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method is to rebuild the model after a fixed time interval [47],
which is hard to optimize because the timing of changes is usually
unpredictable in practice. In this paper, we propose a change de-
tection approach which rebuilds the model only when the changes
of the underlying distribution are detected in data streams. Intu-
itively, as more data points from a new distribution arrive, the
difference between current window and the previous distribution
tends to increase. Therefore, we can monitor the sequence of the
aforementioned “differences" continuously to determine whether
the underlying distribution is going through changes. One advan-
tage of our framework is that the change detection algorithms do
not limit the choice of the outlier classifiers. This feature is cru-
cial as real-world applications [28, 32, 33] typically use multiple
outlier classifiers. Specifically, the contributions of our study are
summarized as follows:

(1)We propose a framework for outlier detection in non-stationary
data streams (O-NSD) which incorporates distribution change de-
tection to trigger model updates. When a change is detected, the
outlier detection model is rebuilt with the data from the new distri-
bution.

(2) We propose a distance function IKL to measure the difference
between two distributions. We prove that the distance between the
current window and the reference windowmonotonically increases
at the beginning of the new distribution.

(3)We propose two algorithms for change detection, i.e., AVG and
Dynamic LIS, based on the average distance to the referencewindow
and the length of the longest increasing subsequence of distance
values, respectively. The threshold in Dynamic LIS is dynamically
computed in a parameter-free manner. Experiments show that our
algorithms are superior to the state-of-the-art approach for change
detection.

(4) We propose new evaluation metrics for change detection,
i.e.,wPrecision,wRecall andwF1, to quantify the timeliness of the
detected changes in the context of data streams.

(5) With extensive experiments using synthetic and real-world
datasets, we show that our outlier detection framework offers
higher accuracy and incurs much less running time than the incre-
mental and retrain-based outlier detection approaches.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we present the fundamental
concepts and the problem definition. In Section 4 and Section 5, we
propose our change detection, outlier detection solutions and eval-
uation metrics. In Section 6, we report detailed evaluation results.
Finally, in Section 7, we conclude the paper and offer some future
research directions.

2 RELATED WORK

Outlier Detection.Most outlier detection techniques are unsuper-
vised because it is hard to get labelled data in practice. Principal
Component Analysis (PCA) [1] and One-class SVM [1, 47] are the
two most popular models for unsupervised outlier detection. PCA
finds the orthogonal dimensions that captures the most variance of
data. The data points that have large variances in the dimensions
corresponding to the least eigenvalues in which most data have
small variances are considered outliers. PCA has been applied in

various domains, such as network intrusion detection [42] and in
space craft components [17]. Incremental PCA has been used in
visual novelty detection mechanism [30], outlier detection in en-
ergy data streams [13], and spatial-temporal data in [6]. One-class
SVM finds the boundary for the most data with the assumption that
outliers are rare. The data points which are outside of the boundary
are considered outliers. It has many applications, e.g., in wireless
sensor network [47] and time-series data [27]. To the best of our
knowledge, the adaption to data streams, i.e., incrementally update
One-class SVM, is not available.

Change Detection. Change detection in data streams has been
well studied for one-dimensional data, e.g., in [7, 23, 45]. In this
paper, we are interested in detecting a change in the unlabeled mul-
tidimensional data streams which were studied in [9, 25, 34]. Dasu
et al. [9] detected changes in multidimensional data by comput-
ing the KL-distance from the estimated distribution of the current
sliding window and the reference window, a change is reported
when that distance is higher than a fixed threshold in a number
of consecutive windows which is manually chosen. The training
data is required to compute the threshold. Kuncheva in [25] pro-
posed a semi parametric log likelihood detector to measure the
difference between windows for detecting changes. Qahtan et al.
[34] proposed a PCA-based change detection algorithm using Page-
Hinckley test [29] which is shown to be superior to the methods
in [9, 25]. Our solutions aim to address several shortcomings of
previous studies, e.g., manually chosen parameters and sensitivity
to temporary spikes in the streams.

3 PRELIMINARIES

Below we present the fundamental concepts and problem definition.

Definition 1. [44] A data stream is a possible infinite series of

data points ...,on−2,on−1,on , ..., where the data points are sorted by

their arrival time.

In this definition, a data point o is associated with a time stamp
o.t at which it arrives. As new data points arrive continuously, data
streams are typically processed in sliding windows, i.e., sets of active
data points. The window size characterizes the volume of the data
streams. In this study, we adopt the count-based window.

Definition 2. [44] Given data point on and a fixed window size

W , the count-based window Dn is the set of W data points: {on−W +1,

on−W +2, ... , on }.

Every time the window slides, S new data points arrive in the
window and the oldest S data points are removed. S denotes the
slide size which characterizes the speed of the data stream.

In real-world data streams, changes in the underlying data dis-
tribution may be inherent due to the nature of data. For example,
the distributions of wind speed and precipitation change over sea-
sons 2; the average speed on a highway changes over hours and
days. In addition, changes may happen if a sensor becomes less ac-
curate gradually over time or when another sensor with a different
calibration replaces the faulty sensor [18].

2https://www.pmel.noaa.gov/tao/drupal/disdel/
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Definition 3. A data stream is non-stationary if the parameters

of the underlying distribution change over time.

In this study, we consider changes in mean and variance in
individual dimensions and in correlation between dimensions as in
[9, 34]. We now formally define the problem of continuous outlier
detection in non-stationary data streams (O-NSD) as follows.

PROBLEM 1 (O-NSD). Given a non-stationary stream {o}, win-

dow sizeW , slide size S , the problem is to detect the outliers in every

sliding window ...,Dn ,Dn+S , ....

In this paper, we are interested in unsupervised approaches
[13, 33, 36] for outlier detection in which each data point is given
an outlier score measuring the quality of the fit to the model of
normal behavior. We will present more details about outlier scoring
in Section 5.

4 CHANGE DETECTION

In this section, we present our proposed solution for change de-
tection which is crucial in the outlier detection framework. The
high-level pseudo-code is presented in Algorithm 1. As shown in
[34], a change in mean, variance or correlation in the original space
is manifested in the transformed space using the Principal Compo-
nent Analysis (PCA)[43]. Therefore, we apply PCA transformation
on the windows as in line 2 in Algorithm 1 and select the first k
principal components corresponding to the largest eigenvalues λi
that satisfy

∑k
i=1

λi∑
d

i=1 λi
≥ 0.999, where d is the number of dimen-

sions. The window used for model building is called the reference
window, which will be updated once a new distribution is detected.
The distribution of the projected data is estimated in line 5 using
histograms in each dimension whose edges are estimated as the
maximum of the Sturges [41] and FD estimators [16]. Subsequently,
the distance between two windows is the maximum distance across
all dimensions, as in line 6 in Algorithm 1.

Algorithm 1 Change Detection

Global variables: bu f f er : The distance buffer.

1: function ChangeDetection(Dt ,Dr ) ⊲ Dt : current window,
Dr : reference window

2: D ′
r ,D

′
t := Apply PCA Transform to Dr , Dt

3: dis = 0

4: for i from 1 to d do

5: f i ,дi := apply EstimatedHist to Di′
r and Di′

t

6: dis =max(dis, IKL(дi | | f i ))

7: bu f f er .enqueue(dis)

8: if IsChange(bu f f er ) then
9: report a change at Dt

10: bu f f er .clear ()

4.1 IKL - An Improved Distance Measure

The distance measure as in line 6 in Algorithm 1 is a crucial part
for detecting a change. Kullback-Leibler distance [24] is commonly

used to measure distance between two probability distributions:

KL(P ,Q) =
∑

j

P(j) log
P(j)

Q(j)
(1)

with P(j) and Q(j) are the probabilities of data values in bin j.
KL(P ,Q) is positive if P and Q have different counts over bins.
In other words, if D and D ′ are 2 sliding windows and are gener-
ated by different underlying distributions, we have KL(D,D ′) > 0.
However, since a histogram only approximates a distribution, the
KL distance between two histograms from the same distribution
can be positive. Thus, only using positive value of KL distance is
inaccurate for change detection. A threshold can be used for KL
distance to detect a change. However, it is not practical as setting
the threshold may require knowledge about the magnitude of the
change a priori. Therefore, in this section, we propose an improved
distance measure between two estimated distributions as follows.

IKL(P ,Q) =
∑

j

max(P(j) log
P(j)

Q(j)
,Q(j) log

Q(j)

P(j)
) (2)

We replace each term P(j) log P (j)
Q (j)

in the original KL divergence for-

mula by max(P(j) log P (j)
Q (j)
,Q(j) log Q (j)

P (j)
) to maximize the distance.

Assuming each slide is generated by the same distribution, the new
IKL formula has the following characteristic.

Theorem 1. Suppose Dp is the last sliding window from the previ-

ous distribution, Dl and Dl ′ are sliding windows overlapping the two

distributions and containing l and l ′ slides from the new distribution,

respectively. When 0 < l < l ′ < W /S , we have: IKL(Dp ,Dl ) <

IKL(Dp ,Dl ′).

In other words, at the beginning of a new distribution, the IKL
distance to the reference window monotonically increases. Note
that the KL distance does not have this characteristic.

Proof of Theorem 1.

Assume the histogram of the previous distribution contains n bins

B(p) = {b
(p)
1 ,b

(p)
2 , ...,b

(p)
n } with the probability that a data point

belongs to bin bi is x
(p)
i , x

(p)
1 + x

(p)
2 + ... + x

(p)
n = 1. Assume the

probability distribution of the new distribution over the bins B(p) is
{γ1,γ2, ...,γn }, γ1 + γ2 + ... + γn ≤ 1. Here, we assume that for one
distribution the data points in every slide are distributed over the
bins similarly to the data points in the entire window. When the
window receives new l slides from a new distribution and it removes
l expired slides, let the probability that one data point belongs to

bin bi be x
(l )
i . We will compute x (l )i from x

(p)
i , γi , the window size

W , and the slide size S . With l expired slides, the probability of a

data point to belong to bin bi decreases lS/Wx
(p)
i , and with new l

slides from the new distribution, the probability of a data point to
belong to bin i gains lγiS/W . Therefore,

x
(l )
i = x

(p)
i − l

S

W
x
(p)
i + l

S

W
γi (3)

Let βi =
S
W x

(p)
i − S

W γi , we have x
(l )
i = x

(p)
i − lβi . The IKL distance

between Dp and Dl is:
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IKL(Dp ,Dl ) =

n∑

i=1

max(x
(p)
i log

x
(p)
i

x
(l )
i

,x
(l )
i log

x
(l )
i

x
(p)
i

)

=

n∑

i=1

max(x
(p)
i log

x
(p)
i

x
(p)
i − lβi

,x
(l )
i log

x
(p)
i − lβi

x
(p)
i

)

(4)

Similarly, we have

IKL(Dp ,Dl ′) =

n∑

i=1

max(x
(p)
i log

x
(p)
i

x
(p)
i − l ′βi

,x
(l ′)
i log

x
(p)
i − l ′βi

x
(p)
i

)

(5)

It is easy to see that: when βi ≥ 0,

max(x
(p)
i log

x
(p)
i

x
(p)
i − lβi

,x
(l )
i log

x
(p)
i − lβi

x
(p)
i

) = x
(p)
i log

x
(p)
i

x
(p)
i − lβi

(6)

and when βi < 0,

max(x
(p)
i log

x
(p)
i

x
(p)
i − lβi

,x
(l )
i log

x
(p)
i − lβi

x
(p)
i

) = x
(l )
i log

x
(p)
i − lβi

x
(p)
i

)

(7)

Therefore, the difference between these two IKL distances is:

IKL(Dp ,Dl ′) − IKL(Dp ,Dl )

=

∑

βi ≥0

(x
(p)
i log

x
(p)
i

x
(p)
i − l ′βi

− x
(p)
i log

x
(p)
i

x
(p)
i − lβi

)

+

∑

βi<0

(x
(l ′)
i log

x
(p)
i − l ′βi

x
(p)
i

− x
(l )
i log

x
(p)
i − lβi

x
(p)
i

)

=

∑

βi ≥0

x
(p)
i log(1 +

(l ′ − l)βi

x
(p)
i − l ′βi

) +
∑

βi<0

(x
(l )
i log(1 −

(l ′ − l)βi

x
(p)
i − lβi

)

+ (x
(l ′)
i − x

(l )
i ) log

x
(p)
i − l ′βi

x
(p)
i

)

(8)

Since l < l ′ <W /S , we have l ′−l > 0 and when βi < 0, x
(p)
i −lβi >

0, x
(p)
i −l ′βi > 0, x (l

′)
i −x

(l )
i > 0⇒ IKL(Dp ,Dl ′)−IKL(Dp ,Dl ) > 0.

This completes the proof of the theorem.

4.2 Change Detection Algorithms

A significant distance to the reference window can signify a change
in the distribution. However, there are cases of signal spikes, in
which the distance is large for a short time period and then drops to
normal. To avoid mistaking those spikes for distribution changes,
Dasu et al. [9] report a change after seeing p consecutive large
distances. Qahtan et al. [34] report a change if the current distance

value significantly deviates beyond allowable change δ for a rea-
sonable period χ from the history of the distance values. However,
choosing optimal values for χ ,δ in [34] and p in [9] is difficult in
practice.

We observe that when the distribution changes, there areW /S

windows overlapping the two distributions. The distances from
these windows to the reference window (representative of the old
distribution) are in an upward trend if measured by IKL as stated in
Theorem 1. We exploit this property by storingM consecutive IKL
distances in a buffer which is implemented as a queue as in line 7
in Algorithm 1. Every time the window slides, the distance dnew
from the current window to the reference window is computed
and appended to the buffer. If the buffer is full, the oldest distance
dexpired in the buffer is removed. The buffer is also cleared after
a change is detected. We propose two algorithms, i.e., AVG and
Dynamic LIS, to detect a change using the distance values stored
in the buffer. We found in our empirical evaluation, a small buffer
(i.e.,M =W /S) is sufficient for both of our algorithms.

Algorithm 2 AVG

Global variables: count : Total number of windows from the
beginning of distribution, allAvд: Overall average score in the
buffer

1: function IsChangeAVG(bu f f er ,AVG_th)
2: curAvд = Averaдe(bu f f er )

3: allAvд = (allAvд ∗ count + curAvд)/(count + 1)
4: count = count + 1
5: if curAvд > allAvд ∗AVG_th then

6: count = 0
7: return TRUE
8: return FALSE

AVG. This algorithm is presented in Algorithm 2, which is an in-
stance of Function IsChange() in Algorithm 1. A change is detected
if the ratio between the average value of the distances stored in
the buffer and the overall average distance is higher than a pre-
defined threshold, AVG_th. We use count to denote the number
of sliding windows from the beginning of the current distribution.
Let allAvд denote the overall average distance value among those
windows, and curAvд denote the current average distance in the
buffer. When the window slides, curAvд is updated to incorporate
the new distance as in line 2 in Algorithm 2.

curAvд =
curAvд ×M − dexpired + dnew

M
(9)

The overall average value allAvд is also updated accordingly.

allAvд =
allAvд × count + curAvд

count + 1
(10)

Our proposed solution is different from Page-Hinckley test [29]
which monitors single distances, used in [34] and [39]. In AVG, we
monitor the average value of M consecutive distances to reduce the
effect of signal spikes. The time complexity is low, O(1) for each
sliding window. Although AVG requires a pre-defined threshold,
i.e.,AVG_th, similarly to [9, 34], it is more intuitive for the user. Our
second approach does not require any manual threshold setting.
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5 OUTLIER DETECTION SOLUTION

Framework Design. We first present our framework design for
outlier detection in non-stationary data streams. The pseudo code
of our framework are presented in Algorithm 4. Amodel is first built
with the initial window (Function Train()), and it is used to detect
outliers (Function OutlierDetection()) for subsequent windows
until a change is detected. This reduces the number of model up-
dates and re-evaluations for existing data points. When the window
slides, and a change is detected (Function ChangeDetection()),
the model is rebuilt with the window starting from the change
point. This ensures that the model is built to reflect only the new
distribution. The reference window for change detection is also
updated after a detected change.

Algorithm 4 Outlier Detection Solution

Input: Stream {o}, Window SizeW , Slide Size S
Output: Outliers in every sliding window
Procedure:

1: Dr = {o1,o2, ...,oW };model = Train(Dr )

2: OutlierDetection(model ,Dr ) ⊲ Detect outliers in the first
window

3: for every sliding window Dt do

4: if ChangeDetection(Dt ,Dr ) then

5: Dr = Dt+W −S ⊲ Update reference window
6: model = Train(Dr ) ⊲ Build model with data of new

distribution
7: OutlierDetection(model ,Dr ) ⊲ Detect outliers in

new distribution
8: else

9: OutlierDetection(model , {ot−S+1, ...,ot }) ⊲ Detect
outliers in the new slide

Outlier Detection Algorithms. This framework is applicable to
various outlier detection algorithms. In general, after the outlier
scores of data points are computed, outliers can be reported using
different methods. If a threshold is used, the data points with a
score higher than the threshold are reported as outliers [4]. An-
other approach is to report topm% of data points with the highest
scores as outliers [1]. We adopt the latter approach to control outlier
rate as well as to get an unbiased comparison between methods. In
this study, to demonstrate the framework, we use PCA [1, 42] and
One-class SVM technique [33, 36] considering their prevalence in
practice. Now we describe how the outlier scores of data points are
computed in PCA and One-class SVM.

PCA-based Outlier Detection. Assume data points have d dimen-
sions. There are k < d dimensions corresponding to the largest
eigenvalues retaining the most data variance. Thus, the data points
that have high deviation on the d − k dimensions with small eigen-
values, can be considered as outliers. Let x ′i j be the projected value

of data point xi on the eigenvector ej which has a small eigenvalue.
The large deviation of x ′i j as compared to that of other data points

suggests that xi is an outlier. The outlier score of a data point x
is measured by the normalized distance to the centroid µ along

the principal components. That distance is weighted based on the
eigenvalues as follows:

score(x) =

d∑

i=1

|(x − µ)ei |
2

λi
(11)

where d is the number of dimensions, ei and λi are the ith eigen-
vector and the corresponding ith largest eigenvalue, respectively.

One-class SVM Outlier Detection. One-class SVM [1, 20] can be
used for outlier detection – given a set of samples, it will detect
the soft boundary of that set to classify data points to normal or
outlier class. One-class SVM can be viewed as a regular two-class
SVM [46] where all the training data lies in the first class, and the
origin is taken as the only member of the second class. Thus, the
linear decision boundary corresponds to the classification rule:

f (x) = 〈w,x〉 + b (12)

wherew is the normal vector and b is a bias term. One-class SVM
solves an optimization problem to find the rule f with maximal
geometric margin. An outlier corresponds to f (x) < 0. To allow a
nonlinear decision function, we can use a kernel function [20] such
as linear, polynomial and Gaussian kernels to project input data
into a feature space.

Timeliness Evaluation for ChangeDetection. Precision, recall,
and F1-score are commonly used metrics for generic classification
tasks. In a streaming setting, prompt detection of changes is crucial
as the outlier detection model can be updated for the new distribu-
tion. For the O-NSD problem, the detected change point should be
close to the actual change point. However, the standardmetrics such
as precision, recall and F1-score, do not quantify how timely the
changes are detected. In [9, 34], the authors consider a detection ac-
curate if the last data point of the detected window is less than two
windows away from to the actual change point. This approach uses
a hard-coded threshold, i.e., 2 windows length, the choice of which is
not intuitive. Furthermore, this approach does not quantify the time-
liness smoothly. In the studies of the quickest change detection prob-
lem [5, 45], the average delay of the detected change point is used.
However, it does not distinguish true and false alarms. In this study,
we propose three weighted measures, i.e.,wPrecision,wRecall and
wF1 which incorporate the timeliness of change detection into the
commonly used precision, recall and F1-score metrics, respectively.
In order to define the new measures, we first define the timeliness
score of one detected change point which is considered as the last
data point of the detected window. If there are more than one de-
tected change points for the same actual change point, the closest
change point has a positive score, and the others are considered
false positive detections with the score of 0. Assume a change is
detected at windowDn , and the actual change point is oa . The score
of Dn depends on the number of disjoint windows passed after oa :

score(Dn ) = e−λ⌊
n−a
W

⌋ (13)

where λ is a decay factor, 0 < λ < 1. The parameter λ can be set by
the users to control how fast the score decays with time. The scores
represent the utility of change detection and can be used to measure
the sensitivity of algorithms to various slide sizes. Furthermore,
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Dataset
DLIS AVG Static Retrain PCA

Incr. PCA
PCA PCA PCA 5k 10k 20k

Mean 0.94 0.92 0.87 0.92 0.91 0.90 0.89
STD 0.93 0.91 0.86 0.89 0.88 0.87 0.82
Corr 0.90 0.89 0.64 0.88 0.87 0.85 0.70

FC-G 0.91 0.88 0.48 0.89 0.87 0.82 0.72
Ethyl-G 0.94 0.90 0.46 0.92 0.89 0.83 0.72
HPC-G 0.95 0.87 0.55 0.92 0.90 0.86 0.78
TAO-G 0.92 0.89 0.62 0.89 0.87 0.84 0.79
FC-S 0.92 0.93 0.43 0.88 0.86 0.85 0.84

Ethyl-S 0.90 0.89 0.19 0.87 0.84 0.75 0.62
HPC-S 0.91 0.92 0.70 0.89 0.88 0.86 0.82
TAO-S 0.91 0.92 0.78 0.88 0.86 0.85 0.88

Table 6: PCA Outlier Detection - F1-score

Retrain SVM, when t is increased from 5k to 20k, the F1-score
decreases because the model is updated less frequently.

Stability with Outlier Rate. We compare the approaches when
varying the outlier rate r from 0.01 to 0.1. Tables 7 and 8 show the
F1-score of all the approaches with the FC dataset and Gaussian-1D
change injection. As can be seen in these tables, the F1-scores of all
the methods increase when the outlier rate increases because there
is higher chance a local outlier, i.e., the outlier in a sliding window,
can be a global outlier which is an outlier in the entire distribution.
DLIS PCA and DLIS SVM offer the highest F1-scores in all cases.

r
DLIS AVG Static Retrain PCA

Incr. PCA
PCA PCA PCA 5k 10k 20k

0.01 0.86 0.86 0.41 0.83 0.81 0.74 0.77
0.05 0.91 0.90 0.43 0.87 0.85 0.78 0.84
0.1 0.92 0.91 0.55 0.89 0.87 0.82 0.87

Table 7: PCA-basedOutlier Detectionwith FC-GDataset - F1-

score - Varying Outlier Rate

r
DLIS AVG Static Retrain SVM
SVM SVM SVM 5k 10k 20k

0.01 0.90 0.89 0.5 0.84 0.83 0.81
0.05 0.93 0.91 0.67 0.86 0.85 0.84
0.1 0.93 0.9 0.69 0.87 0.86 0.85

Table 8: One-class SVMOutlier Detection with FC-G Dataset

- F1-score - Varying Outlier Rate

Running Time. Tables 9 and 10 show the average running time
for each sliding window in milliseconds of the approaches with
the synthetic and real-word datasets. As depicted in these tables,
in the retrain-based approach, with higher t , it incurs less running
time because it rebuilds the model less frequently. With t = 5k , it
requires the highest running time. Incremental PCA updates the
model in every slide and the entire window is re-evaluated, thus

requires the highest running time. AVG PCA and AVG SVM incur
the smallest running time. It is because the change detectionmodule
does not incur much running time compared to model building and
outlier detection and the number of model building is less than the
other approaches. DLIS SVM and DLIS PCA require slightly higher
running time than AVG SVM and AVM PCA, respectively, because
of the LIS computation. With datasets TAO-G and TAO-S which
have the fewest dimensions, all the methods incur the least running
time.

Dataset
DLIS AVG Retrain SVM
SVM SVM 5k 10k 20k

Mean 1.96 1.90 5.20 3.08 2.00
STD 1.88 1.87 4.92 3.08 2.04
Corr 1.88 1.75 4.80 2.96 2.12

FC-G 2.52 2.45 6.68 3.88 3.00
Ethyl-G 2.72 2.50 6.92 4.24 2.80
HPC-G 2.56 2.45 5.60 3.24 2.08

TAO-G 1.64 1.60 4.36 2.56 1.76
FC-S 2.16 2.12 4.84 2.60 2.40

Ethyl-S 2.40 2.35 6.48 3.72 2.40
HPC-S 1.84 1.75 5.40 3.20 2.04
TAO-S 1.60 1.44 4.40 2.56 1.68

Table 9: One-class SVM Outlier Detection - Running Time

Per Window(ms)

Dataset
DLIS AVG Retrain PCA

Incr. PCA
PCA PCA 5k 10k 20k

Mean 5.72 5.53 8.40 7.20 6.00 35.44
STD 5.64 5.55 8.20 7.40 6.12 35.64
Corr 5.20 5.17 7.40 7.00 5.88 29.84

FC-G 4.36 4.33 6.28 5.60 4.56 23.48
Ethyl-G 4.40 4.38 6.40 5.48 4.72 23.96
HPC-G 4.64 4.60 6.48 5.60 4.84 26.00
TAO-G 4.00 3.77 5.20 4.84 4.28 24.80
FC-S 6.12 6.01 10.68 9.64 7.44 42.00

Ethyl-S 4.80 4.72 7.24 6.20 5.24 27.08
HPC-S 4.60 4.55 6.40 5.64 4.88 27.56
TAO-S 4.52 4.40 5.32 4.76 4.60 25.52

Table 10: PCA Outlier Detection - Running Time Per Win-

dow(ms)

7 CONCLUSIONS

In this paper, we introduced a framework for outlier detection in
non-stationary data streams by incorporating distribution change
detection to trigger model updates. To detect changes in distribution
accurately, we proposed to compute the distance of the current
window to the reference window using a new IKL measure, and
two change detection algorithms which monitor the distance values.
Our AVG method exploits the increase in the average distance to
overcome temporary spikes, and Dynamic LIS method exploits the



Outlier Detection in Non-stationary Data Streams SSDBM ’19, July 23–25, 2019, Santa Cruz, CA, USA

increasing trend of the distance values and is parameter-free. We
demonstrated our outlier detection framework with two popular
classifiers, i.e., PCA andOne-class SVM. Our time and space analysis
showed that the incorporated change detection does not incur much
overhead. The experiment results showed that AVG and Dynamic
LIS offer robust performance for change detection . Our proposed
framework provides highly accurate outlier detection, requires
significantly less running time than the incremental and retrain
based approaches. The combination of AVG and Dynamic LIS can
be exploited in the future work to achieve a higher accuracy in
change detection.
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