Bayesian inverse problem
interpretation of these tasks and gives examples for each of the previously presented
problems.

2.1. Classical Framework

The problem of learning is usually formulated as minimizing an expected cost over some
space of mappings relating the data [21, 81, 53]. More precisely, let X', J be separable
Hilbert spaces and let P(z,y) be a probability measure on the product space X x ). Let
L:Y xY — R, be a positive-definite function and define F to be the set of mappings
{G : X — Y} on which the composition L(G(+), ) is P-measurable for all G in F. Then
we seek to minimize the functional

Q(G) = /X  E(G(),0) Py 1)

across all mappings in F. This minimization may not be well defined as there could be
infimizing sequences not converging in . Thus further constraints (regularization) are
needed to obtain an unambiguous optimization problem. These are generally introduced
by working with parametric forms of G. Additional, explicit regularization is also often
added to parameterized versions of (1).

Usually L is called the loss or cost function and acts as a metric-like function on );
however it is useful in applications to relax the strict properties of a metric, and we, in
particular, do not require £ to be symmetric or subadditive. With this interpretation
of L as a cost, we are seeking a mapping G with lowest cost, on average with respect
to P. There are numerous choices for £ used in applications [21]; some of the most
common include the squared-error loss L(y',y) = |ly — /||3, used for regression tasks,
and the cross-entropy loss L(v,y) = —(y,logy')y used for classification tasks. In both
these cases we often have ) = R¥ and, for classification, we may restrict the class of
mappings to those taking values in PX.

Most of our focus will be on parametric learning where we approximate F by a
parametric family of models {G(ul|-) : X — Y} where v € U is the parameter and
U is a separable Hilbert space. This allows us to work with a computable class of
functions and perform the minimization directly over 4. Much of the early work in
machine learning focuses on model classes which make the associated minimization
problem convex [9, 31, 53|, but the recent empirical success of neural networks has
driven research away from this direction [45, 21]. In Section 3, we give a brief overview
of the model space of neural networks.

While the formulation presented in (1) is very general, it is not directly transferable
to practical applications as, typically, we have no direct access to P(x, y). How we choose
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to address this issue depends on the information known to us, usually in the form of a
data set, and defines the type of learning. Typically information about P is accessible
only through our sample data. The next three subsections describe particular structures
of such sample data sets which arise in applications, and the minimization tasks which
are constructed from them to determine the parameter w.

2.1.1. Supervised Learning Suppose that we have a dataset {(z;, yj)}jyzl
i.i.d. samples from P(x,y). We can thus replace the integral (1) with its Monte Carlo

assumed to be

approximation, and add a regularization term, to obtain the following minimization

problem:
arg min ®g(u; x,y), (2)
uel
L X
D (u;x,y) = NZC(Q(UM%%) + R(u). (3)
j=1

Here R : U4 — R is a regularizer on the parameters designed to prevent overfitting
or address possible ill-posedness. We use the notation x = [21,...,2y5] € X%, and
analogously y, for concatenation of the data in the input and output spaces X,)
respectively.

A common choice of regularizer is R(u) = A|ul|; where A € R is a tunable
parameter. This choice is often called weight decay in the machine learning literature.
Other choices, such as sparsity promoting norms, are also employed; carefully selected
choices of the norm can induce desired behavior in the parameters [10, 82]. We note also
that Monte Carlo approximation is itself a form of regularization of the minimization
task (1).

This formulation is known as supervised learning. Supervised learning is perhaps
the most common type of machine learning with numerous applications including
image/video classification, object detection, and natural language processing [43, 50, 76].

2.1.2. Semi-Supervised Learning Suppose now that we only observe a small portion
of the data y in the image space; specifically we assume that we have access to data
{z;}jez, {y;}jer where x; € X,y; € ¥V, Z = {1,...,N} and where Z' C Z with
|Z'| < |Z|. Clearly this can be turned into supervised learning by ignoring all data
indexed by Z \ Z', but we would like to take advantage of all the information known
to us. Often the data in X is known as unlabeled data, and the data in ) as labeled
data; in particular the labeled data is often in the form of categories. We use the terms
labeled and unlabeled in general, regardless or whether the data in ) is categorical;
however some of our illustrative discussion below will focus on the binary classification
problem. The objective is to assign a label y; to every j € Z. This problem is known
as semi-supervised learning.
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One approach to the problem is to seek to minimize

arg min g (u; X, y) (4)
ueU
Dy (u;x, y) |Z,| > L(G(ulzj), ) + R(u;x) (5)
jez’

where the regularizer R(u;x) may use the unlabeled data in Z\Z’, but the loss term
involves only labeled data in Z’.

There are a variety of ways in which one can construct the regularizer R(u;x)
including graph-based and low-density separation methods [7, 6]. In this work, we will
study a nonparametric graph approach where we think of Z as indexing the nodes on
a graph. To illustrate ideas we consider the case of binary outputs, take ) = R and
restrict attention to mappings G(u|-) which take values in {—1,1}; we sometimes abuse
notation and simply take ) = {—1, 1}, so that ) is no longer a Hilbert space. We assume
that U comprises real-valued functions on the nodes Z of the graph, equivalently vectors
in RY. We specify that G(ulj) = sgn(u(j)) for all j € Z, and take, for example, the
probit or logistic loss function [62, 7]. Once we have found an optimal parameter value
for u : Z — R, application of G to u will return a labeling over all nodes 7 in Z. In
order to use all the unlabeled data we introduce edge weights which measure affinities
between nodes of a graph with vertices Z, by means of a weight function on X x X. We
then compute the graph Laplacian L(x) and use it to define a regularizer in the form

R(u;x) = {(u, (L(x) + 7%1)“u) g~

Here [ is the identity operator, and 7, « € R with o > 0 are tunable parameters. Further
details of this method are in the following section. Applications of semi-supervised
learning can include any situation where data in the image space ) is hard to come by,
for example because it requires expert human labeling; a specific example is medical
imaging [49].

2.1.3.  Online Learning Our third and final class of learning problems concerns
situations where samples of data are presented to us sequentially and we aim to refine
our choice of parameters at each step. We thus have the supervised learning problem
(2) and we aim to solve it sequentially as each pair of data points {x;,y;} is delivered.
To facilitate cheap algorithms we impose a Markovian structure in which we are allowed
to use only the current data sample, as well as our previous estimate of the parameters,
when searching for the new estimate. We look for a sequence {u;}32; C U such that
u; — u* as j — oo where, in the perfect scenario, ©* will be a minimizer of the limiting
learning problem (1). To make the problem Markovian, we may formulate it as the
following minimization task

u; = arg min @, (u, u;_1; 4, y;) ©)
ueU

Do (u, wj—1; 5, y;) = L(G(ulxs), yj) + R(usuj) (7)
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where R is again a regularizer that could enforce a closeness condition between
consecutive parameter estimates, such as

R(u;uj—1) = Mlu— uj_1 |3

Furthermore this regularization need not be this explicit, but could rather be included
in the method chosen to solve (6). For example if we use an iterative method for the
minimization, we could simply start the iteration at u;_;.

This formulation of supervised learning is known as online learning. It can be
viewed as reducing computational cost as a cheaper, sequential way of estimating a
solution to (1); or it may be necessitated by the sequential manner in which data is
acquired.

2.2. Inverse Problems

The preceding discussion demonstrates that, while the goal of learning is to find a
mapping which generalizes across the whole distribution of possible data, in practice,
we are severely restricted by only having access to a finite data set. Namely formulations
(2), (4), (6) can be stated for any input-output pair data set with no reference to P(x, y)
by simply assuming that there exists some function in our model class that will relate
the two. In fact, since L is positive-definite, its dependence also washes out when ones
takes a function approximation point of view. To make this precise, consider the inverse
problem of finding v € U such that

y = G(ulx) +n; (8)

here G(u|x) = [G(u|z1),...,G(u|lzy)] is a concatenation and n ~ 7 is a YN-valued
random variable distributed according to a measure 7 that models possible noise in the
data, or model error. In order to facilitate a Bayesian formulation of this inverse problem
we let g denote a prior probability measure on the parameters u. Then supposing

—log(m(y — G(ulx))) OCZE (ulz;),y;)

—log(pio(u)) o R(U)

we see that (2) corresponds to the standard MAP estimator arising from a Bayesian
formulation of (8). The semi-supervised learning problem (4) can also be viewed as a
MAP estimator by restricting (8) to Z’ and using x to build po. This is the perspective
we take in this work and we illustrate with an example for each type of problem.

Example 2.1. Suppose that )V and U are Euclidean spaces and let 7 = N(0,T") and
o = N(0,%) be Gaussian with positive-definite covariances I', ¥ where I' is block-
diagonal with N identical blocks I'y. Computing the MAP estimator of (8), we obtain
that L(y',y) = lly — ¥'I}, and R(u) = [[ulf3.
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Ezample 2.2. Suppose that Y = RY and Y = R with the data y; = £1 Vj € Z'. We
will take the model class to be a single function G : RY x Z — R depending only on
the index of each data point and defined by G(ul|j) = sgn(u;). As mentioned, we think
of Z as the nodes on a graph and construct the edge set £ = (e;;) = n(x;, ;) where
n: X x X — R, is a symmetric function. This allows construction of the associated
graph Laplacian L(x). We shift it and remove its null space and consider the symmetric,
positive-definite operator C' = (L(x) + 721)~® from which we can define the Gaussian
measure 1o = N (0,C). For details on why this construction defines a reasonable prior
we refer to [7]. Letting # = NV(0, %2[ ), we restrict (8) to the inverse problem

y; =Gulj)+mn; VjieZ.

With the given definitions, letting v* = |Z’|, the associated MAP estimator has the

form of (4), namely
1

|1Z']

> 16 (ulg) = yi* + (u, C  u)pn.

jez'

The infimum for this functional is not achieved [34], but the ensemble based methods we
employ to solve the problem implicitly apply a further regularization which circumvents
this issue.

Ezample 2.3. Lastly we turn to the online learning problem (6). We assume that there
is some unobserved, fixed in time parameter of our model that will perfectly match the
observed data up to a noise term. Our goal is to estimate this parameter sequentially.
Namely, we consider the stochastic dynamical system,

Uj+1 = Uy

Yjr1 = G(ujp1|Tjt1) + njsa

(9)

where the sequence {7;} are V-valued i.i.d. random variables that are also independent
from the data. This is an instance of the classic filtering problem considered in data
assimilation [44]. We may view this as solving an inverse problem at each fixed time with
increasingly strong prior information as time unrolls. With the appropriate assumptions
on the prior and the noise model, we may again view (6) as the MAP estimators of each
fixed inverse problem. Thus we may consider all problems presented here in the general
framework of (8).

3. Approximation Architectures

In this section, we outline the approximation architectures that we will use to solve
the three machine learning tasks outlined in the preceding section. For supervised and
online learning these amount to specifying the dependence of G on u; for semi-supervised
learning this corresponds to determining a basis in which to seek the parameter u. We



EKI: A Derivative-Free Technique For Machine Learning Tasks 9

do not give further details for the semi-supervised case as our numerics fit in the context
of Example 2.2, but we refer the reader to [7] for a detailed discussion.

Subsection 3.1 details feed-forward neural networks with subsections 3.1.1 and
3.1.2 showing the parameterizations of dense and convolutional networks respectively.
Subsection 3.2 presents basic recurrent neural networks.

3.1. Feed-Forward Neural Networks

Feed-forward neural networks are a parametric model class defined as discrete time,
nonautonomous, semi-dynamical systems of an unusual type. Each map in the
composition takes a specific parametrization and can change the dimension of its input
while the whole system is computed only up to a fixed time horizon. To make this
precise, we will assume X = R?, Y = R™ and define a neural network with n € N
hidden layers as the composition

G(ulr) =So0AoF, 10---o0kFyoux

where dy = d and F; € C(R%,R%+1),n =0,...,n— 1 are nonlinear maps, referred to as
layers, depending on parameters 6y, . . ., 0,_; respectively, A : R™ — R™ is an affine map
with parameters 6,,, and u = [0y, .. ., 0,] is a concatenation. The map S : R™ — V C R™

is fixed and thought of as a projection or thresholding done to move the output to the
appropriate subset of data space. The choice of S is dependent on the problem at hand.
If we are considering a regression task and V' = R™ then S can simply be taken as the
identity. On the other hand, if we are considering a classification task and V = P™,
the set of probability vectors in R™, then S is often taken to be the softmax function

defined as ]

27:1 et

From this perspective, the neural network approximates a categorical distribution of

S(w) =

(e, ... e"m).

the input data and the softmax arises naturally as the canonical response function of
the categorical distribution (when viewed as belonging to the exponential family of
distributions) [51, 65]. If we have some specific bounds for the output data, for example
V = [—1,1]™ then S can be a point-wise hyperbolic tangent.

What makes this dynamic unusual is the fact that each map can change the
dimension of its input unlike a standard dynamical system which operates on a fixed
metric space. However, note that the sequence of dimension changes d, ..., d, is simply
a modeling choice that we may alter. Thus let dy.x = max{dy, ..., d,} and consider the
solution map ¢ : Ny x Ny x R%max — Rémax generated by the nonautonomous difference
equation

2oy = Frlzr)

where each map Fj, € C/(R%ax RImax) is such that dim Im(F},) < dgyq; then ¢(n, m,z)
is z, given that z,, = . We may then define a neural network as

G(ulx) =S oAo¢p(n,0,Px)
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where P : RY — R?max is a projection operator and A : Rémax — R™ is again an
affine map. While this definition is mathematically satisfying and potentially useful
for theoretical analysis as there is a vast literature on nonautonomus semi-dynamical
systems [42], in practice, it is more useful to think of each map as changing the dimension
of its input. This is because it allows us to work with parameterizations that explicitly
enforce the constraint on the dimension of the image. We take this point of view for the
rest of this section to illustrate the practical uses of neural networks.

3.1.1. Dense Networks A key feature of neural networks is the specific parametrization
of each map F). In the most basic case, each F}, is an affine map followed by a point-wise
nonlinearity, in particular,

Fk(Zk) = O’(szk + bk)

where W), € R%+1%dk p, € R¥%+1 are the parameters i.e. 0 = [W}, b] and o € C(R,R)
is non-constant, bounded, and monotonically increasing; we extend ¢ to a function on
R? by defining it point-wise as o(u); = o(u;) for any vector u € R?. This layer type is
referred to as dense, or fully-connected, because each entry in W, is a parameter with
no global sparsity assumptions and hence we can end up with a dense matrix. A neural
network with only this type of layer is called dense or fully-connected (DNN).

The nonlinearity o, called the activation function, is a design choice and usually does
not vary from layer to layer. Some popular choices include the sigmoid, the hyperbolic
tangent, or the rectified linear unit (ReLU) defined by o(¢q) = max{0,¢}. Note that
ReLU is unbounded and hence does not satisfy the assumptions for the classical universal
approximation theorem [32], but it has shown tremendous numerical success when the
associated inverse problem is solved via backpropagation (method of adjoints) [55].

3.1.2. Convolutional Networks Instead of seeking the full representation of a linear
operator at each time step, we may consider looking only for the parameters associated
to a pre-specified type of operator. Namely we consider

Fk(zk> = O'(W(Sk)zk + bk)

where W can be fully specified by the parameter s;. The most commonly considered
operator is the one arising from a discrete convolution [46]. We consider the input z
as a function on the integers with period dj, then we may define W (sy) as the circulant
matrix arising as the kernel of the discrete circular convolution with convolution operator
si. Exact construction of the operator W is a modeling choice as one can pick exactly
which blocks of z; to compute the convolution over. Usually, even with maximally
overlapping blocks, the operation is dimension reducing, but can be made dimension
preserving, or even expanding, by appending zero entries to z;. This is called padding.
For brevity, we omit exact descriptions of such details and refer the reader to [21]. The
parameter s, is known as the stencil. Neural networks following this construction are
called convolutional (CNN).
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In practice, a CNN computes a linear combination of many convolutions at each

time step, namely

My,

FO(a) = o (z W)+ b,aﬁ)

m=1
for j =1,2,..., My, where z, = [zlil), e z,ng)] with each entry known as a channel
and M, = 1 if no convolutions were computed at the previous iteration. Finally we
define Fy(z) = [F,El)(zk), . ,F,EM'““)(Zk)]. The number of channels at each time step,
the integer My, is a design choice which, along with the choice for the size of the
stencils s,(cj ’m), the dimension of the input, and the design of W determine the dimension
of the image space di,, for the map Fj.

When employing convolutions, it is standard practice to sometimes place maps
which compute certain statistics from the convolution. These operations are commonly
referred to as pooling [54]. Perhaps the most common such operation is known as max-
pooling. To illustrate suppose [Fk(l), . ,F,C(M’““)] are the My, channels computed as
the output of a convolution (dropping the z; dependence for notational convenience). In
this context, it is helpful to change perspective slightly and view each F, k(j ) as a matrix
whose concatenation gives the vector Fj. Each of these matrices is a two-dimensional
grid whose value at each point represents a linear combination of convolutions each
computed at that spatial location. We define a maximum-based, block-subsampling
operation

() ()
4= max max (F7) a6 1)+
(pi" qe{1,...,H1}ue{1,...,H2}( E Jali-1+a.80-1)+

where the tuple (H;, Hy) € N? is called the pooling kernel and the tuple (o, ) € N? is
called the stride, each a design choice for the operation. It is common practice to take
H, = Hy = a = . We then define the full layer as Fj(zx) = | ,gl)(zk), . ,pECM’““)(Zk)].
There are other standard choices for pooling operations including average pooling, ¢,-
pooling, fractional max-pooling, and adaptive max-pooling where each of the respective
names are suggestive of the operation being performed; details may be found in
[79, 23, 24, 27]. Note that pooling operations are dimension reducing and are usually
thought of as a way of extracting the most important information from a convolution.
When one chooses the kernel (Hy, Hy) such that F, ,fj ) € Rz the per channel output
of the pooling is a scalar and the operation is called global pooling.

Designs of feed-forward neural networks usually employ both convolutional (with
and without pooling) and dense layers. While the success of convolutional networks
has mostly come from image classification or object detection tasks [43], they can be
useful for any data with spatial correlations [8, 21]. To connect the complex notation
presented in this section with the standard in machine learning literature, we will give
an example of a deep convolutional neural network. We consider the task of classifying
images of hand-written digits given in the MNIST dataset [47]. These are 28 x 28
grayscale images of which there are N = 60,000 and 10 overall classes {0,...,9} hence
we consider X = R?$*2 =~ R™4 and ) the space of probability vectors over R1?. Figure
1 show a typical construction of a deep convolutional neural network for this task. The
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Convolutional Neural Network
Map Type Notation
Conv 32x5x5 | My =1, My = 32,s9™ € R5*5
jefl,....320m={1)
Conv 32x5x5 | My = 32, s(] ™ ¢ R5x5
Fy s R3X2X20_ R32XI0x10 | NaxPool 2x2 | j € {1,...,32},m € {1,...,32)
Hi—Hy =2 (a=8=2)
Conv 64x5x5 | My = 64, s9™ € R5*®
jell,.... 64}, me{1,...,32)
Conv 64x5x5 | M, = 64, s7™ € R

FO . R28><28 — R32><24><24

.. TR32x10%10 64x6x6
R — R

Fy : R64x6x6 _, TR64 MaxPool 2x2 | j € {1,...,64},m € {1,...,64}
(global) Hy =Hy,=2

Fy : R6 — R0 FC-500 W, € RP00x64 p, ¢ RS0

AR RO FC-10 W, € RIOX500 3¢ RI0

S: R0 - R Softmax S(w) = w(ewl, oL, EW10)

Figure 1: A four layer convolutional neural network for classifying images in the MNIST
data set. The middle column shows a description typical of the machine learning
literature. The other two columns connect this jargon to the notation presented here.
No padding is added and the convolutions are computed over maximally overlapping
blocks (stride of one). The nonlinearity o is the ReLLU and is the same for every layer.

|

NS W E L
A H‘\ mu'l“J L A A

Figure 2: Output of each map from left to right of the convolutinal neural network shown

in Figure 1. The left most image is the input and the next three images show a single
randomly selected channel from the outputs of Fy, Fy, 5 respectively. The outputs of
F3, Fy, A, S are vectors shown respectively in the four subsequent plots. We see that
with high probability the network determines that the image belongs to the first class
(0) which is correct.

word deep is generally reserved for models with n > 3. Once the model has been fit,
Figure 2 shows the output of each map on an example image. Starting with the digitized
digit 0, the model computes its important features, through a sequence of operations
involving convolutional layers, culminating in the second to last plot, the output of the
affine map A. This plot shows model determining that the most likely digit is 0, but
also giving substantial probability weight on the digit 6. This makes sense, as the digits
0 and 6 can look quite similar, especially when hand-written. Once the softmax is taken
(because it exponentiates), the probability of the image being a 6 is essentially washed
out, as shown in the last plot. This is a short-coming of the softmax as it may not
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accurately retain the confidence of the model’s prediction. We stipulate that this may
be a reason for the emergence of highly-confident adversarial examples [77, 22|, but do
not pursue suitable modifications in this work.

3.2. Recurrent Neural Networks

Recurrent neural networks are models for time-series data defined as discrete time,
nonautonomous, semi-dynamical systems that are parametrized by feed-forward neural
networks. To make this precise, we first define a layer of two-inputs simply as the sum

of two affine maps followed by a point-wise nonlinearity, namely for j = 1,...,n define
Fy, R x RY — R by

Fy,(2,q) = oWz + b + W9q +b0)

where W,Ej ) e Rér*dn W e Réxd and b,(j ), b e R the parameters are then given
by the concatenation 0; = [W,EJ ), Wéj ), bEj), bg(cj )]. The dimension dj, is a design choice
that we can pick on a per-problem basis. Now define the map Fy : R% x R? — R% by
composing along the first component

F9(27q) = F9n(F9n71<"'F91<Z7Q)7"'Q>7Q)7Q)

where § = [0y, ...,0,] is a concatenation. Now suppose o, . .., zr_1 € R? is an observed
time series and define the dynamic

hig1 = F0<ht, 37t)

up to time t = T. We can think of this as a nonautonomous, semi-dynamical system on
R with parameter x = [xg,...,27_1]. Let ¢ : {0,..., T} x RT*? x R% — R be the
solution map generated by this difference equation. We can finally define a recurrent
neural network G(u|-) : RT*? — V' C RT*4 by

S(A;0¢(1,x,hg))

S(As 0 p(2,x, hy
pre ECLCELY

S(AT o ¢(T, x, ho))

where Ay, ..., Ap are affine maps, S is a thresholding (such as softmax) as previously
discussed, and u a concatenation of the parameters 6 as well as the parameters for all of
the affine maps. Usually ones takes hy = 0, but randomly generated initial conditions
are also used in practice.

The construction presented here is the most basic recurrent neural network. Many
others architectures such as Long Short-Term Memory (LSTM), recursive, and bi-
recurrent networks have been proposed in the literature [69, 30, 29, 21|, but they
are all slight modifications to the above dynamic. These architectures can be used
as sequence to sequence maps, or, if we only consider the output at the last time that is
S(Ar o ¢(T, x, hg)), as predicting zr or classifying the sequence xy, ...,z ;. We refer
the reader to [74] for an overview of the applications of recurrent neural networks.
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4. Algorithms

Subsection 4.1 describes the choice of loss function. Subsection 4.2 outlines the state-of-
the-art derivative based optimization, with subsection 4.2.1 presenting the algorithms
and subsection 4.2.2 presenting tricks for better convergence. Subsection 4.3 defines the
EKI method, with subsequent subsections presenting our various modifications.

4.1. Loss Function

Before delving into the specifics of optimization methods used, we discuss the general
choice of loss function £. While the machine learning literature contains a wide variety
of loss functions that are designed for specific problems, there are two which are most
commonly used and considered first when tackling any regression and classification
problems respectively, and on which we focus our work in this paper. For regression
tasks, the squared-error loss

L y) =Ny =yl
is standard and is well known to the inverse problems community; it arises from an

additive Gaussian noise model. When the task at hand is classification, the standard
choice of loss is the cross-entropy

Ly, y) =—(y,logy )y,

with the log computed point-wise and where we consider ) = R™. This loss is well-
defined on the space Pj* x P™. It is consistent with the the projection map S of the
neural network model being the softmax as Im(S) = Pj'. A simple Lagrange multiplier
argument shows that £ is indeed infimized over P{* by sequence y' — y and hence the
loss is consistent with what we want our model output to be. I From a modeling
perspective, the choice of softmax as the output layer has some drawbacks as it only
allows us to asymptotically match the data. However it is a good choice if the cross-
entropy loss is used to solve the problem; indeed, in practice, the softmax along with the
cross-entropy loss has seen the best numerical results when compared to other choices
of thresholding/loss pairs [21].

The interpretation of the cross-entropy loss is to think of our model as
approximating a categorical distribution over the input data and, to get this
approximation, we want to minimize its Shannon cross-entropy with respect to the
data. Note, however, that there is no additive noise model for which this loss appears in
the associated MAP estimator simply because £ cannot be written purely as a function
of the residual y — ¥/.

I Note that the infimum is not, in general, attained in Pf* as defined, because perfectly labeled data
may take the form {y € R™ | 3!j s.t. y; = 1,y = 0 Vk # j} which is in the closure of Pf* but not in
Py itself.
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4.2. Gradient Based Optimization

4.2.1. The Iterative Technique The current state of the art for solving optimization
problems of the form (2), (4), (6) is based around the use of stochastic gradient descent
(SGD) [63, 39, 66]. We will describe these methods starting from a continuous time
viewpoint, for pedagogical clarity. In particular, we think of the unknown parameter
u € U as the large time limit of a smooth function of time w : [0,00) — U. Let
O (u;x,y) = Pg(u;x,y) or Pg(u;x,y) then gradient descent imposes the dynamic

u=—-V®(u;x,y), u(0)=muo (10)

which moves the parameter in the steepest descent direction with respect to the
regularized loss function, and hence will converge to a local minimum for Lebesgue
almost all initial data, leading to bounded trajectories [48, 71].

For the practical implementations of this approach in machine learning, a number of
adaptations are made. First the ODE is discretized in time, typically by a forward Euler
scheme; the time-step is referred to as the learning rate. The time-step is often, but
not always, chosen to be a decreasing function of the iteration step [14, 63]. Secondly,
at each step of the iteration, only a subset of the data is used to approximate the full
gradient. In the supervised case, for example,

By(u: %, y) ~ Ni S LG (ule;), yy) + Rw)

JEB N

where By C {1,..., N} is a random subset of cardinality N’ usually with N < N.
A new By is drawn at each step of the Euler scheme without replacement until the
full dataset has been exhausted. One such cycle through all of the data is called an
epoch. The number of epochs it takes to train a model varies significantly based on
the model and data at hand but is usually within the range 10 to 500. This idea,
called mini-batching, leads to the terminology stochastic gradient descent (SGD). Recent
work has suggested that adding this type of noise helps preferentially guide the gradient
descent towards places in parameter space which generalize better than standard descent
methods [12, 13].

A third variant on basic gradient descent is the use of momentum-augmented
methods utilized to accelerate convergence [56]. The continuous time dynamic associated
with the Nesterov momentum method is [72]

.3, :
u+¥u: —V(I)(U7X7y>7 (11)
u(0) = uo, 1(0) =0.

We note, however, that, while still calling it Nesterov momentum, this is not the
dynamic machine learning practitioners discretize. In fact, what has come to be called
Nesterov momentum in the machine learning literature is nothing more than a strange
discretization of a rescaled version the standard gradient flow (10). To see this, we note
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that via the approximation k/(k+3) ~ 1 —3/(k+ 1) one may discretize (11), as is done
in [72], to obtain

Uk+1 = Vg — hkvq)(vky X, y)

Vg1 = Uk4+1 + (U1 — up)

k+3

with vg = ug and where the sequence {\/hy} gives the step sizes. However, what machine
learning practitioners use is the algorithm

U1 = Vp — W VO (vk; %, y)
Vg1 = U1 + MU — Up)
for some fixed A € (0,1). This may be written as
U1 = (1 4+ Nugp — Mug—1 — b VO (1 4+ Nug — AMug—1;%,Yy).
If we rearrange and divide by hx, we can obtain

Uk4+1 — Uk

S (TR} (1 N — Mi1sx, y)
hk hk

which is easily seen as a discretization of a rescaled version of the gradient flow (10),
namely

i=—(1—-X\)""Vo(u;x,y).

However, there is a sense in which this discretization introduces momentum, but only
to order O(hy) whereas classically the momentum term would be on the order O(1). To
see this, we can again rewrite the discretization as

U1 = 2up — Up—1 — (1 — XN)(ugp — ug—1) — he VO((1 4+ Nug — AMug—1;%,Y).

Rearranging this and dividing through by hj; we can obtain

_9 _ — Uk—
i () - (B2 ) = Ve A Ay
A k

which may be seen as a discretization of the equation
hiii 4 (1 = N = =V P(u; x,y),

where h; is a continuous time version of the sequence {hy}; in particular, if by = h < 1
we see that whilst momentum is approximately present, it is only a small effect.

From these variants on continuous time gradient descent have come a plethora of
adaptive first-order optimization methods that attempt to solve the learning problem.
Some of the more popular include Adam, RMSProp, and Adagrad [40, 15]. There is no
consensus on which methods performs best although some recent work has argued in
favor of SGD and momentum SGD [85].
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Lastly, the online learning problem (6) is also commonly solved via a gradient
descent method dubbed online gradient descent (OGD). The dynamic is

Uj = _Vq)o(uja Uj—1;Tj, yj)

u;(0) = ujy

which can be extended to the momentum case in the obvious way. It is common that
only a single step of the Euler scheme is computed. The process of letting all these
ODE(s) evolve in time is called training.

4.2.2. Initialization and Normalization Two major challenges for the iterative methods
presented here are: 1) finding a good starting point ug for the dynamic, and 2)
constraining the distribution of the outputs of each map Fj in the neural network.
The first is usually called initialization, while the second is termed normalization; the
two, as we will see, are related.

Historically, initialization was first dealt with using a technique called layer-wise
pretraining [28]. In this approach the parameters are initialized randomly. Then the
parameters of all but first layer are held fixed and SGD is used to find the parameters
of the first layer. Then all but the parameters of the second layer are held fixed and
SGD is used to find the parameters of the second layer. Repeating this for all layers
yields an estimate ug for all the parameters, and this is then used as an initialization
for SGD in a final step called fine-tuning. Development of new activation functions,
namely the ReLU, has allowed simple random initialization (from a carefully designed
prior measure) to work just as well, making layer-wise pretraining essentially obsolete.
There are many proposed strategies in the literature for how one should design this prior
20, 52]. The main idea behind all of them is to somehow normalize the output mean
and variance of each map Fj. One constructs the product probability measure

0 1 n—1 n
po=py ®us’ @@ pg "V @ pg”

where each ,u(()k) is usually a centered, isotropic probability measure with covariance

scaling .. Each such measure corresponds to the distribution of the parameters of

) attached to the parameters of the map A. A common

each respective layer with u(()"
strategy called Xavier initialization [20] proposes that the inverse covariance (precision)

is determined by the average of the input and output dimensions of each layer:

_ 1
Tl = §(dk + dyy1)
th
us B 2
k= di + dis1

When the layer is convolutional, d; and dj,; are instead taken to be the number of
input and output channels respectively. Usually each ugk) is then taken to be a centered
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Gaussian or uniform probability measure. Once this prior is constructed one initializes
SGD by a single draw.

As we have seen, initialization strategies aim to normalize the output distribution
of each layer. However, once SGD starts and the parameters change, this normalization
is no longer in place. This issue has been called the internal covariate shift. To address
it, normalizing parameters are introduced after the output of each layer. The most
common strategy for finding these parameters is called batch-normalization [36], which,
as the name implies, relies on computing a mini-batch of the data. To illustrate the idea,
SUppose 2, (Tk,), ..., zm(Tk,) are the outputs of the map F,,_; at inputs xy,, ..., k.
We compute the mean and variance

1 & 1o
Vm = Ezzm@k;‘)? Urzn: EZHZm(xkﬂ)_ymHg
=1 =1

and normalize these outputs so that the inputs to the map F,, are

Zm (7)) mey L5
Vo2 +¢€

where € > 0 is used for numerical stability while v, 5 are new parameters to be estimated,
and are termed the scale and shift respectively; they are found by means of the SGD
optimization process. It is not necessary to introduce the new parameters ~, 5 but is
common in practice and, with them, the operation is called affine batch-normalization.
When an output has multiple channels, separate normalization is done per channel.
During training a running mean of each v,,, 02, is kept and the resulting values are used
for the final model. A clear drawback to batch normalization is that it relies on batches
of the data to be computed and hence cannot be used in the online setting. Many
similar strategies have been proposed [80, 2] with no clear consensus on which works
best. Recently a new activation function called SeLU [41] has been claimed to perform
the required normalization automatically.

4.3. Ensemble Kalman Inversion

The Ensemble Kalman Filter (EnKF) is a method for estimating the state of a stochastic
dynamical system from noisy observations [17]. Over the last decade the method
has been systematically developed as an iterative method for solving general inverse
problems; in this context, it is sometimes referred to as Ensemble Kalman Inversion
(EKI) [35]. Viewed as a sequential Monte Carlo method [68], it works on an ensemble
of parameter estimates (particles) transforming them from the prior into the posterior.
Recent work has established, however, that unless the forward operator is linear and the
additive noise is Gaussian [68], the correct posterior is not obtained [18]. Nevertheless
there is ample numerical evidence that shows EKI works very well as a derivative-free
optimization method for nonlinear least-squares problems [38, 5]. In this paper, we
view it purely through the lens of optimization and propose several modifications to
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the method that follow from adopting this perspective within the context of machine
learning problems.
Consider the general inverse problem

y =G(u) +7

where n ~ m = N(0,I") represent noise, and let 1y be a prior measure on the parameter
u. Note that the supervised, semi-supervised, and online learning problems (8), (9)
can be put into this general framework by adjusting the number of data points in the
concatenations y, x and letting x be absorbed into the definition of G. Let {u" )}3]:1 cu
be an ensemble of parameter estimates which we will allow to evolve in time through
interaction with one another and with the data; this ensemble may be initialized by
drawing independent samples from fi, for example. The evolution of u\9) : [0, 00) — U
is described by the EKI dynamic [68]

Here

1< 1<
G- LN g™ e LN 0
J; (u'"), u J;u

and C"™(u) is the empirical cross-covariance operator
J —
C™(u) = => (u¥ — ) @ (Gu") - G).

Thus
k=1 (12)

Viewing the difference of G(u®) from its mean, appearing in the left entry of the
inner-product, as a projected approximate derivative of G, it is possible to understand
(12) as an approximate gradient descent.

Rigorous analysis of the long-term properties of this dynamic for a finite J are
poorly understood except in the case where G(-) = A- is linear [68]. In the linear case,
we obtain that u() — u* as t — co where u* minimizes the functional

1
D(usy) = 5lly — Auf}

J

in the subspace A = span{uéj ) — u};_,, and where @ is the mean of the initial ensemble

{u(()j )}. This follows from the fact that, in the linear case, we may re-write (12) as

09 = —C(u)V,@(u; y)
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where C'(u) is an empirical covariance operator

Hence each particle performs a gradient descent with respect to ® and C(u) projects
into the subspace A.
To understand the nonlinear setting we use linearization. Note from (12) that

(uV), G(u(j)) —Y)r u®)

Now we linearize on the assumption that the particles are close to one another, so that

G(u(k)) — G(u(j) + oyt — u(j)) ~ G(u(j)) + DG(u(j))(u(k) _ u(j))
G(u(l)) — G(u(j) +u® = u(j)) ~ G(u(j)) + DG(u(j))(u(l) — ).

Here DG is the Fréchet derivative of G. With this approximation, we obtain

J2
k=1 l=1
1 J
=~ (DG ) (G() - y),u — () — 1)
k=1

where 1
®(u;y) = 5lly = Gullr-

This is again just gradient descent with a projection onto the subspace A. These
arguments also motivate the interesting variants on EKI proposed in [25]; indeed the
paper [25] inspired the organization of the linearization calculations above.

In summary, the EKI is a methodology which behaves like gradient descent, but
achieves this without computing gradients. Instead it uses an ensemble and is hence
inherently parallelizable. In the context of machine learning this opens up the possibility
of avoiding explicit backpropagation, and doing so in a manner which is well-adapted
to emerging computer architectures.
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4.8.1.  Cross-Entropy Loss The previous considerations demonstrate that EKI as
typically used is closely related to minimizing an ¢, loss function via gradient descent.
Here we propose a simple modification to the method allowing it to minimize any loss
function instead of only the squared-error; our primary motivation is the case of cross-
entropy loss.

Let L(y',y) be any loss function, this may, for example, be the cross entropy

! 1 !
Ly y) = —N<y,10gy>w~

Now consider the dynamic
a9 = —C"™(u)Vy L(G(uY)),y)

J

Z<G(“( )) _

k=1

V, L(GW), y)) u®. 1)

~l =

If L(y',y) = |ly = ¥'[|# then V, L(G(u"),y) = I7*(G(ul?)) — y) recovering the original
dynamic. Note that since we've defined the loss through the auxiliary variable y’ which
is meant to stand-in for the output of our model, the method remains derivative-free
with respect to the model parameter u, but does not allow for adding regularization
directly into the loss. However regularization could be added directly into the dynamic;
we leave such considerations for future work.

An interpretation of the original method is that it aims to make the norm of
the residual y — G(u') small. Our modified version replaces this residual with
V,L(G(uW),y), but when £ is the cross entropy this is in fact the same (in the ¢,
sense). We make this precise in the following proposition.

Proposition 1. Let G : U — (P§")™ and suppose y = [eg,, ..., exy]” where e, is the k;-th
standard basis vector of R™. Then u* € U is a solution to
arg min ||y — G(u)||,

ueU

if and only if u* is a solution to

argmin ||V L(G(w), y)lle,
ueU

where L(y',y) = —(y,logy’)s, is the cross-entropy loss.

Proof. Without loss of generality, we may assume N = 1 and thus let y = e, be the k-th
standard basis vector of R™. Suppose that u* is a solution to argmin, ., |ly — G(u)|le, -
Then for any u € U, we have

DG+ (1= Gu)y) <D Glu); + (1 = Glu)y).

7k ik
Adding 0 = G(u*), — G(u*)g to the Lh.s. and 0 = G(u)r — G(u), to the r.h.s. and noting
that [|G(u)||,, = 1 for all u € U since Im(G) = Py* we obtain

2(1 — G(u")) < 2(1 — G(u)g)
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which implies
1 1

<
G(u*)e = G(u)
as required since ||V L(G(u),y)|le, = 1/G(u)x. The other direction follows similarly. [

4.8.2. Momentum Continuing in the spirit of optimization, we may also add Nesterov
momentum to the EKI method. This is a simple modification to the dynamic (13),

3 ,
=) 20 0) — _ouw , ()Y
uV’ + tu C™(u)Vy L(G(uV);y) (14)

u?(0) = u(()j), 49 (0) = 0.

While we present momentum EKI in this form, in practice, we follow the standard
in machine learning by fixing a momentum factor A € (0,1) and discretizing (13)
using the method shown in subsection 4.2.1. In standard stochastic gradient decent,
it has been observed that this discretization converges more quickly and possibly to a
better local minima than the forward Euler discretization [75]. Numerically, we discover
a similar speed up for EKI. However, the memory cost doubles as we need to keep
track of an ensemble of positions and momenta. Some experiments in the next section
demonstrate the speed-up effect. We leave analysis and possible applications to other
inverse problems of the momentum method as presented in (14) for future work.

4.3.3.  Discrete Scheme Finally we present our modified EKI method in the
implementable, discrete time setting and discuss some variants on this basic scheme
which are particularly useful for machine learning problems. In implementation, it is
useful to consider the concatenation of particles u = [u(l), coul )] which may be viewed
as a function u : [0,00) — U7. Then (13) becomes

0= —D(u)u

where for each fixed u the operator D(u) : U7 — U’ is a linear operator. Suppose
U = RP then we may exploit symmetry and represent D(u) by a J x J matrix instead
of a JP x JP matrix. To this end, suppose the ensemble members are stacked row-wise
that is u € R7*¥ then D(u) has the simple representation

(D(u))ij = (G(u™) = G, Vy L(G(u?),y))

which is readily verified by (13). We then discretize via an adaptive forward Euler
scheme to obtain
Ugpyr1p = U — th<Uk)Uk

Choosing the correct time-step has an immense impact on practical performance. We
have found that the choice h
0

hp = i,
" ID(up) [ + €
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where || - ||r denotes the Frobenius norm, works well in practice [16]. We aim to make hy
as large as possible without loosing stability of the dynamic. The intuition behind this
choice has to do with the fact that that D(u) measures how close the propagated particles
are to each other (left part of the inner-product) and how close they are to the data
(right part of the inner-product). When either or both of these are small, we may take
larger steps, and still retain numerical stability, by choosing h; inversely proportional
to ||D(u)||F; the parameter e is added to avoid floating point issues when | D(u)|r
is near machine precision. As k — oo, we typically match the data with increasing
accuracy and, simultaneously, the propagated particles achieve consensus and collapse
on one another; as a consequence ||D(ug)||r — 0 which means we take larger and larger
steps. Note that this is in contrast to the Robbins-Monro implementation of stochastic
gradient descent where the sequence of time-steps are chosen to decay monotonically to
Zero.
Similarly, the momentum discretization of (13) is

Ugt+1 = Vg — th(Vk)Vk
Vi1 = Uggr + A(Upg1 — upg)

with A € (0,1) fixed, ug = vo where hy = ho/(|[D(vi)||r + €) as before and v represent
the particle momenta.

We now present a list of numerically successful heuristics that we employ when
solving practical problems.

(I) Initialization: To construct the initial ensemble, we draw an ii.d. sequence
{uéj )}3]:1 with u(()l) ~ 1o where i is selected according to the construction discussed
for initialization of the neural network model in the section outlining SGD.

(II) Mini-batching: We borrow from SGD the idea of mini-batching where we use
only a subset of the data to compute each step of the discretized scheme, picking
randomly without replacement. As in the classical SGD context, we call a cycle
through the full dataset an epoch.

(IIT) Prediction: In principle, any one of the particles u'/) can be used as the parameters
of the trained model. However, as analysis of Figure 7 below shows, the spread in
their performance is quite small; furthermore even though the system is nonlinear,
the mean particle u achieves an equally good performance as the individual
particles. Thus, for computational simplicity, we choose to use the mean particle
as our final parameter estimate. This choice further motivates one of the ways in
which we randomize.

(IV) Randomization: The EKI property that all particles remain in the subspace
spanned by the initial ensemble is not desirable when J < dimi. We break this
property by introducing noise into the system. We have found two numerically
successful ways of accomplishing this.

i. At each step of the discrete scheme, add noise to each particle,

u® s u) 4 )
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where {U;E;j)}}]:1 is an ii.d. sequence with n,(:) ~ pi. We define py to be a

scaled version of ji by scaling its covariance operator namely Cj, = v/h;,Cy,
where hy, is the time step as previously defined. Note that as the particles start
to collapse, h; increases, hence we add more noise to counteract this. In the
momentum case, we perform the same mapping but on the particle momenta

instead

) ()

s o) 4@

v +n;”.

ii. At the end of each epoch, randomize the particles around their mean,

s 1)

where T is the number of steps needed to complete a cycle through the entire
dataset and {n,(ir)}f:l is an i.i.d. sequence with 771(ng) ~ 1. Note that because
this randomization is only done after a full epoch, it is not clear how the
noise should be scaled and thus we simply use the prior. This may not be
the optimal thing to do, but we have found great numerical success with this
strategy. Figure 8 shows the spread of the ratio of the parameters to the
the noise ||ur||/ ||77,(€JT)H We see that relatively less noise is added as training
continues. It may be possible to achieve better results by increasing the noise
with time as to combat collapse. However, we do not perform such experiments.
Furthermore we have found that this does not work well in the momentum case;
hence all randomization for the momentum scheme is done according to the

first point.

(V) Expanding Ensemble: Numerical experiments show that using a small number
of particles tends to have very good initial performance (one to two epochs) that
quickly saturates. On the other hand, using a large number of particles does not
do well to begin with but greatly outperforms small particle ensembles in the long
run. Thus we use the idea of an expanding ensemble where we gradually add in new
particles. This is done in the context of point (ii.) of the randomization section.
Namely, at the end of an epoch, we compute the ensemble mean and create a new
larger ensemble by randomizing around it.

Lastly we mention that, in many inverse problem applications, it is good practice
to randomize the data for each particle at each step [44] namely map

4)
y—=y+&

where {5,(3 ) J_,is an 1.i.d. sequence with & ,(;) ~ 7. However we have found that this does
not work well for classification problems. This may be because the given classifications
are correct and there is no actual noise in the data. Or it may be that we simply have
not found a suitable measure from which to draw noise. We have not experimented in
the case where the labels are noisy and leave this for future work.
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5. Numerical Experiments

In the following set of experiments, we demonstrate the wide applicability of EKI on
several machine learning tasks. All forward models we consider are some type of neural
network, except for the semi-supervised learning case where we consider the construction
in Example 2.2. We benchmark EKI against SGD and momentum SGD and do not
consider any other first-order adaptive methods. Recent work has shown that their
value is only marginal and the solutions they find may not generalize as well [85].
Furthermore we do not employ batch normalization as it is not clear how it should be
incorporated with EKI methods. However, when batch normalization is necessary, we
instead use the SELU nonlinearity, finding the performance to be essentially identical
to batch normalization on problems where we have been able to compare.

The next five subsections are organized as follows. Subsection 5.1 contains the
conclusions drawn from the experiments. In subsection 5.2, we describe the five
data sets used in all of our experiments as well as the metrics used to evaluate the
methods. Subsection 5.3 gives implementation details and assigns methods using
different techniques their own name. In subsections 5.4, 5.5, and 5.6 we show the
supervised, semi-supervised, and online learning experiments respectively. Since most
of our experiments are supervised, we split subsection 5.4 based on the type of model
used namely dense neural networks, convolutional neural networks, and recurrent neural
networks respectively.

5.1. Conclusions From Numerical Fxperiments
The conclusions of our experiments are as follows:

e On supervised classification problems with a feed-forward neural network, EKI
performs just as well as SGD even when the number of unknown parameters is very
large (up to half a million) and the number of ensemble members is considerably
smaller (by two orders of magnitude). Furthermore EKI seems more numerically
stable than SGD, as seen in the smaller amount of oscillation in the test accuracy,
and requires less hyper-parameter tuning. In fact, the only parameter we vary in
our experiments is the number of ensemble members, and we do this simply to
demonstrate its effect. However due to the large number of forward passes required
at each EKI iteration, we have found the method to be significantly slower. This
issue can be mitigated if each of the forward computations is parallelized across
multiple processing units, as it often is in many industrial applications [33, 59, 58].
We leave such computational considerations for future work, as our current goal is
simply to establish proof of concept. These experiments can be found in the first
two subsections of section 5.4.

e On supervised classification problems with a recurrent neural network, EKI
significantly outperforms SGD. This is likely due to the steep barriers that occur
on the loss surface of recurrent networks [60, 4] which EKI may be able to avoid
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Figure 3: The five data sets used in numerical experiments. From left to right, the first
are 25 samples from MNIST and SVHN respectively. The third shows the spectrum of
graph Lalpacian for the Voting Records data set. The last two are the full time-series
for the daily minimum temperatures in Melbourne and the monthly number of sunspots
from Ziirich respectively.

due to its noisy Jacobian estimates. These experiments can be found in the last
subsection of section 5.4.

e On the semi-supervised learning problem we consider, EKI does not perform as
well as state of the art (MCMC) [7], but performs better than the naive solution.
However, even with a large number of ensemble members, EKI is much faster
and computationally cheaper than MCMC, allowing applications to large scale
problems. These experiments can be found in section 5.5.

e On online regression problems tackled with a recurrent neural network, EKI
converges significantly faster and to a better solution than SGD with O(1) ensemble
members. While the problems we consider are only simple, univariate time-series,
the results demonstrate great promise for harder problems. It has long been
known that recurrent neural networks are very hard to optimize with gradient-
based techniques [60], so we are very hopeful that EKI can improve on current
state of the art. Again, we leave such domain specific applications to future work.
These experiments can be found in section 5.6.

5.2. Data Sets

We consider three data sets where the problem at hand is classification and two data sets
where it is regression. For classification, two of the data sets are comprised of images
and the third of voting histories. Our goal is to classify the image based on its content
or classify the voting record based on party affiliation. For regression, both datasets are
univariate time-series and our goal is to predict an unobserved part of the series. Figure
3 shows samples from each of the data sets.

As outlined in section 2, the goal of learning is to find a model which generalizes
well to unobserved data. Thus, to evaluate this criterion, we split all data sets into a
training and a testing portion. The training portion is used when we let our ODE(s)
evolve in time as described in section 4. The testing portion is used only to evaluate
the model. In other contexts, the training set is further split to create a validation set,
but, since we perform no hyper-parameter tuning, we omit this step. For classification,
the metric we use is called test accuracy. This is the total number of correctly classified
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examples divided by the total number of examples in the test set. For regression, the
metric we use is called test error. This is the average (across the test set) squared
lo-norm of the difference between the true value and our prediction.

5.2.1. Classification The first data set we consider is MNIST [47]. It contains 70,000
images of hand-written digits. All examples are 28 x 28 grayscale images and each is
given a classification in {0, ...,9} depending on what digit appears in the image. Thus
we consider X' = R#®*# = R™4 and Y = P, Each of the labels y; is a standard basis
vector of R1? with the position of the 1 indicating the digit. We use 60,000 of the images
for training and 10,000 for testing. Since grayscale values range from 0 to 255, all images
are fist normalized to the range [0, 1] by point-wise dividing by 255. Treating all training
images as a sequence of 60000 - 784 numbers, their mean and standard deviation are
computed. Fach image (including the test set) is then again normalized via point-wise
subtraction by the mean and point-wise division by the standard deviation. This data
normalization technique is standard in machine learning.

The second image data set we consider is called SVHN [57]. It contains 99,289
natural images of cropped house numbers taken from Google Street View. All examples
are 32 x 32 RGB images and each is given a classification in {0,...,9} depending on
what digit appears in the image. Thus we consider X' = R3x32x32 = R3072 3pnq ) = P10
with the labels again being basis vectors of R, We use 73,257 of the images for training
and 26,032 for testing. All values are first normalized to be in the range [0, 1]. We then
perform the same normalization as in MNIST, but this time per channel. That is, for
all training images, we treat each color channel as a sequence of 73257 - 1024 numbers,
compute the mean and standard deviation then normalize each channel as before.

The last data set for classification we consider contains the voting record of the 435
U.S. House of Representatives members; see [6] and references therein. The votes were
recorded in 1984 from the 98" United States Congress, 2"¢ session. Each record is tied
to a particular representative and is a vector in X = R with each entry being +1, —1,
or 0 indicating a vote for, against, or abstain respectively. The labels live in )) = R
and are +1 or —1 indicating Democrat or Republican respectively. We use this data set
only for semi-supervised learning and thus pick the amount of observed labels |Z'| = 5
with 2 Republicans and 3 Democrats. No normalization is performed. When computing
the test accuracy, we do so over the entire data sets namely we do not remove the 5
observed records.

5.2.2. Regression The first data set we consider for regression is a time series of the
daily minimum temperatures (in Celsius) in Melbourne, Australia from January 1%
1981 to December 315 1990 [19]. It contains 3650 total observations of which we use
the first 3001 for training (up to March 22" 1989) and the rest for testing. We consider
X =Y =R by letting (in the training set) the data be the first 3000 observations and
the labels be the 2" to 3001 observations i.e. a one-step-ahead split. The same is done
for the testing set. The minimum and maximum values i, Tmax Over the training set
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are computed and all data is transformed via

Zj — Tmin

ZL‘jP—>

Lmax — Lmin

This ensures the training set is in the range [0, 1] and the testing set will also be close
to that range.

The second data set for regression is a time series containing the number of observed
sunspots from Ziirich, Switzerland during each month from January 1749 to December
1983 [1]. It contains 2820 observations of which we use the first 2301 for training (up to
September 1915) and the rest for testing. The data is treated in exactly the same way
as the temperatures data set.

5.3. Implementation Details

Having outlined many different strategies for performing EKI , we give methods using
different techniques their own name so they are easily distinguishable. We refer to the
techniques listed in section 4.3.3. All methods are initialized in the same way (with
the prior constructed based on the model) and all use mini-batching. We refer to the
forward Euler discretization of equation (13) as EKI and the momentum discretization,
presented in section 4.2.1, of equation (13) as MEKI. When randomizing around the
mean at the end of each epoch, we refer to the method as EKI(R). When randomizing
the momenta at each step, we refer to the method as MEKI(R). Similarly, we call
momentum SGD, MSGD. All methods use the time step described in section 4.3.3 with
hyper-parameters hy = 2 and ¢ = 0.5 fixed. For any classification problem (except
the Voting Records data set), all methods use the cross-entropy loss whose gradient is
implemented with a slight correction for numerical stability. Namely, in the case of a
single data point, we implement

Yk
Vi, L(G(u), =——
(V@1 = ~ s
where the constant § := 0.005 is fixed for all our numerical experiments. Otherwise

the mean squared-error loss is used. All implementations are done using the PyTorch
framework [61] on a single machine with an NVIDIA GTX 1080 Ti GPU.

5.4. Supervised Learning

5.4.1. Dense Neural Networks In this section, we benchmark all of our proposed
methods on the MNIST problem using four dense neural networks of increasing
complexity. The four network architectures are outlined in Figure 4. This will allow us
to compare the methods and pick a front runner for later experiments.

We fix the ensemble size of all methods to J = 2000 and the batch size to 600. SGD
uses a learning rate of 0.1 and all momentum methods use the constant A = 0.9. Figure
5 shows the final test accuracies for all methods while Figure 6 shows the accuracies
at the end of each epoch. Due to memory constrains, we do not implement MEKI for
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Dense Neural Networks
Name Architecture Parameters
DNN 1 784-10 7,850
DNN 2 784-100-10 79,510
DNN 3 784-300-100-10 266,610
DNN 4 | 784-500-300-100-10 573,910

Figure 4: Architectures of the four dense neural networks considered. All networks use

a softmax thresholding and a ReLLU nonlinearity.

DNN 1 DNN 2 DNN 3 DNN 4
SGD 0.9199 0.9735 0.9798 0.9818
MSGD 0.9257 0.9807 0.9830 0.9840
EKI o 09092 |@ 09398 | @ 09424 | @ 0.9404
©wY) 0.9114 | Y 0.9416 | wU") 0.9432 | wU") 0.9418
MEKI u 09094 | u  0.9320 n/a n/a
1Y) 0.9107 | wU") 0.9332
EKI(R) |a 09252 |a 09721 |@ 09738 |a  0.9741
1Y) 0.9260 | «U") 0.9695 | «U7) 0.9716 | uU") 0.9691
MEKI(R) | @ 0.9142 | a  0.9509 n/a n/a
uU) 0.9162 | vV 0.9511

Figure 5: Final test accuracies of six training methods on four dense neural networks,
solving the MNIST classification problem. Each bold number is the maximum across
the column. For each EKI method we report the accuracy of the mean particle # and
of the best performing particle in the ensemble u").

DNN-(3,4). In general momentum SGD performs best, but EKI(R) trails closely. The
momentum EKI methods have good initial performance but saturate. We make this
clearer in a later experiment. Overall, we see that for networks with a relatively small
number of parameters all EKI methods are comparable to SGD. However with a large
number of parameters, randomization is needed. This effect is particularly dominant
when the ensemble size is relatively small; as we later show, larger ensemble sizes can
perform significantly better.

Figure 7 shows the test accuracies for each of the particles when using EKI on
DNN-(1,2). We see that, the mean particle achieves roughly the average of the spread,
as previously discussed. Our choice to use it as the final parameter estimate is simply for
convenience. One may use all the particles in a carefully weighted scheme as an ensemble
of networks and possibly achieve better results. Having many parameter estimates may
also be advantageous when trying to avoid adversarial examples [22]. We leave these
considerations to future work.

To better illustrate the effect of the ensemble size, we compare all EKI methods on
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Figure 6: Test accuracies per epoch of six training methods on four dense neural
networks, solving the MNIST classification problem. For each EKI method the accuracy
of the mean particle @ is shown.

DNN 2 with an ensemble size of J = 6000. The accuracies are shown in Figure 9. We
again observe that the momentum methods perform very well initially, but fall off with
more training. This effect could be related to the specific time discretization method we
use, but needs to be studied further theoretically and we leave this for future work. Note
that with a larger ensemble, EKI is now comparable to SGD pointing out that remaining
in the subspace spanned by the initial ensemble is a bottle neck for this method. On
the other hand, when we randomize, the ensemble size is no longer so relevant. EKI(R)
performs almost identically with 2,000 and with 6,000 ensemble members. Finding it to
be the best method for these tasks, all experiments hereafter, unless stated otherwise,

use EKI(R).

5.4.2. Convolutional Neural Networks For our experiments with CNN(s), we employ
both MNIST and SVHN. Since MNIST is a fairly easy data set, we can use a simple
architecture and still achieve almost perfect accuracy. We name the model CNN-MNIST
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Figure 8: Spread of the noise ratio for EKI(R) on DNN-(1,2). At the end of every epoch,
when the noise is added, the upper bound is computed as ||@||s/ max; ||7\||s. The lower
bound is computed analogously.

and its specifics are given in the first column of Figure 10. SGD uses a learning rate
of 0.05 while momentum SGD uses 0.01 and a momentum factor of 0.9. EKI(R) has
a fixed ensemble size of J = 2000. Figure 11 shows the results of training. We note
that since CNN-MNIST uses RelLU and no batch normalization, SGD struggles to find a
good descent direction in the first few epochs. EKI(R), on the other hand, does not have
this issue and exhibits a smooth test accuracy curve that is consistent with all other
experiments. In only 30 epochs, we are able to achieve almost perfect classification with
EKI(R) slightly outperforming the SGD-based methods.

Recent work suggests that the effectiveness of batch normalization does not come
from dealing with the internal covariate shift, but, in fact, comes from smoothing the
loss surface [67]. The noisy gradient estimates in EKI can be interpreted as doing
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Figure 9: Comparison of the test accuracies of four EKI methods on DNN 2 with
ensemble size J = 6000.

the same thing and is perhaps the reason we see smoother test accuracy curves. The
contemporaneous work of Haber et al [25] further supports this point of view.

Next we experiment on the SVHN data set with three CNN(s) of increasing
complexity. The architectures we use are inspired by those in [52], and are referred to as
Fit-Nets because each layer is shallow (has a relatively small number of parameters), but
the whole architecture is deep, reaching up to sixteen layers. The details for the models
dubbed CNN-(1,2,3) are given in Figure 10. Such models are known to be difficult
to train; for this reason, the papers [64, 52| present special initialization strategies to
deal with the model complexities. We find that when using the SELU nonlinearity and
no batch normalization, simple Xavier initialization works just as well. The results of
training are presented in Figure 11. We benchmark only against momentum SGD as
all previous experiments show it performs better than vanilla SGD. The method uses
a learning rate of 0.01 and a momentum factor of 0.9. EKI(R) starts with J = 200
ensemble members and expands by 200 at end the of each epoch until reaching a final
ensemble of J = 5000. For CNN-3, memory constraints allowed us to only expand
up a final size of J = 2800. All methods use a batch size of 500. We see that, in
all three cases, EKI(R) and momentum SGD perform almost identically with EKI(R)
slightly outperforming on CNN-(1,2), but falling off on CNN-3. This is likely due to the
fact that CNN-3 has a large number of parameters and we were not able to provide a
large enough ensemble size. This issue can be dealt with via parallelization by splitting
the ensemble among the memory banks of separate processing units. We leave this
consideration to future work.

5.4.3. Recurrent Neural Networks For the classification task using a recurrent neural
network, we return to the MNIST data set. Since recurrent networks work on time series
data, we split each image along its rows, making a 28-dimensional time sequence with
28 entries, considering time going down from the top to the bottom of the image. More
complex strategies have been explored in [84]. We use a two-layer recurrent network
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Convolutional Neural Networks
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Figure 10: Architectures of 4 Convolutional Neural Networks with 6, 7, 10, 16 layers
respectively from left to right. All convolutions use a padding of 1, making them
dimension preserving since all kernel sizes are 3x3. CNN-MNIST is evaluated on the
MNIST dataset and uses the ReLU nonlinearity. CNN-(1,2,3) are evaluated on the
SVHN dataset and use the SELU nonlinearity.
stride of the max-pooling operation namely o = [ = 2. All networks use a softmax

thresholding.

The convention s = 2 refers to the

with 32 hidden units and a tanh nonlinearity, namely, in the notation of section 3.2,
Fo(zq) =0 (W}EZ)U <W,§”z +o + W 4 bgj)> + 0 + WP+ b§?>>

where ¢ = tanh and Wél),Wf) e R332 ) P ¢ R32x3 We look at only the
last output of the network and thus only parametrize the last affine map Asg. Softmax
thresholding is applied. The initial hidden state is always taken to be 0.

We train with a batch size of 600 and SGD uses a learning rate of 0.05. EKI(R)
starts with an ensemble size of J = 1000 and expands by 1,000 at the end of every epoch
until J = 4000 is reached. Figure 12 shows the result of training. EKI(R) performs
significantly better than SGD and appears more reliable, overall, for this task.
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Figure 11: Comparison of the test accuracies of SGD and EKI(R) on four convolutional
neural networks. SGD(M) refers to momentum SGD. CNN-MNIST is trained on the
MNIST data set, while CNN-(1,2,3) are trained on the SVHN data set.

5.5. Semi-supervised Learning

We proceed as in the construction of Example 2.2, using the Voting Records data set.

)

and construct the graph Laplacian L(x). Its spectrum is shown in Figure 3. Further we
1

For the affinity measure we pick [86, 7]

Mz =l

n(x,y) = exp ( 2(1.25)?

let 7 =0 and a = 1, hence the prior covariance C' = (L(x))™" is defined only on the
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Figure 12: Comparison of the test accuracies of EKI(R) and SGD on the MNIST data
set with a two layer recurrent neural network.

subspace orthogonal to the first eigenvector of L(x). The most naive clustering algorithm
that uses a graph Laplacian simply thresholds the eigenvector of L(x) that corresponds
to the smalled non-zero eigenvalue (called the Fiedler vector) [83]. Its accuracy is shown
in Figure 13. We found the best performing EKI method for this problem to simply
be the vanilla version of the method i.e. no randomization or momentum. We use
J = 1000 ensemble members drawn from the prior and the mean squared-error loss.
Its performance is only slightly better than the Fiedler vector as the particles quickly
collapse to something close to the Fiedler vector. This is likely due to the fact that the
initial ensemble is an i.i.d. sequence drawn from the prior hence EKI converges to a
solution in the subspace orthogonal to the first eigenvector of L(x) which is close to the
Fiedler vector, especially if the weights and other attendant hyper-parameters have been
chosen so that the Fielder vector already classifies the labeled nodes correctly. On the
other hand, the MCMC method detailed in [7] can explore outside of this subspace and
achieve much better results. We note, however, that EKI is significantly cheaper and
faster than MCMC and thus could be applied to much larger problems where MCMC
is not computationally feasible.

5.6. Online Learning

Finally we consider two online learning problems using a recurrent neural network. We
employ two univariate time-series data sets: minimum daily temperatures in Melbourne,
and the monthly number of sunspots observed from Ziirich. For both, we use a single
layer recurrent network with 32 hidden units and the tanh nonlinearity. The output is
not thresholded i.e. S = id. At the initial time, we set the hidden state to 0 then use
the hidden state computed in the previous step to initialize for the current step. This is
an online problem as our algorithm only sees one data-label pair at a time. For OGD,
we use a learning rate of 0.001 while, for EKI, we use J = 12 ensemble members. Figure
14 shows the results of training as well as how well each of the trained model fits the test
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Figure 13: Comparison of the test accuracies of two semi-supervised learning algorithms
to EKI on the Voting Records data set.

0.03
o 0
o
0.025 0.7 07
% £ 06 L | “»“ (1‘ | ‘ éig
g ool 2 I ol g
4 . gosilll TRLLRAR A" i fos
H y = HA I JHN‘M‘ W ‘1‘\‘\‘ ) =
001 Y 2 ‘W‘ i il ‘\“\“mﬂl.wﬁ | 1504
N%kx* £o3 | ! 1! |\| U o3
0.0 X 3«:@@%)@%@@%@@%@%&&» H oo
0.1
0:005 0 0 30 0 50 989 989. 1990 990. 99 IOQE 989.5 199¢( 90.5
Epoch Yea Yea
005 2 2
oous || .
0.04 “‘ ‘E; é
0.o3s| | E o r é 0.8 r
u ‘ s I o |
2 oosp | 506 i I “\ 1‘( £os J " W
: § g i [ i g | | [
Sow] | <1 ki : O T
\ g T Wi J ] 1" il |
3 5 04 [\ A I 504 ‘ Tiikd “ 1
\ £ b W g J W
. 5 | U I Vi 5
E 02 \\‘N‘ ‘w‘ ‘U } h ‘s’ \a J 1 Zo2 f\\[ J | ‘\W'\ r \L‘ I
| I W b, I i
J oW W W oW W
10‘340 1945 1950 1955 1960 1965 1970 1975 1980 1985 ]DQAO 1945 1950 955 1960 1965 1970 1975 1980 1985
Year Year
Melbourne Temperatures Ziirich Sunspots
First Final First Final

OGD | 2653 x 1072 | 8.954 x 1073 | 4.939 x 1072 | 6.480 x 1073
EKI | 8086 x 1073 | 7.448 x 1073 | 8.671 x 1073 | 6.006 x 103

Figure 14: Comparison of OGD and EKI on two online learning tasks with a recurrent
neural network. The top row shows the minimum daily temperatures in Melbourne data
set, while the bottom shows the number of sunspots observed each month from Ziirich

data set.

data. Notice that EKI converges much more quickly and to a slightly better solution
than OGD in both cases. Furthermore, the model learned by EKI is able to better
capture small scale oscillations. These are very promising results for the application of
EKI to harder RNN problems.
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6. Conclusion and Future Directions

We have demonstrated that many machine learning problems can easily fit into the
unified framework of Bayesian inverse problems. Within this framework, we apply
Ensemble Kalman Inversion methods, for which we suggest suitable modifications,
to tackle such tasks. Our numerical experiments suggest a wide applicability and
competitiveness against the state-of-the-art for our schemes. The following directions
for future search arise naturally from our work:

e Theoretical analysis of the momentum and general loss EKI methods as well as
their possible application to physical inverse problems.

e GPU parallelization of EKI methods and its application to large scale machine
learning tasks.

e Application of EKI methods to more difficult recurrent neural network problems as
well as problems in reinforcement learning.

e Use of the entire ensemble of particle estimates to improve accuracy and possibly
combat adversarial examples.
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