Outlier Detection in Non-stationary Data Streams

Luan Tran
luantran@usc.edu
University of Southern California
Los Angeles, California

ABSTRACT

Continuous outlier detection in data streams is an important topic
in data mining and has applications in various domains such as
fraud detection, weather analysis, and intrusion detection. The
non-stationary characteristic of real-world data streams brings the
challenge of updating the outlier detection model in a timely and
accurate manner. In this paper, we propose a framework for outlier
detection in non-stationary data streams (O-NSD) which detects
changes in the underlying data distribution to trigger a model up-
date. We propose an improved distance function between sliding
windows which offers a monotonicity property; we develop two ac-
curate change detection algorithms, one of which is parameter-free;
and we further propose new evaluation measures that quantify the
timeliness of the detected changes. Our extensive experiments with
real-world and synthetic datasets show that our change detection
algorithms outperform the state-of-the-art solution. In addition,
we demonstrate our O-NSD framework with two popular unsuper-
vised outlier classifiers. Empirical results show that our framework
offers higher accuracy and requires a much lower running time,
compared to retrain-based and incremental update approaches.

CCS CONCEPTS

« Information systems — Data streams; Data mining.

KEYWORDS

outlier detection, non-stationary data streams

ACM Reference Format:

Luan Tran, Liyue Fan, and Cyrus Shahabi. 2019. Outlier Detection in Non-
stationary Data Streams. In 31st International Conference on Scientific and
Statistical Database Management (SSDBM °19), July 23-25, 2019, Santa Cruz,
CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3335783.3335788

1 INTRODUCTION

More than ever, streaming data is increasing in volume and preva-
lence. It comes from many sources such as sensor networks, GPS
devices, IoT devices, and wearable devices. Outlier detection in data
streams is an important data mining task as a pre-processing step,
and also has many applications in fraud detection, medical and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6216-0/19/07...$15.00
https://doi.org/10.1145/3335783.3335788

RIGHTS L1 N Hig

Liyue Fan
liyuefan@albany.edu
University at Albany, SUNY
Albany, New York

Cyrus Shahabi
shahabi@usc.edu
University of Southern California
Los Angeles, California

public health anomaly detection, to name a few. A data object is
considered an outlier if it does not conform to the expected behav-
ior. In general, normal data objects, i.e., inliers, conform to a specific
model as if that model has generated them, and outliers do not fit
that model. In practice, most outlier detection techniques are unsu-
pervised because of the difficulity in obtaining labelled data. In the
literature, researchers have introduced many modeling techniques,
e.g., proximity-based models [44], linear models such as Principal
Component Analysis (PCA) [1, 11, 22, 26], One-class Support Vec-
tor Machine [47], and non-linear models such as One-class Neural
Network [10].

Typically, with data streams, outlier detection is performed over
sliding windows. The model trained with the data in the first win-
dow can be applied to the data in subsequent windows generated by
the same underlying distribution. However, real-world data streams
are usually non-stationary in which the underlying distribution
changes over time, e.g., mean, variance, and correlation change
[9, 34]. Such non-stationary data streams can be observed in many
real-world datasets, for example, climate and transportation data
streams. Figure 1 depicts the wind speed measured in meter/second
at the same location on two different days, collected by the Tropical
Atmosphere-Ocean project!. As depicted in the figure, the distri-
bution of wind speed changes over hours and days. We observe
changes in mean (from 7.62 to 3.95) and variance (from 3.96 to 1.42)
between the two days. In particular, the wind speeds below 3 m/s
(circled) are likely outliers on the first day and are normal on the
second day. As a result, the model built from data on the first day
is not suitable for the second day.

01/20/2017 01/22/2017
Q
210 10
£
°
0]
o
&5 5
©
£
=

0 0
17:40 20:50 24:00 17:40 20:50 24:00
Time Time

Figure 1: Wind speed data on two days

A baseline approach to tackle the data non-stationarity is to
rebuild or incrementally update [2, 4, 8, 21, 35] the model in ev-
ery sliding window, which is computationally expensive. Another

https://www.pmel.noaa.gov/tao/drupal/disdel/

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

method is to rebuild the model after a fixed time interval [47],
which is hard to optimize because the timing of changes is usually
unpredictable in practice. In this paper, we propose a change de-
tection approach which rebuilds the model only when the changes
of the underlying distribution are detected in data streams. Intu-
itively, as more data points from a new distribution arrive, the
difference between current window and the previous distribution
tends to increase. Therefore, we can monitor the sequence of the
aforementioned “differences" continuously to determine whether
the underlying distribution is going through changes. One advan-
tage of our framework is that the change detection algorithms do
not limit the choice of the outlier classifiers. This feature is cru-
cial as real-world applications [28, 32, 33] typically use multiple
outlier classifiers. Specifically, the contributions of our study are
summarized as follows:

(1) We propose a framework for outlier detection in non-stationary
data streams (O-NSD) which incorporates distribution change de-
tection to trigger model updates. When a change is detected, the
outlier detection model is rebuilt with the data from the new distri-
bution.

(2) We propose a distance function IKL to measure the difference
between two distributions. We prove that the distance between the
current window and the reference window monotonically increases
at the beginning of the new distribution.

(3) We propose two algorithms for change detection, i.e., AVG and
Dynamic LIS, based on the average distance to the reference window
and the length of the longest increasing subsequence of distance
values, respectively. The threshold in Dynamic LIS is dynamically
computed in a parameter-free manner. Experiments show that our
algorithms are superior to the state-of-the-art approach for change
detection.

(4) We propose new evaluation metrics for change detection,
i.e., wPrecision, wRecall and wF1, to quantify the timeliness of the
detected changes in the context of data streams.

(5) With extensive experiments using synthetic and real-world
datasets, we show that our outlier detection framework offers
higher accuracy and incurs much less running time than the incre-
mental and retrain-based outlier detection approaches.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we present the fundamental
concepts and the problem definition. In Section 4 and Section 5, we
propose our change detection, outlier detection solutions and eval-
uation metrics. In Section 6, we report detailed evaluation results.
Finally, in Section 7, we conclude the paper and offer some future
research directions.

2 RELATED WORK

Outlier Detection. Most outlier detection techniques are unsuper-
vised because it is hard to get labelled data in practice. Principal
Component Analysis (PCA) [1] and One-class SVM [1, 47] are the
two most popular models for unsupervised outlier detection. PCA
finds the orthogonal dimensions that captures the most variance of
data. The data points that have large variances in the dimensions
corresponding to the least eigenvalues in which most data have
small variances are considered outliers. PCA has been applied in

RIGHTS LI L)

Luan Tran, Liyue Fan, and Cyrus Shahabi

various domains, such as network intrusion detection [42] and in
space craft components [17]. Incremental PCA has been used in
visual novelty detection mechanism [30], outlier detection in en-
ergy data streams [13], and spatial-temporal data in [6]. One-class
SVM finds the boundary for the most data with the assumption that
outliers are rare. The data points which are outside of the boundary
are considered outliers. It has many applications, e.g., in wireless
sensor network [47] and time-series data [27]. To the best of our
knowledge, the adaption to data streams, i.e., incrementally update
One-class SVM, is not available.

Change Detection. Change detection in data streams has been
well studied for one-dimensional data, e.g., in [7, 23, 45]. In this
paper, we are interested in detecting a change in the unlabeled mul-
tidimensional data streams which were studied in [9, 25, 34]. Dasu
et al. [9] detected changes in multidimensional data by comput-
ing the KL-distance from the estimated distribution of the current
sliding window and the reference window, a change is reported
when that distance is higher than a fixed threshold in a number
of consecutive windows which is manually chosen. The training
data is required to compute the threshold. Kuncheva in [25] pro-
posed a semi parametric log likelihood detector to measure the
difference between windows for detecting changes. Qahtan et al.
[34] proposed a PCA-based change detection algorithm using Page-
Hinckley test [29] which is shown to be superior to the methods
in [9, 25]. Our solutions aim to address several shortcomings of
previous studies, e.g., manually chosen parameters and sensitivity
to temporary spikes in the streams.

3 PRELIMINARIES

Below we present the fundamental concepts and problem definition.

DEFINITION 1. [44] A data stream is a possible infinite series of
data points ...,0p—2,0p-1, Op, ..., where the data points are sorted by
their arrival time.

In this definition, a data point o is associated with a time stamp
o.t at which it arrives. As new data points arrive continuously, data
streams are typically processed in sliding windows, i.e., sets of active
data points. The window size characterizes the volume of the data
streams. In this study, we adopt the count-based window.

DEFINITION 2. [44] Given data point o, and a fixed window size
W, the count-based window Dy, is the set of W data points: {on—w+1,

On—W+2s > On}-

Every time the window slides, S new data points arrive in the
window and the oldest S data points are removed. S denotes the
slide size which characterizes the speed of the data stream.

In real-world data streams, changes in the underlying data dis-
tribution may be inherent due to the nature of data. For example,
the distributions of wind speed and precipitation change over sea-
sons 2; the average speed on a highway changes over hours and
days. In addition, changes may happen if a sensor becomes less ac-
curate gradually over time or when another sensor with a different
calibration replaces the faulty sensor [18].

Zhttps://www.pmel.noaa.gov/tao/drupal/disdel/

Outlier Detection in Non-stationary Data Streams

DEFINITION 3. A data stream is non-stationary if the parameters
of the underlying distribution change over time.

In this study, we consider changes in mean and variance in
individual dimensions and in correlation between dimensions as in
[9, 34]. We now formally define the problem of continuous outlier
detection in non-stationary data streams (O-NSD) as follows.

PROBLEM 1 (O-NSD). Given a non-stationary stream {o}, win-
dow size W, slide size S, the problem is to detect the outliers in every
sliding window ...,Dp,Dpys, ...

In this paper, we are interested in unsupervised approaches
[13, 33, 36] for outlier detection in which each data point is given
an outlier score measuring the quality of the fit to the model of
normal behavior. We will present more details about outlier scoring
in Section 5.

4 CHANGE DETECTION

In this section, we present our proposed solution for change de-
tection which is crucial in the outlier detection framework. The
high-level pseudo-code is presented in Algorithm 1. As shown in
[34], a change in mean, variance or correlation in the original space
is manifested in the transformed space using the Principal Compo-
nent Analysis (PCA)[43]. Therefore, we apply PCA transformation
on the windows as in line 2 in Algorithm 1 and select the first k
principal components corresponding to the largest eigenvalues A;

that satisfy Zl e > 0.999, where d is the number of dimen-
i=1 Ai

sions. The window used for model building is called the reference
window, which will be updated once a new distribution is detected.
The distribution of the projected data is estimated in line 5 using
histograms in each dimension whose edges are estimated as the
maximum of the Sturges [41] and FD estimators [16]. Subsequently,
the distance between two windows is the maximum distance across
all dimensions, as in line 6 in Algorithm 1.

Algorithm 1 Change Detection
Global variables: buf fer: The distance buffer.

1: function CHANGEDETECTION(D¢, D;) > Dy: current window,
D;: reference window
Dy, Dj := Apply PCA Transform to Dy, D;
dis=0
for i from 1 to d do
fi,g' := apply Estima}tedHist to Di/ and Dir
dis = max(dis, IKL(g"|| f*))
buf fer.enqueue(dis)
8: if ISCHANGE(buf fer) then
9: report a change at D;
10: buf fer.clear()

3

4.1 IKL - An Improved Distance Measure

The distance measure as in line 6 in Algorithm 1 is a crucial part
for detecting a change. Kullback-Leibler distance [24] is commonly

RIGHTS LI L)

SSDBM ’19, July 23-25, 2019, Santa Cruz, CA, USA

used to measure distance between two probability distributions:

P()

00) @

KL(P,Q) = ZP(;)I og o=

with P(j) and Q(j) are the probabilities of data values in bin j.
KL(P, Q) is positive if P and Q have different counts over bins.
In other words, if D and D’ are 2 sliding windows and are gener-
ated by different underlying distributions, we have KL(D, D’) > 0.
However, since a histogram only approximates a distribution, the
KL distance between two histograms from the same distribution
can be positive. Thus, only using positive value of KL distance is
inaccurate for change detection. A threshold can be used for KL
distance to detect a change. However, it is not practical as setting
the threshold may require knowledge about the magnitude of the
change a priori. Therefore, in this section, we propose an improved
distance measure between two estimated distributions as follows.

P() Q0)

IKL(P, Q) = Z max(P(j) log —= o0 e 30)

- Q())log @)

We replace each term P(j) log 0 (]) in the original KL divergence for-

mula by max(P(j) log Sg)) Q) log %—g;) to maximize the distance.

Assuming each slide is generated by the same distribution, the new
IKL formula has the following characteristic.

THEOREM 1. Suppose Dy, is the last sliding window from the previ-
ous distribution, D; and Dy, are sliding windows overlapping the two
distributions and containing | and 1’ slides from the new distribution,
respectively. When 0 < I < I’ < W/S, we have: IKL(Dp, D) <
IKL(Dp, D).

In other words, at the beginning of a new distribution, the IKL
distance to the reference window monotonically increases. Note
that the KL distance does not have this characteristic.

Proof of Theorem 1.
Assume the histogram of the previous distribution contains n bins

®) = {b(p) b(p) . b(p) } With the probability that a data point

(p) 1 (p) .+x§1p)

belongs to bin b; is x; = 1. Assume the

probability dlstnbutlon of the new dlstrlbution over the bins B®) is
{}/1, Y2, ...,yn}, Y1 + Y2 + ...
distribution the data points in every slide are distributed over the
bins similarly to the data points in the entire window. When the
window receives new [slides from a new distribution and it removes
I expired slides, let the probability that one data point belongs to
bin b; be x() We will compute x() from x(p), Yi, the window size
W, and the slide size S. With [explred slldes, the probability of a
data point to belong to bin b; decreases lS/WxEP), and with new [
slides from the new distribution, the probability of a data point to
belong to bin i gains ly;S/W. Therefore,

+ yn < 1. Here, we assume that for one

0 _ @ LP)
x; =xF lW +l—y 3)

Let B; = (p) yi, we have xgl) = xgp) —1p;. The IKL distance
between Dp and Dl is:

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

(P) RO
IKL(Dp, D) = Z max(x(p) log W x(l) log (p))
i=1

n
Xi) — 1
Z ax(x log RO .,x log (p) _—)
im1 x; i
4)
Similarly, we have
n ®))
) xl. (l') —l ﬁi
IKL(Dp,Dy) = max(x@ log ——, x; g)
; ! xl@) —IB; l xlﬁp)
(5)
It is easy to see that: when §; > 0,
») ®)
® X O R A) i
max(x;"” log ————,x; ' log —————) =x;" " log
! XSP) —1B; ! xEP) ! XEP) _ lﬂl
(6)
and when f; < 0,
(» (») (p)
X, x =1 1B;
max(x(P) log NN)l ,xgl) log ——— i)ﬁ)= (l)l —()ﬁl)
xl.p —1B; xl.p xip
(7
Therefore, the difference between these two IKL distances is:
IKL(Dp, Dy) — IKL(Dp, Dy)
®)
X.
— Z (xfp)log)l _xl) Og (p)l)
Bi20 xX; Ip x; = 1B
(
X B @y, X 1B
+ Z (x; "log ;1o B)
pi<o X; X;
-1
= > P log(1 + ((p) Dby, > P log(1 - ()ﬁ’)
£i20 =UBi pi<o —1p;
(P) ’
—U'B;
a _ (l) !
(o)
l
(8)

Sincel < I” < W/S, we havel’—1 > 0 and when f8; < 0, xgp)—lﬁi >

0, xP)—1/g; > 0, ¥V x> 0 = IKL(D,, D))~ IKL(Dp, D) > 0.

This completes the proof of the theorem.

4.2 Change Detection Algorithms

A significant distance to the reference window can signify a change
in the distribution. However, there are cases of signal spikes, in
which the distance is large for a short time period and then drops to
normal. To avoid mistaking those spikes for distribution changes,
Dasu et al. [9] report a change after seeing p consecutive large
distances. Qahtan et al. [34] report a change if the current distance

RIGHTS L1 N Hig

Luan Tran, Liyue Fan, and Cyrus Shahabi

value significantly deviates beyond allowable change § for a rea-
sonable period y from the history of the distance values. However,
choosing optimal values for y, § in [34] and p in [9] is difficult in
practice.

We observe that when the distribution changes, there are W/S
windows overlapping the two distributions. The distances from
these windows to the reference window (representative of the old
distribution) are in an upward trend if measured by IKL as stated in
Theorem 1. We exploit this property by storing M consecutive IKL
distances in a buffer which is implemented as a queue as in line 7
in Algorithm 1. Every time the window slides, the distance dye.y
from the current window to the reference window is computed
and appended to the buffer. If the buffer is full, the oldest distance
dexpired in the buffer is removed. The buffer is also cleared after
a change is detected. We propose two algorithms, i.e., AVG and
Dynamic LIS, to detect a change using the distance values stored
in the buffer. We found in our empirical evaluation, a small buffer
(i.e., M = W/S) is sufficient for both of our algorithms.

Algorithm 2 AVG

Global variables: count: Total number of windows from the
beginning of distribution, allAvg: Overall average score in the
buffer

1: function IsCHANGEAVG(buf fer, AVG_th)

2: curAvg = Average(buf fer)

3 allAvg = (allAvg * count + curAvg)/(count + 1)

4: count = count + 1

5 if curAvg > allAvg * AVG_th then

6 count =0

7 return TRUE

8 return FALSE

AVG. This algorithm is presented in Algorithm 2, which is an in-
stance of Function ISCHANGE() in Algorithm 1. A change is detected
if the ratio between the average value of the distances stored in
the buffer and the overall average distance is higher than a pre-
defined threshold, AVG_th. We use count to denote the number
of sliding windows from the beginning of the current distribution.
Let allAvg denote the overall average distance value among those
windows, and curAvg denote the current average distance in the
buffer. When the window slides, cur Avg is updated to incorporate
the new distance as in line 2 in Algorithm 2.

curAvg X M — dexpired +dpew

M
The overall average value allAvg is also updated accordingly.

©)

curAvg =

allAvg X count + curAvg

allAvg = (10)

count +1

Our proposed solution is different from Page-Hinckley test [29]
which monitors single distances, used in [34] and [39]. In AVG, we
monitor the average value of M consecutive distances to reduce the
effect of signal spikes. The time complexity is low, O(1) for each
sliding window. Although AVG requires a pre-defined threshold,
i.e., AVG_th, similarly to [9, 34], it is more intuitive for the user. Our
second approach does not require any manual threshold setting.

Outlier Detection in Non-stationary Data Streams

Dynamic LIS. As more data points arrive from the new distribu-
tion, the distance between the current window and the reference
window also keeps increasing. As a result, we can measure the
longest increasing subsequence (LIS) of distance values stored in
the buffer, as an indication of distribution change. In this section,
we present Dynamic LIS algorithm using this property. Given a
sequence of real values: arr = {d1,dz, ..., dx }, its subsequence can
be formed by removing some elements without re-ordering the
remaining ones. LIS is the longest subsequence of arr in which
elements are in an increasing order. For example, given a sequence:

arr =40,8,4,12,2,10,6,14,1,9,5,13,3,11,7, 15}

Its LIS with the length of 6 is {0, 2,6, 9, 11, 15} because there is no
other longer increasing subsequences. LIS has been widely studied
and applied in a variety of domains, e.g., the system for aligning en-
tire genomes [12]. Romik et al. [37] presented extensively the mathe-
matics of LIS, e.g., the maximal LIS length in a random permutation.

30
25
wn .
= change point
520
S %
215
3
10 J—__\/
5
36K 44K 52K
Data Index

Figure 2: The LIS length with HPC Dataset

Figure 2 shows the LIS length of the distance sequence stored
in the buffer using HPC dataset (complete description in Section 6).
A change is synthetically introduced at the 50K* h data point. As
illustrated in this figure, the LIS length is stable before the change
and increases steadily afterwards. The pseudo code of Dynamic
LIS is presented in Algorithm 3 and Function IsCHANGEDLIS() is
an instance of function ISCHANGE() in Algorithm 1. The algorithm
relies on the increasing “trend” rather than the absolute distance
value. Therefore, it can detect changes with various magnitudes.
Furthermore, it does not require consecutive increasing values in
the buffer by allowing a subsequence of increasing distance values.
This is important because with a small slide size, the assumption
on the same probability distribution between a slide and the entire
window does not hold, the distance does not increase strictly when
the window slides. A change is detected if the LIS length of the
distances in the buffer is higher than a threshold, LIS_th.

Manually setting LIS_th can be dataset dependent and requires
the domain knowledge of human experts. Therefore, we are mo-
tivated to design a dynamic thresholding strategy based on well-
known LIS properties that have been extensively studied in the
past [37]. For any n different numbers, n > 1, we denote &, to be
a uniformly random permutation of those numbers, L(5y,) to be the
LIS length of 8, and E(L(5,)) to be the expected value of L(5y,).

THEOREM 2 (LOWER BOUND OF LIS LENGTH). [37] Foralln > 1,
we have: E(L(6,,)) > Vn.

RIGHTS L1 N Hig

SSDBM ’19, July 23-25, 2019, Santa Cruz, CA, USA

Algorithm 3 Dynamic LIS

Global variables: possibleLIS: Upper bound of LIS length so far,
initially set to 0.

1: function ISCHANGEDLIS(buf fer, LIS_th)

2 possibleLIS = possibleLIS + 1

3: if possibleLIS < LIS_th then return FALSE
possibleLIS, lis = GETLIS(buf fer)
if lis > LIS th then

possibleLIS = 0; return TRUE

7: return FALSE

AN AN

1: function GETLIS(arr)
2 n = arr.length
3 vector tail(n,0) > Initialized with 0
4 vector prev(n,—1) > Initialized with -1
5 len=1
6 fori=1ton—-1do
7 if arr[i] < arr[tail[0]] then
8 tail[0] = i > new smallest value
9 else if arr[i] > arr[tail[len — 1]] then
10: > arr[i] can extend largest subsequence
11: prevli] = tail[len — 1]
12: tailllen++] =i
13: else
14: pos =FINDPosITION(arr, tail, -1, len — 1, arr[i]) »
Use binary search to find the right position
15: prevli] = tail[pos — 1]
16: tail[pos] = i
return [en

TaEOREM 3 (LIMIT OF LIS LENGTH). [3] Asn — oo, we have:
E(L(Sp)) = 2\/ﬁ+cné +o(n%) with ¢ ~ —1.77108 and % — 2.

n

According to the above theorems, the expectation of the LIS
length of a sequence of length n is asymptotically 2+/n. Therefore,
it is unexpetected to observe a longer LIS. In our solution, to de-
tect a change using distances in the buffer, we set LIS_th = 2YM
accordingly.

Efficient LIS Computation. For a long sequence, the computa-
tion of LIS can be complex and time consuming. In [15], Fredman
presented an algorithm to directly compute the LIS length of a
sequence of numbers. For each element arr[i], the algorithm finds
the longest increasing subsequence ending at arr[i] by using a bi-
nary search on the current LIS with the time complexity O(logM).
Therefore, with a buffer size M, the time complexity to compute
LIS is O(MlogM). To reduce the time for computing LIS for every
sliding window, we use a variable possibleLIS to track the upper
bound of LIS length. The actual LIS length is always smaller than
or equal to possibleLIS. When the window slides, possibleLIS is
incremented by 1. If possibleLIS is lower than LIS_th, no change
is present. Only if possibleLIS is higher than LIS_th, the actual LIS
is computed and then possibleLIS is updated accordingly.

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

5 OUTLIER DETECTION SOLUTION

Framework Design. We first present our framework design for
outlier detection in non-stationary data streams. The pseudo code
of our framework are presented in Algorithm 4. A model is first built
with the initial window (Function TRAIN()), and it is used to detect
outliers (Function OUTLIERDETECTION()) for subsequent windows
until a change is detected. This reduces the number of model up-
dates and re-evaluations for existing data points. When the window
slides, and a change is detected (Function CHANGEDETECTION()),
the model is rebuilt with the window starting from the change
point. This ensures that the model is built to reflect only the new
distribution. The reference window for change detection is also
updated after a detected change.

Algorithm 4 Outlier Detection Solution

Input: Stream {0}, Window Size W, Slide Size S
Output: Outliers in every sliding window
Procedure:

1: Dy = {01,092, ..., 0y }; model = TRAIN(D;)
2: OUTLIERDETECTION(model, D;) > Detect outliers in the first
window

3: for every sliding window D; do

4: if CHANGEDETECTION(D¢, D;) then

5: Dy =Dirw-s > Update reference window

6: model = TRAIN(D,) v Build model with data of new
distribution

7: OvuTLIERDETECTION(model, D,) » Detect outliers in
new distribution

8 else

9 OvuTtLIERDETECTION(model, {0;_s+1, ...,0¢}) » Detect

outliers in the new slide

Outlier Detection Algorithms. This framework is applicable to
various outlier detection algorithms. In general, after the outlier
scores of data points are computed, outliers can be reported using
different methods. If a threshold is used, the data points with a
score higher than the threshold are reported as outliers [4]. An-
other approach is to report top m% of data points with the highest
scores as outliers [1]. We adopt the latter approach to control outlier
rate as well as to get an unbiased comparison between methods. In
this study, to demonstrate the framework, we use PCA [1, 42] and
One-class SVM technique [33, 36] considering their prevalence in
practice. Now we describe how the outlier scores of data points are
computed in PCA and One-class SVM.

PCA-based Outlier Detection. Assume data points have d dimen-
sions. There are k < d dimensions corresponding to the largest
eigenvalues retaining the most data variance. Thus, the data points
that have high deviation on the d — k dimensions with small eigen-
values, can be considered as outliers. Let x] ; be the projected value
of data point x; on the eigenvector e; which has a small eigenvalue.
The large deviation of x/; as compared to that of other data points
suggests that x; is an outlier. The outlier score of a data point x
is measured by the normalized distance to the centroid y along

RIGHTS LI L)

Luan Tran, Liyue Fan, and Cyrus Shahabi

the principal components. That distance is weighted based on the
eigenvalues as follows:

d L I2
score(x) = Z w (11)
i=1

1

where d is the number of dimensions, e; and A; are the i th eigen-
vector and the corresponding i h largest eigenvalue, respectively.

One-class SVM Outlier Detection. One-class SVM [1, 20] can be
used for outlier detection — given a set of samples, it will detect
the soft boundary of that set to classify data points to normal or
outlier class. One-class SVM can be viewed as a regular two-class
SVM [46] where all the training data lies in the first class, and the
origin is taken as the only member of the second class. Thus, the
linear decision boundary corresponds to the classification rule:

f(x)=(w,x)+b (12)

where w is the normal vector and b is a bias term. One-class SVM
solves an optimization problem to find the rule f with maximal
geometric margin. An outlier corresponds to f(x) < 0. To allow a
nonlinear decision function, we can use a kernel function [20] such
as linear, polynomial and Gaussian kernels to project input data
into a feature space.

Timeliness Evaluation for Change Detection. Precision, recall,
and F1-score are commonly used metrics for generic classification
tasks. In a streaming setting, prompt detection of changes is crucial
as the outlier detection model can be updated for the new distribu-
tion. For the O-NSD problem, the detected change point should be
close to the actual change point. However, the standard metrics such
as precision, recall and F1-score, do not quantify how timely the
changes are detected. In [9, 34], the authors consider a detection ac-
curate if the last data point of the detected window is less than two
windows away from to the actual change point. This approach uses
ahard-coded threshold, i.e., 2 windows length, the choice of which is
not intuitive. Furthermore, this approach does not quantify the time-
liness smoothly. In the studies of the quickest change detection prob-
lem [5, 45], the average delay of the detected change point is used.
However, it does not distinguish true and false alarms. In this study,
we propose three weighted measures, i.e., wPrecision, wRecall and
wF1 which incorporate the timeliness of change detection into the
commonly used precision, recall and F1-score metrics, respectively.
In order to define the new measures, we first define the timeliness
score of one detected change point which is considered as the last
data point of the detected window. If there are more than one de-
tected change points for the same actual change point, the closest
change point has a positive score, and the others are considered
false positive detections with the score of 0. Assume a change is
detected at window Dj,, and the actual change point is 04. The score
of D, depends on the number of disjoint windows passed after 04:

score(Dy) = e AL (13)

where A is a decay factor, 0 < A < 1. The parameter A can be set by
the users to control how fast the score decays with time. The scores
represent the utility of change detection and can be used to measure
the sensitivity of algorithms to various slide sizes. Furthermore,

Outlier Detection in Non-stationary Data Streams

we have 0 < score(D,) < 1for Vn > a. The score decreases as
the distance from the detected window to the actual change point
increases. For example, with A = 0.1, D, = o4 + 4W/3 as in Figure

3, D, has score 0.9.

time

Figure 3: Detected change point o, has a score of 0.9

Specifically, assume there are A actual change points and K de-

tected windows with scores: scorey, scores, ..., scoreg. We define
wPrecision, wRecall, wF1 as follows:
. Zfilscorei Zfilscorei
wPrecision = —x wRecall = ——— (14)

The metrics wPrecision and wRecall measure the correctness
and the sufficiency of detected changes, respectively. The metric
wF1 is their harmonic mean.

2 X wPrecision X wRecall

F1 = 15
W wPrecision + wRecall (15)

The values of weighted measures, wPrecision, wRecall and wF1
range from 0 to 1, similarly to the standard metrics. The standard
metrics are upper bounds of the weighted measures.

Time and Space Analysis. We analyze the time and space com-
plexities of our framework with the aforementioned outlier clas-
sifiers, i.e., PCA and One-class SVM using a linear kernel. The
time complexity of our overall framework depends on the follow-
ing three main procedures. For each window W of d-dimensional
data: 1) outlier detection model building costs O(d?W + d*) for
PCA and O(dW3) for One-class SVM [31], 2) outlier score com-
putation for one slide and sorting for an entire sliding window
cost O(d%S + Wlog W) for PCA and O(dS + W log W) for One-
class SVM, and 3) change detection time includes applying PCA
for the reference window that costs O(d>W), incremental update
of estimated histogram that costs constant time, and LIS com-
putation that costs O(Mlog M) = O(% log(%)) as we set M =
W/S in our evaluation. In summary, suppose that there is one
change after N sliding windows, N > 1, the average time complex-

ity for one window is O(W +d?S + Wlog W) for PCA and
O(M +dS + W log W) for One-class SVM. This shows that
the change detection module does not incur much overhead com-
pared to outlier detection module. The space cost of our framework
depends on the following four main components: 1) the original and
transformed data in the current window, that cost O(dW), 2) the
reference window that costs O(dW), 3) the distances in the buffer
that cost O(%), and 4) the estimated histograms that cost O(dW).
In total, the framework requires O(d + %)W space.

6 EXPERIMENTS

6.1 Experimental Methodology

Our change detection methods, i.e., Dynamic LIS and AVG are
compared with the method in [9] which we refer as KL-Bootstrap

RIGHTS L1 N Hig

SSDBM ’19, July 23-25, 2019, Santa Cruz, CA, USA

and the state of the art change detection method PHDT [34]. The
outlier detection framework is compared with the incremental
approach [2, 8] which updates the model after every new slide
arrives in an approximate manner, retrain based approach which
updates model periodically, and static approach which does not
update the model. The algorithms are implemented in Python with
Scikit-learn package [31] and our source codes are available online>.
Experiments are conducted on a Linux machine with 4 cores 2.7GHz
and 24GB memory.

Synthetic Datasets. We generate synthetic 2 dimensional datasets
with changes in mean, standard deviation or correlation. In these
datasets, for the first distribution, the mean, standard deviation, cor-
relation coefficient are set to 0.01, 0.2, 0.5, respectively. After each
I samples, we create a change in 1 randomly selected dimension for
changing mean or standard deviation and in 2 randomly selected
dimensions for changing correlation by adding € to the distribu-
tion’s parameters. Our synthetic datasets are generated similarly
as in [9, 34]. We control the length of distributions I to be 50000
in the change detection experiments and draw a random number
between 25000 to 100000 in the outlier detection experiments.

Real-world Datasets. We use 4 real-world datasets: 1) TAO has
3 attributes and is available at Tropical Atmosphere Ocean project
[19], 2) Forest Cover (FC) has 55 attributes and we use the first
10 continuous attributes, 3) HPC has 7 attributes, extracted from
the Household Electric Power Consumption dataset, 4) EM has 16
attributes from Gas Sensor Array dataset. The last three datasets
are available at the UCI KDD Archive [14]. Because the ground-
truth of distribution changes is not available, we simulate artifi-
cial changes as in [40]. Specifically, for each dataset, we sample
batches of 50000 data points. For each batch, one random dimen-
sion is selected to apply one of two change types: 1) Gauss-1D:
the batch is added a random Gaussian variable with 10% of mean
and variance of the batch, respectively; 2) Scale-1D: each value of
one randomly selected dimension is doubled. We append “G" to
the dataset name to indicate added Gauss-1D changes and “S" for
Scale-1D changes.

Default Parameters. The window size W and slide size S are set
to 10000 and 20, respectively. The default change € is 0.03 for mean,
0.2 for standard deviation and 0.1 for correlation when creating
changes for synthetic datasets. The default values of y and ¢ for
PHDT are set to 500 and 5.1073, as in [34]. For KL-Bootstrap [9], the
number of consecutive high distances p is set to max(5, 0.05 = W/S).
We use 500 bootstrap samples to get high threshold corresponding
to each distribution similar to [9]. The buffer size M is set to W/S
and AVG_th is set to 1.5. The default outlier rate is 0.05. The decay
factor A in the evaluation metric is set to 0.1.

6.2 Change Detection

Buffer Length Selection. In this experiment, we examine the
trend of LIS length in the buffer when varying the buffer length.
After a change, the reference window is updated when the current
window entirely is in a new distribution for the first time. With

3https://goo.gl/Vqakgu

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

more distance values in the buffer, the number of values which are
in an increasing order can be larger. Figure 4 shows the average
and maximal LIS length in the buffer when varying the buffer
length from % to % by changing mean, standard deviation, and
correlation. As we can see in the figure, the average and maximal
LIS length increase when the buffer length is increased, however not
linearly with the buffer size. With M = %, we can get high average

LIS length and maximal LIS length, comparable to M = % It is
because most of the high distances in the buffer are the distances
from the sliding windows overlapping the two distributions and

there are % such windows for each change. It confirms our choice

of buffer length which is % .

+

—+— Change Mean
——- Change STD
—k— Change Correlation

e

W/4s

w

v
S
o
=)

—+— Change Mean
—— Change STD
—*— Change Correlation

e

W/4S W/2S W/s 2W/s
Buffer Length

N
u

Max LIS Length
w
o
o

N
o
o

Average LIS Length
w
o

N
o

W/2S W/s 2W/s
Buffer Length

(a) Average LIS Length (b) Maximum LIS Length

Figure 4: Varying Buffer Length

Parameter Studying. In many applications, early and accurate
change detection is preferable. We vary AVG_th from 1.1 to 2 to ex-
amine the utility of the detected changes. When AVG_th increases,
the criteria for detecting a change is stricter. Table 1 shows the
wPrecision —wRecall —wF1 of AVG for different change types with
the synthetic datasets. As we can see in this table, when AVG_th
increases, the wPrecision first increases as the condition is stricter
and there are less false detections. With AVG_th = 1.5, AVG of-
fers the highest wF1 in most cases. When AVG_th is further in-
creased, although the detected changes are more precise, the delay
of the detected change points compared to the actual changes is
larger, wPrecision decreases. Also, since there are fewer detected
changes, wRecall decreases. As we can see from the table, when
AVG_th > 1.7, wF1 decreases.

AVG_th Mean STD Correlation
1.1 0.76-0.93-0.84 | 0.69-0.94-0.80 | 0.64-0.96-0.76
1.3 0.91-0.95-0.93 | 0.99-0.99-0.99 | 0.98-0.98-0.98
1.5 0.95-0.95-0.95 1.0-1.0-1.0 0.96-0.93-0.95
1.7 0.98-0.50-0.66 | 0.92-0.92-0.92 | 0.98-0.78-0.87

2 0.90-0.45-0.60 | 0.92-0.29-0.44 | 0.94-0.74-0.83

Change Magnitude Sensitivity. We vary the change magnitude
€ from 0.01 to 0.05 for mean, from 0.05 to 0.5 for standard deviation

RIGHTS

Table 1: Varying AVG_th with Synthetic Datasets

Ay

Luan Tran, Liyue Fan, and Cyrus Shahabi

and from 0.01 to 0.2 for correlation coefficient. Table 2 shows the
wF1s of PHDT, KL-Bootstrap, AVG and Dynamic LIS. As can be seen
in this table, when € increases, wF1s of all the algorithms increase
because of higher difference between distributions. Dynamic LIS
and AVG offer the highest wF1s in most cases. When € > 0.04
for changing mean, € > 0.3 for changing standard deviation and
€ > 0.15 for changing correlation, AVG and Dynamic LIS detect
changes perfectly. Especially, Dynamic LIS performs better than the
others with small € because it does not rely on the absolute increase
in distances. KL-Bootstrap which utilizes KL distance does not
perform well with changing correlation in most the cases because it
performs detection on original data in which a change in correlation
may not result in a high KL distance.

Change € 0.01 | 0.02 | 0.03 | 0.04 | 0.05
PHDT 0.38 | 0.58 | 0.67 | 0.87 | 0.9

Mean KL-Bootstrap | 0.54 | 0.84 | 0.89 | 0.95 | 0.94
AVG 0.58 | 0.85 | 094 | 1.0 | 1.0

DLIS 0.56 | 0.96 | 1.0 1.0 | 1.0

€ 0.05 | 0.1 02 | 03 | 05

STD PHDT 0.21 | 0.86 | 0.93 | 0.98 | 1.0
KL-Bootstrap | 0.44 | 0.87 | 09 | 0.95 | 1.0

AVG 044 | 090 | 1.0 1.0 | 1.0

DLIS 047 | 086 | 0.9 | 0.99 | 1.0

€ 0.01 | 0.05 0.1 |0.15] 0.2

Corr PHDT 0.15 | 0.71 | 0.84 | 0.96 | 1.0
KL-Bootstrap | 0.05 | 0.40 | 0.41 | 0.43 | 0.46

AVG 0.28 | 0.85 | 0.97 | 1.0 | 1.0

DLIS 045 | 0.89 | 093 | 1.0 | 1.0

Table 2: Varying Change Magnitude - wF1

Slide Size Sensitivity. We vary the slide size from 1 to 400. When
the slide size increases, the difference between sliding windows is
more significant, however the number of slides overlapping two
distributions (W/S) decreases. Therefore, there is a smaller number
of significant increases in distance to the reference window when
the distribution is changing. Table 3 shows the wF1s of PHDT,
KL-Bootstrap, AVG, and Dynamic LIS. As can be seen in this table,
when the slide size increases from 1 to 400, AVG and Dynamic
LIS offer better performance than PHDT and KL-Bootstrap in all
cases. AVG offers the most stable wF1s because it is less affected
by the reduction of the buffer size. When the slide size increases,
the wF1 of Dynamic LIS decreases slightly for most cases because
the expected LIS length holds when n — oo (Theorem 3).

Change Detection with Real-world Datasets. Table 4 shows
the wF1 of PHDT, AVG and Dynamic LIS with the 4 real-world
datasets and 2 types of change, i.e., Gauss-1D and Scale-1D. As can
be seen in this table, Dynamic LIS and AVG offer the highest wF1s
in most cases. Especially, Dynamic LIS shows robust performance
in all cases.

Scalability Comparison. Figure 5 shows the running time of the

Outlier Detection in Non-stationary Data Streams

Change Slide Size 1 20 | 100 | 200 | 400
PHDT 0.67 | 0.68 | 0.66 | 0.64 | 0.69
Mean KL-Bootstrap | 0.90 | 0.89 | 0.88 | 0.88 | 0.87
AVG 0.97 | 096 | 0.94 | 0.97 | 0.96
DLIS 0.95 | 0.97 | 0.97 | 0.97 | 0.97
PHDT 0.92 | 090 | 091 | 0.90 | 0.89
STD KL-Bootstrap | 0.95 | 1.0 | 0.91 | 0.91 | 0.88
AVG 1.0 | 1.0 | 1.0 | 1.0 | 1.0
DLIS 0.96 | 094 | 092 | 091 | 0.89
PHDT 0.84 | 0.83 | 0.85 | 0.87 | 0.84
Corr KL-Bootstrap | 0.42 | 0.35 | 0.45 | 0.42 | 0.39
AVG 0.98 | 0.97 | 0.97 | 0.98 | 0.96
DLIS 0.89 | 091 | 0.88 | 0.88 | 0.87
Table 3: Varying Slide Size - wF1

Change Dataset TAO | Ethylen | HPC | FC
PHDT 0.88 0.88 0.88 | 0.91

KL-Bootstrap | 0.58 0.89 0.75 | 0.78

Scale 1D AVG 088 | 091 | 089 | 0.91
DLIS 0.89 0.91 0.94 | 0.91

PHDT 0.78 0.96 0.70 | 0.72

Gauss 1D | KL-Bootstrap | 0.82 0.90 0.55 | 0.74
AVG 0.82 0.96 0.73 | 0.80
DLIS 0.85 0.97 0.89 | 0.89

Table 4: Change Detection with Real-world Datasets - wF1

algorithms with different window sizes with FC dataset and dif-
ferent dimensions by using different datasets. We do not include
KL-Bootstrap here because it requires training data and the sam-
pling process to compute the high threshold (= 10ms for one sliding
window), thus the running time of KL-Bootstrap is much larger
than the others. When the window size increases, the time for cre-
ating the reference window increases and the time for updating
histogram is not change. As can be seen in this figure, when the
window size increases from 10k to 50k, the running time increases
slightly because the number of reference window re-computations
is not significant. When the dimensions of the data increases, the
PCA transforming operation takes more time. As we can see in the
figure, with the Ethylen dataset, the running time of all the algo-
rithms is the highest since it has the highest number of dimensions.
In both cases, all three algorithms have comparable running time,
showing our DLIS which requires LIS computation does not incur
much overhead.

6.3 Outlier Detection

Since Dynamic LIS and AVG show robust performance across
datasets and does not require any threshold setting, we adopt these
methods in the outlier detection framework. We demonstrate the
efficiency of our proposed framework by using PCA-based and
One-class SVM classifers. Our methods including DLIS SVM, DLIS
PCA, AVG SVM and AVG PCA are compared with the static ap-
proaches including Static SVM, Static PCA which do not update the
model at all and re-train based approaches including Retrain SVM,

RIGHTSE LI MN iy

SSDBM ’19, July 23-25, 2019, Santa Cruz, CA, USA

= PHDT sAVG wDLIS =PHDT 5AVG oDLIS

-
N

-

o N

Running Time (ms)

Running Time (ms)
55
]

o
o o

I

10k 30k 50k FC Ethylen HPC TAO
Window Size Dataset

(a) Varying Window Size (b) Varying Dimensions

Figure 5: Change Detection Running Time Per Window (ms)

Retrain PCA which update the model periodically after every ¢ data
points. For PCA, we also compare with Incremental PCA [38] which
updates the PCA model in every slide. Incremental approach for
One-class SVM is not available, however. We compared the results
of the methods with the ground truth retrieved by applying the
algorithms, i.e., PCA and One-class SVM to the entire ground truth
distributions. The overall F1-score is averaged over all windows. In
this experiment, we generate synthetic datasets with 5 dimensions
and each distribution has a length which is randomly generated in
the range from 25000 to 100000.

F1-score. Tables 5 and 6 show the F1-score of One-class SVM and
PCA approaches, respectively, with the real-world and synthetic
datasets. As can be seen from these tables, the change detection ap-

DLIS | AVG | Static Retrain SVM

SVM | SVM | SVM 5k 10k | 20k
Mean 0.95 | 0.94 0.01 0.87 | 0.85 | 0.79
STD 0.96 | 0.93 0.69 | 095 | 0.94 | 0.92
Corr 0.97 0.96 0.83 0.96 | 0.95 | 0.93

FC-G 0.93 | 092 0.73 0.93 | 0.92 | 0.89
Ethyl-G | 0.94 | 0.93 0.52 0.93 | 0.93 | 0.89
HPC-G | 0.94 0.93 0.62 0.93 | 0.92 | 0.90
TAO-G 0.90 0.91 0.42 0.83 | 0.81 | 0.74

FC-S 0.91 | 0.91 0.48 0.90 | 0.88 | 0.85
Ethyl-S | 0.95 0.96 0.49 0.93 | 0.92 | 0.87
HPC-S 0.89 0.94 0.78 0.90 | 0.89 | 0.87
TAO-S 0.87 | 0.90 0.45 0.84 | 0.82 | 0.76
Table 5: One-class SVM Outlier Detection - F1-score

Dataset

proach offers the highest F1-scores. DLIS SVM and DLIS PCA have
comparable F1-scores with AVG SVM and AVG PCA, respectively.
Static One-class SVM and Static PCA offer the lowest F1-scores
because the models are outdated when the distribution changes.
Incremental PCA incrementally updates the model. However, it
does not adapt quickly to the change of distribution and the model
is built with data from multiple distributions. Incremental PCA
offers higher F1-scores than Static PCA but lower than the other
approaches. In the retrain-based approach, the data used for model
building can overlap two distributions and it can result in a wrong
detection. As we can see from these tables, in Retrain PCA and

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

DLIS | AVG | Static Retrain PCA

PCA | PCA | PCA | 5k | 10k | 20k
Mean 0.94 | 0.92 0.87 0.92 | 0.91 | 0.90 0.89
STD 0.93 | 091 0.86 0.89 | 0.88 | 0.87 0.82
Corr 0.90 | 0.89 0.64 0.88 | 0.87 | 0.85 0.70

FC-G 0.91 | 0.88 048 | 0.89 | 0.87 | 0.82 0.72
Ethyl-G | 0.94 | 0.90 046 | 092 | 0.89 | 0.83 0.72
HPC-G | 0.95 | 0.87 0.55 | 0.92 | 0.90 | 0.86 0.78
TAO-G | 0.92 | 0.89 0.62 | 0.89 | 0.87 | 0.84 0.79

FC-S 092 | 093 | 043 | 088 | 0.86 | 0.85 0.84
Ethyl-S | 0.90 | 0.89 0.19 | 0.87 | 0.84 | 0.75 0.62
HPC-S | 091 | 0.92 | 0.70 | 0.89 | 0.88 | 0.86 0.82
TAO-S | 091 | 0.92 | 0.78 | 0.88 | 0.86 | 0.85 0.88

Table 6: PCA Outlier Detection - F1-score

Dataset Incr. PCA

Retrain SVM, when t is increased from 5k to 20k, the F1-score
decreases because the model is updated less frequently.

Stability with Outlier Rate. We compare the approaches when
varying the outlier rate r from 0.01 to 0.1. Tables 7 and 8 show the
F1-score of all the approaches with the FC dataset and Gaussian-1D
change injection. As can be seen in these tables, the F1-scores of all
the methods increase when the outlier rate increases because there
is higher chance a local outlier, i.e., the outlier in a sliding window,
can be a global outlier which is an outlier in the entire distribution.
DLIS PCA and DLIS SVM offer the highest F1-scores in all cases.

- DLIS | AVG | Static Retrain PCA Incr. PCA
PCA | PCA | PCA 5k 10k | 20k
0.01 | 0.86 | 0.86 0.41 0.83 | 0.81 | 0.74 0.77
0.05 | 0.91 | 0.90 0.43 0.87 | 0.85 | 0.78 0.84
0.1 0.92 0.91 0.55 0.89 | 0.87 | 0.82 0.87
Table 7: PCA-based Outlier Detection with FC-G Dataset - F1-

score - Varying Outlier Rate

DLIS | AVG | Static Retrain SVM
SVM | SVM | SVM | 5k | 10k | 20k
0.01 | 0.90 0.89 0.5 0.84 | 0.83 | 0.81
0.05 | 0.93 0.91 0.67 0.86 | 0.85 | 0.84
0.1 0.93 0.9 0.69 0.87 | 0.86 | 0.85
Table 8: One-class SVM Outlier Detection with FC-G Dataset
- F1-score - Varying Outlier Rate

r

Running Time. Tables 9 and 10 show the average running time
for each sliding window in milliseconds of the approaches with
the synthetic and real-word datasets. As depicted in these tables,
in the retrain-based approach, with higher ¢, it incurs less running
time because it rebuilds the model less frequently. With ¢ = 5k, it
requires the highest running time. Incremental PCA updates the
model in every slide and the entire window is re-evaluated, thus

RIGHTS L

Luan Tran, Liyue Fan, and Cyrus Shahabi

requires the highest running time. AVG PCA and AVG SVM incur
the smallest running time. It is because the change detection module
does not incur much running time compared to model building and
outlier detection and the number of model building is less than the
other approaches. DLIS SVM and DLIS PCA require slightly higher
running time than AVG SVM and AVM PCA, respectively, because
of the LIS computation. With datasets TAO-G and TAO-S which
have the fewest dimensions, all the methods incur the least running
time.

DLIS | AVG Retrain SVM

SVM | SVM 5k 10k | 20k
Mean 1.96 1.90 | 5.20 | 3.08 | 2.00
STD 1.88 1.87 | 492 | 3.08 | 2.04
Corr 1.88 1.75 | 4.80 | 2.96 | 2.12

FC-G 252 | 2.45 | 6.68 | 3.88 | 3.00
Ethyl-G | 2.72 | 2.50 | 6.92 | 4.24 | 2.80
HPC-G | 2.56 | 2.45 | 5.60 | 3.24 | 2.08
TAO-G | 1.64 | 1.60 | 436 | 2.56 | 1.76

FC-S 216 | 2.12 | 4.84 | 2.60 | 2.40
Ethyl-S | 2.40 | 2.35 | 6.48 | 3.72 | 2.40
HPC-S 1.84 | 1.75 | 5.40 | 3.20 | 2.04
TAO-S | 1.60 | 1.44 | 4.40 | 2.56 | 1.68
Table 9: One-class SVM Outlier Detection - Running Time
Per Window(ms)

Dataset

DLIS | AVG Retrain PCA

PCA | PCA 5k 10k | 20k
Mean 5.72 | 5.53 | 840 | 7.20 | 6.00 35.44
STD 5.64 | 5.55 | 820 | 7.40 | 6.12 35.64
Corr 5.20 | 5.17 | 7.40 | 7.00 | 5.88 29.84

FC-G 436 | 4.33 | 6.28 | 5.60 | 4.56 23.48
Ethyl-G | 4.40 | 4.38 | 6.40 | 5.48 | 4.72 23.96
HPC-G | 4.64 | 4.60 | 6.48 | 5.60 | 4.84 26.00
TAO-G | 4.00 | 3.77 | 5.20 | 4.84 | 4.28 24.80

FC-S 6.12 | 6.01 | 10.68 | 9.64 | 7.44 42.00
Ethyl-S | 4.80 | 4.72 | 7.24 | 6.20 | 5.24 27.08
HPC-S 4.60 | 4.55 | 640 | 5.64 | 4.88 27.56
TAO-S 452 | 440 | 532 | 476 | 4.60 25.52
Table 10: PCA Outlier Detection - Running Time Per Win-
dow(ms)

Dataset Incr. PCA

7 CONCLUSIONS

In this paper, we introduced a framework for outlier detection in
non-stationary data streams by incorporating distribution change
detection to trigger model updates. To detect changes in distribution
accurately, we proposed to compute the distance of the current
window to the reference window using a new IKL measure, and
two change detection algorithms which monitor the distance values.
Our AVG method exploits the increase in the average distance to
overcome temporary spikes, and Dynamic LIS method exploits the

Outlier Detection in Non-stationary Data Streams

increasing trend of the distance values and is parameter-free. We
demonstrated our outlier detection framework with two popular
classifiers, i.e., PCA and One-class SVM. Our time and space analysis
showed that the incorporated change detection does not incur much
overhead. The experiment results showed that AVG and Dynamic
LIS offer robust performance for change detection . Our proposed
framework provides highly accurate outlier detection, requires
significantly less running time than the incremental and retrain
based approaches. The combination of AVG and Dynamic LIS can
be exploited in the future work to achieve a higher accuracy in
change detection.

8 ACKNOWLEDGMENTS

This work has been supported in part by NSF CNS-1915828, the
USC Integrated Media Systems Center, and unrestricted cash gifts
from Oracle and Google. The opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Charu C Aggarwal. 2015. Outlier analysis. In Data mining.
Springer, 237-263.

[2] R. Arora, A. Cotter, K. Livescu, and N. Srebro. 2012. Stochastic
optimization for PCA and PLS. In 2012 50th Annual Allerton
Conference on Communication, Control, and Computing (Aller-
ton). 861-868. https://doi.org/10.1109/Allerton.2012.6483308

[3] Jinho Baik, Percy Deift, and Kurt Johansson. 1999. On the dis-
tribution of the length of the longest increasing subsequence of
random permutations. Journal of the American Mathematical
Society 12, 4 (1999), 1119-1178.

[4] Azzeddine Bakdi and Abdelmalek Kouadri. 2017. A new adap-
tive PCA based thresholding scheme for fault detection in
complex systems. Chemometrics and Intelligent Laboratory
Systems 162 (2017), 83-93.

(5] Taposh Banerjee and Venugopal V Veeravalli. 2013. Data-
efficient quickest change detection in minimax settings. IEEE
Transactions on Information Theory 59, 10 (2013), 6917-6931.

[6] Alka Bhushan, Monir H Sharker, and Hassan A Karimi. 2015.
Incremental principal component analysis based outlier detec-
tion methods for spatiotemporal data streams. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information
Sciences 2 (2015), 67-71.

[7] Albert Bifet and Ricard Gavalda. 2007. Learning from time-
changing data with adaptive windowing. In Proceedings of the
2007 SIAM International Conference on Data Mining. SIAM,
443-448.

(8] Matthew Brand. 2002. Incremental Singular Value Decom-
position of Uncertain Data with Missing Values. In Proceed-
ings of the 7th European Conference on Computer Vision-Part
I (ECCV ’02). Springer-Verlag, London, UK, UK, 707-720.
http://dl.acm.org/citation.cfm?id=645315.649157

[9] Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubra-
manian, and Ke Yi. 2006. An information-theoretic approach
to detecting changes in multi-dimensional data streams. In
In Proc. Symp. on the Interface of Statistics, Computing Science,
and Applications.

RIGHTS LI L)

SSDBM ’19, July 23-25, 2019, Santa Cruz, CA, USA

[10] Anh Hoang Dau, Victor Ciesielski, and Andy Song. 2014.
Anomaly Detection Using Replicator Neural Networks Trained
on Examples of One Class.. In SEAL. 311-322.

[11] Nicolas Delannay, Cédric Archambeau, and Michel Verleysen.

2008. Improving the robustness to outliers of mixtures of

probabilistic PCAs. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining. Springer, 527-535.

Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy

Peterson, Owen White, and Steven L. Salzberg. 1999. Align-

ment of whole genomes. Nucleic Acids Research 27, 11 (1999),

2369-2376. https://doi.org/10.1093/nar/27.11.2369

[13] Jeremiah D Deng. 2016. Online outlier detection of energy
data streams using incremental and kernel PCA algorithms. In
Data Mining Workshops (ICDMW), 2016 IEEE 16th International
Conference on. IEEE, 390-397.

[14] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning
Repository. http://archive.ics.uci.edu/ml

[15] Michael L Fredman. 1975. On computing the length of longest
increasing subsequences. Discrete Mathematics 11, 1 (1975),
29-35.

[16] David Freedman and Persi Diaconis. 1981. On the histogram
as a density estimator: L 2 theory. Zeitschrift fiir Wahrschein-
lichkeitstheorie und verwandte Gebiete 57, 4 (1981), 453-476.

[17] Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. 2005. An
approach to spacecraft anomaly detection problem using ker-
nel feature space. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining.
ACM, 401-410.

[18] Jodo Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. 2014. A survey on concept drift
adaptation. ACM Computing Surveys (CSUR) 46, 4 (2014), 44.

[19] SP Hayes, L] Mangum, Joél Picaut, A Sumi, and K Takeuchi.
1991. TOGA-TAO: A moored array for real-time measure-
ments in the tropical Pacific Ocean. Bulletin of the American
Meteorological Society 72, 3 (1991), 339-347.

[20] Katherine Heller, Krysta Svore, Angelos D Keromytis, and
Salvatore Stolfo. 2003. One class support vector machines for
detecting anomalous windows registry accesses. (2003).

[21] S.Y. Huang,]J. W. Lin, and R. H. Tsaih. 2016. Outlier detection

in the concept drifting environment. In 2016 International

Joint Conference on Neural Networks (IJCNN). 31-37. https:

//doi.org/10.1109/IJCNN.2016.7727177

Ruoyi Jiang, Hongliang Fei, and Jun Huan. 2011. Anom-

aly Localization for Network Data Streams with Graph Joint

Sparse PCA. In Proceedings of the 17th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Min-

ing (KDD ’11). ACM, New York, NY, USA, 886-894. https:

//doi.org/10.1145/2020408.2020557

Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. De-

tecting change in data streams. In Proceedings of the Thirtieth

international conference on Very large data bases-Volume 30.

VLDB Endowment, 180-191.

[24] Solomon Kullback. 1997. Information theory and statistics.
Courier Corporation.

[25] L.I. Kuncheva. 2013. Change Detection in Streaming Multi-
variate Data Using Likelihood Detectors. IEEE Transactions on
Knowledge and Data Engineering 25, 5 (May 2013), 1175-1180.

[12

—

[22

—

[23

—_

SSDBM 19, July 23-25, 2019, Santa Cruz, CA, USA

https://doi.org/10.1109/TKDE.2011.226

[26] R. Lasaponara. 2006. On the use of principal component anal-
ysis (PCA) for evaluating interannual vegetation anomalies
from SPOT/VEGETATION {NDVI} temporal series. Ecological
Modelling 194, 4 (2006), 429 — 434. https://doi.org/10.1016/j.
ecolmodel.2005.10.035

[27] Junshui Ma and Simon Perkins. 2003. Time-series novelty
detection using one-class support vector machines. In Neural
Networks, 2003. Proceedings of the International Joint Conference
on, Vol. 3. IEEE, 1741-1745.

[28] Paulo M Mafra, Vinicius Moll, Joni da Silva Fraga, and Al-
tair Olivo Santin. 2010. Octopus-IIDS: An anomaly based
intelligent intrusion detection system. In Computers and Com-
munications (ISCC), 2010 IEEE Symposium on. IEEE, 405-410.

[29] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi. 2004. Test
of Page-Hinckley, an approach for fault detection in an agro-
alimentary production system. In 2004 5th Asian Control Con-
ference (IEEE Cat. No.04EX904), Vol. 2. 815-818 Vol.2.

[30] H Vieira Neto and Ulrich Nehmzow. 2005. Incremental PCA:
An alternative approach for novelty detection. Towards Au-
tonomous Robotic Systems (2005).

[31] F.Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12 (2011), 2825—
2830.

[32] Roberto Perdisci, Davide Ariu, Prahlad Fogla, Giorgio Giacinto,
and Wenke Lee. 2009. McPAD: A multiple classifier system for
accurate payload-based anomaly detection. Computer networks
53, 6 (2009), 864—881.

[33] Roberto Perdisci, Guofei Gu, and Wenke Lee. 2006. Using an
ensemble of one-class svm classifiers to harden payload-based
anomaly detection systems. In Data Mining, 2006. ICDM’06.
Sixth International Conference on. IEEE, 488-498.

[34] Abdulhakim A. Qahtan, Basma Alharbi, Suojin Wang, and
Xiangliang Zhang. 2015. A PCA-Based Change Detection
Framework for Multidimensional Data Streams: Change De-
tection in Multidimensional Data Streams. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD °15). ACM, New York, NY,
USA, 935-944. https://doi.org/10.1145/2783258.2783359

[35] Marcos Quifiones-Grueiro and Cristina Verde. 2017. Com-
ments on the applicability of AAJJAn improved weighted re-
cursive PCA algorithm for adaptive fault detectionaAl. Control
Engineering Practice 58 (2017), 254-255.

[36] S. Rajasegarar, C. Leckie, J. C. Bezdek, and M. Palaniswami.
2010. Centered Hyperspherical and Hyperellipsoidal One-
Class Support Vector Machines for Anomaly Detection in
Sensor Networks. IEEE Transactions on Information Forensics
and Security 5, 3 (Sept 2010), 518-533. https://doi.org/10.1109/
TIFS.2010.2051543

[37] Dan Romik. 2015. The surprising mathematics of longest in-
creasing subsequences. Vol. 4. Cambridge University Press.

[38] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan
Yang. 2008. Incremental learning for robust visual tracking.
International journal of computer vision 77, 1-3 (2008), 125-141.

RIGHTS L1 N Hig

Luan Tran, Liyue Fan, and Cyrus Shahabi

[39] Raquel Sebastiao and Joao Gama. 2009. A study on change
detection methods. In Progress in Artificial Intelligence, 14th
Portuguese Conference on Artificial Intelligence, EPIA. 12—15.
Xiuyao Song, Mingxi Wu, Christopher Jermaine, and San-
jay Ranka. 2007. Statistical Change Detection for Multi-
dimensional Data. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD °07). ACM, New York, NY, USA, 667-676. https:
//doi.org/10.1145/1281192.1281264

[41] Herbert A Sturges. 1926. The choice of a class interval. Journal
of the american statistical association 21, 153 (1926), 65-66.

[42] Marina Thottan and Chuanyi Ji. 2003. Anomaly detection in IP
networks. IEEE Transactions on signal processing 51, 8 (2003),
2191-2204.

[43] Michael E Tipping and Christopher M Bishop. 1999. Prob-
abilistic principal component analysis. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 61, 3 (1999),
611-622.

[44] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2016. Distance-
based Outlier Detection in Data Streams. Proc. VLDB Endow. 9,
12 (Aug. 2016), 1089-1100. https://doi.org/10.14778/2994509.
2994526

[45] Venugopal V Veeravalli and Taposh Banerjee. 2014. Quickest
change detection. In Academic Press Library in Signal Process-
ing. Vol. 3. Elsevier, 209-255.

[46] Jason Weston and Chris Watkins. 1998. Multi-class support

vector machines. Technical Report. Citeseer.

Yang Zhang, Nirvana Meratnia, and Paul J. M. Havinga. 2010.

Ensuring High Sensor Data Quality Through Use of Online

Outlier Detection Techniques. Int. . Sen. Netw. 7, 3 (May 2010),

141-151. https://doi.org/10.1504/]JSNET.2010.033116

[40

—

[47

—

