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ABSTRACT

An increasing amount of image data is being generated nowa-

days, thanks to the popularity of surveillance cameras and

camera-equipped personal devices. While such image data

can be shared widely to enable research studies, it often con-

tains sensitive information, such as individual identities, lo-

cation indications, etc. Therefore, the image data must be

sanitized before sharing with untrusted parties. Current im-

age privacy-enhancing solutions do not offer provable pri-

vacy guarantees, or sacrifice utility to achieve the standard

ε-differential privacy. In this study, we propose a novel im-

age obfuscation solution based on metric privacy, a rigorous

privacy notion generalized from differential privacy. The key

advantage of our solution is that our privacy model allows for

higher utility by providing indistinguishability based on im-

age visual similarity, compared to the current method with

standard differential privacy. Empirical evaluation with real-

world datasets demonstrates that our method provides high

utility while providing provable privacy guarantees.

Index Terms— Image Obfuscation, Provable Privacy

1. INTRODUCTION

The amount of image data captured nowadays is rapidly in-

creasing, thanks to the popularity of surveillance cameras and

camera-equipped personal devices. Such image data can be

widely shared to enable research studies, such as for energy

efficiency optimization [1] and social relation recognition [2].

However, image data may contain various types of sensitive

information, such as identity, location, health, belief, etc. To

protect individual privacy, the image data must be sanitized

before sharing with un-trusted parties.

Existing image privacy-enhancing solutions obfuscate

regions-of-interest (ROIs) in an image, such as faces and

texts, using standard methods such as pixelization and blur-

ring. However, due to rapid development of machine learn-

ing, standard obfuscation methods are no longer effective

in privacy protection. Studies have shown that machine

learning models, especially convnet-based models, are highly

adaptable to obfuscated data. For instance, McPherson et

al. [3] showed that up to 96% of obfuscated faces can be re-

identified. More sophisticated obfuscation methods have been

proposed to enhance privacy and utility. For instance, GANs

(generative adversarial nets) have been adopted for image ob-

fuscation, e.g., by inpainting the head region as in Sun et

al. [4], and by modifying the identity while preserving action

detection as in Ren et al. [5]. Such approaches may heavily

rely on training data, and yet do not provide provable privacy

guarantees.

Differential privacy [6] has become the state-of-the-art

paradigm for sanitizing statistical databases. It guarantees

that an adversary is not able to distinguish between a pair of

neighboring databases, differing in at most one record, by ob-

serving the output of the private algorithm. However, very

little has been done toward publishing image data with such

rigorous privacy notions. We recently developed an image

pixelization method with ε-differential privacy [7]. However,

the utility of the pixelized image is quite low, due to the per-

turbation required to achieve standard differential privacy.

The goal of this study is to develop an image obfusca-

tion solution that provides provable privacy guarantees, with-

out compromising utility. The challenge is three-fold: (1) we

need to identify a rigorous privacy model that allows for a

balanced trade-off between privacy and utility; (2) it is not

straight-forward to define indistinguishable secret pairs in the

image domain; (3) the adversary’s background knowledge

about the secret image needs to be characterized accordingly.

The specific contributions of this paper are:

• We propose an image obfuscation solution that achieves

metric privacy [8], a generalized notion based on differential

privacy [6]. Specifically, our solution guarantees distance-

based indistinguishability, providing better utility compared

to standard differential privacy.

• We adopt Singular Value Decomposition (SVD), which is

known to preserve perceptual similarity between images. As

a result, our solution guarantees indistinguishability among

visually similar images, e.g., those with the same singular ma-

trices but slightly different singular values, providing strong

privacy protection even in worst-case scenarios.

• We design a randomized sampling mechanism and prove

that it satisfies metric privacy. In a non-straightforward effort,

our work extends previous results in the 2-dimensional geo-

space in [9] to an arbitrary k-dimensional metric space.

• We empirically evaluate our obfuscation method with

widely used image datasets and study the privacy and util-



ity performance. We show our method achieves higher utility

than differentially private pixelization, while providing prov-

able privacy guarantees.

2. RELATED WORKS

Image Privacy Methods. Standard obfuscation has been

used to sanitize sensitive ROIs when sharing data with un-

trusted parties. Such techniques include blacking, pixeliza-

tion (or mosaicing) and blurring. However, recent stud-

ies [10, 3] have shown that the standard obfuscation methods

are ineffective, due to the adaptability of convnet-based mod-

els. In particular, McPherson et al. [3] showed that obfuscated

faces can be re-identified up to 96%; Oh et al. [10] showed

that even with black fill-in faces, body and scene features can

be utilized to re-identify 70% of the people. Recently, GANs

(generative adversarial nets) have been adopted for visual data

obfuscation, e.g., by inpainting the head region as in Sun et

al. [4], and by modifying the identity while preserving action

detection as in Ren et al. [5]. Such approaches may heavily

rely on training data, and yet do not provide provable privacy

guarantees. Moreover, the inpainted image may still breach

privacy, e.g., up to 51.7% identity recognition reported in [4].

Differential Privacy.While differential privacy [6] provides

rigorous privacy guarantees for individual records in the

database, it is challenging to apply the standard differential

privacy notion to non-aggregated data. Although it has been

considered in learning deep models [11], only one study en-

ables image data publication with differential privacy. We

proposed in [7] an ε-differentially private method for im-

age pixelization. The notion of neighboring databases was

adapted to protect the presence/absence of any person or ob-

ject captured by m pixels in the input image. However, the

approach pixelizes the entire image and the quality of the ob-

fuscated image is quite low. Moreover, the proposed privacy

model may be overly strong by guaranteeing indistinguisha-

bility between image pairs where m pixels can change ar-

bitrarily, thus inflicting high utility loss. The current study

proposes a relaxed privacy model for image data to preserve

utility and develops an efficient mechanism to achieve it.

3. PRELIMINARIES

An image I is considered as a matrix of pixels {I(i, j)},

where i and j index rows and columns respectively. In this

paper, we focus on greyscale images; however, our method

can be extended to multiple channels.

3.1. Perceptual Image Transformation

Rather than perform privacy perturbation directly on pixels

or pixel-level aggregation as in [7], our approach quantita-

tively models the perceived information from an image and

then applies rigorous privacy protection. The rationale is that

many image transformations that inflict pixel value changes

may not significantly affect the human perception of the im-

age content, for instance, after JPEG image compression [12]

or adding a small constant to every pixel. The challenge is

thus to effectively model what can be perceived in an image,

despite the aforementioned transformations.

In this paper, we consider Singular Value Decomposition

(SVD) to capture the perceptual information in input images,

as perceptual image hashing methods [13] based on SVD

were shown to robustly hash visually similar images, such as

after compression, rotation, and cropping. Such methods [13]

employed SVD to extract most of the geometric structure and

characteristics of the image data. The intuition of SVD is that

any real or complex matrix A can be decomposed into a prod-

uct of three matrices, i.e., A = UΣV T , where U and V are

left and right singular vector matrices, Σ is a non-negative di-

agonal matrix, consisting of the singular values. Intuitively,

the singular vectors in U and V , capture the geometric fea-
tures in an image, while the singular values in Σ can be inter-

preted as the magnitude of each feature.

3.2. Metric Privacy

While the standard differential privacy [6] is a rigorous pri-

vacy notion, it is only applicable to publishing aggregate

statistics. The problem studied in this paper wishes to publish

image content, rather than aggregate statistics about the image

data. Therefore, it requires a more general privacy notion for

data that belongs to an arbitrary domain of secrets. In a recent

paper, the authors of [8] extended the principle of differential

privacy and proposed a generalized notion, i.e., metric pri-

vacy. Essentially, it defines a distance metric between secrets

and guarantees a level of indistinguishability proportional of

the distance. Specifically, given an arbitrary set of secrets X
with a metric dX :

Definition 1. [8] A mechanism K : X → P(Z) satisfies

dX -privacy, if and only if ∀x, x′ ∈ X : dP(K(x),K(x′)) ≤
dX (x, x′), or equivalently:

K(x)(Z) ≤ edX (x,x′)K(x′)(Z) ∀Z ∈ FZ (1)

where Z is a set of query outcomes, FZ is a σ-algebra over

Z , and P(Z) is the set of probability measures over Z .

Metric privacy guarantees that the output of a mechanism

should be roughly the same, i.e., bounded by the distance

dX (x, x′), between two inputs x and x′. For an adversary

who observes the output space, it is challenging to infer the

exact input, thus the privacy of the input is protected. With

this generalized definition, we can define a private mecha-

nism K()() on any domain X and Z . The metric dX can

be derived by scaling a standard metric d by a factor ε, i.e.,

dX = ε · d as suggested in [8]. As a result, the guarantee of



Fig. 1: Privacy-Preserving Image Sharing Framework

metric privacy also relies on ε: lower ε indicates higher indis-

tinguishability, hence stronger privacy. When dX = ε · dH
(where dH is Hamming distance), the authors [8] have shown

that metric privacy is equivalent to ε-differential privacy.

4. SOLUTION

We depict in Figure 1 the proposed solution for privacy-

preserving image data publication. An image often contains

one or more regions-of-interest (ROIs), such as faces, objects,

text, etc., whose privacy needs protection. Such ROIs can be

either detected automatically [14, 15] or annotated by data

owners. Note that randomized obfuscation will be only ap-

plied to the ROIs, rather than to the whole image as in [7].

The obfuscated ROIs are then used in the output image for

sharing. The obfuscation step involves two major compo-

nents: transformation and sampling. A sensitive ROI will

first be transformed to a feature vector, and the vector will

go through the sampling step to achieve privacy guarantees;

the sampled vector will be processed with inverse transform,

resulting in the obfuscated ROI image.

Attack Model. We propose a strong attack model in order

to provide privacy guarantees in worst-case scenarios. We

assume an adversary who may have approximate knowledge

about an input ROI. Specifically, the adversary knows the set

of images that are visually similar to a given ROI (including

the ROI image itself), e.g., with same singular matrices but

somewhat different singular values. The adversarial goal is to

infer the exact input image by observing the obfuscated im-

age. We further assume the adversary is capable of perform-

ing the transformation. Therefore, given the obfuscated im-

age, the adversary can transform it and produce the sampled

vector, e.g., privacy-enhanced singular values, with which the

adversary can try to infer the original singular values.

Privacy Assurance. Given an ROI, the goal of randomized

obfuscation is to guarantee metric privacy in the transformed

domain, which in return provides plausible deniability for the

input ROI. Specifically, by observing the output of the sam-

pling step (which can be achieved by the adversary’s trans-

formation of the obfuscated image), the adversary cannot dis-

tinguish between similar input vectors, e.g., similar sets of

singular values. Hence the privacy of the input ROI is guaran-

teed. Thanks to Definition 1, our proposed solution provides

rigorous privacy guarantees, despite an informed attacker.

4.1. Transformation

The transformation technique maps an input image (from

here on, we refer to “image of an ROI” as “image” for

brevity) to a feature vector. We denote the transformation

as F : R
M×N → R

k, which maps an input image I to a

k-dimensional real vector x0. We denote Singular Value De-

composition (SVD) with FSV D,k, which yields the largest k
singular values of an input image while setting the rest singu-

lar values to 0. Our choice of the transformation method is

supported by the following considerations. Firstly, the trans-

formation must be invertible: a vector generated by the sam-

pling component can be transformed back to the image do-

main to obtain the obfuscated ROI image. We denote the

inverse transform as F−1 : R
k → R

M×N . For Singu-

lar Value Decomposition, we can derive the obfuscated im-

age by multiplying a k-dimensional vector with the singular

vector matrices. Secondly, the result of the transformation

must capture high-level geometric information in the input

image, offering ease to control the level of approximation in

the transformed space. By increasing k, the reconstructed im-

age F−1 ◦ FSV D,k(I) provides a better approximation to the

input image I . Thirdly, SVD has been shown to preserve im-

age perceptual similarity [13]. Images that appear similar to

the human eye would also exhibit high similarity in the trans-

formed domain (e.g., under Euclidean distance 1).

4.2. Sampling

Given the input feature vector x0, the private mechanism

K performs random sampling in the space R
k according to

certain probability distributions which can provide plausible

deniability for x0. The following theorem states the pri-

vacy guarantee and the properties of the sampling distribu-

tion. Proof of the theorem is omitted for brevity.

Theorem 1. In a k-dimensional space, a mechanism K()()
that samples x given x0 according to the following probabil-

ity density function satisfies ε · dk-privacy

Dε,k(x0)(x) = Cε,ke
−ε·dk(x0,x) (2)

where dk represents k-dimensional Euclidean distance and

Cε,k =
1

2
(
ε√
π
)k

(k2 − 1)!

(k − 1)!
(3)

assuming k is even without loss of generality.

Sampling according to Equation 2 can be achieved as fol-

lows. We first convert the Cartesian coordinates of x to the

hyper-spherical coordinate system with x0 at the origin, re-

sulting in 1 radial coordinate and k − 1 angular coordinates.

1We are aware of other loss functions. Given each dimension in the fea-

ture space is independent, e.g., singular vectors, L2-norm is a classic choice.



Two steps are taken next: (1) sampling the radial coordinate

according to its marginal distribution; (2) uniformly sampling

a point on the unit (k − 1)-sphere. Multiplying the results of

(1) and (2) gives the output, privacy-enhanced vector, which

will be used to generate the obfuscated ROI. Note that in (1),

numerical root finding methods, such as the Newton-Raphson

and secant method, must be used as there is no analytical so-

lution for sampling the radial coordinate.

5. EXPERIMENTS
5.1. Settings

Datasets. Our method can be applied to sanitize faces, ob-

jects, and texts in general. We decide to focus on face im-

ages in this evaluation in order to illustrate the sensitivity of

image data and to be fairly comparable with previous stud-

ies. In particular, we adopted the People In Photo Albums

(PIPA) dataset [16]. The dataset contains head annotations

(i.e., bounding rectangles), and has been widely used for

learning person recognizers [10, 17] and image inpainting [4].

We adopted the PIPA test set and partitioned the annotated

heads based on the size of the bounding rectangle, in order to

study the impact of our private method on images of different

sizes: the small partition contains 299 heads, the size of each

between 256 and 900 pixels; the medium partition contains

4620 heads, the size of each between 901 and 10000 pixels;

and the large partition contains 7785 heads, the size of each

greater than 10000 pixels.

Metrics. To quantitatively measure the utility of images ob-

fuscated by our solutions, we employed the commonly used

Mean Square Error (MSE) defined between the original ROI

and the obfuscated ROI. In addition, we adopted a widely

used perceptual quality measure SSIM [18] , which consid-

ers perceived difference in structural information, in addition

to luminance and contrast. In the following, we reported both

measures between the obfuscated images and their sources.

We also evaluated the computational efficiency: although

omitted, results showed that our method incurs little overhead

for privacy protection .

Setup. Our solution is prototyped in Python, running on 2.3

GHz i5 Intel Core with 16 GB memory. We used OpenCV

and Numpy for Singular Value Decomposition, and Scipy for

Newton’s method for root finding. The parameters were set

to default values, i.e., ε = 0.5 and k = 4, unless specified

otherwise. The average result among all images was reported.

5.2. Results

Dimensionality k. We first present the impact of k, i.e., the

dimensionality of the feature space, on the utility of the ob-

fuscated image data. We evaluated our method, denoted by

SVD-priv, against the non-private baseline SVD-np, which

produces the reconstructed image using the k truncated sin-

gular values without the private sampling. We reported MSE

(a) Mean Squared Error (MSE) (b) Structure Similarity (SSIM)

Fig. 2: Varying k

(a) Mean Squared Error (MSE) (b) Structure Similarity (SSIM)

Fig. 3: Varying ε

and SSIM for each partition in Figure 2(a) and Figure 2(b).

As k increases, the non-private baseline (solid lines) shows

lower MSE, as a result of better approximation by the Singu-

lar Value Decomposition. As for our private method (dashed

lines), we observe higher MSE errors with larger k values, as

higher sampling errors are introduced by the private mecha-

nism due to the increased dimensionality. Among different

image partitions, the large partition yields highest MSE when

using the non-private baseline (solid blue line with ×), as a

large-size image requires a higher k for better approximation.

When applying our method SVD-priv, the large partition

shows the least impact under the privacy requirement (dashed

blue line with ×), as the error introduced from sampling the

k-dimensional vector is dispersed to a larger number of pix-

els. Moreover, there is an “elbow” point around k = 4 for

SVD-priv, large, which captures the trade-off between the

approximation error and the privacy error. For the small and

medium partitions, the “elbow” point has not been observed.

We believe that in those cases the privacy error dominates the

approximation error for all k values, due to the relative small

size of each image in those partitions. The SSIM results in

Figure 2(b) are consistent with those measured in MSE. The

best SSIM achieved by our private method is 0.590 for the

large partition. This result is comparable to the recent head

inpainting approach [4] (see Table 1, column “mask-SSIM”

in [4]), with resulting SSIM from 0.186 to 0.679. In compari-

son, our method provides provable privacy guarantees without

compromising utility.



(a) s-1 (b) s-2 (c) m-1 (d) m-2 (e) l-1 (f) l-2

Fig. 4: Example images from PIPA partitions. Row 1 -

original images ; Row 2 - images in Row 1 obfuscated by

SVD-priv with k = 4 and ε = 0.5.

Privacy ε. Here we present the privacy utility trade-

off by varying the parameter ε in the following range

[0.05, 0.1, 0.3, 0.5, 0.7, 1]. Recall that ε can be used to tune

the level of indistinguishability as in Section 3.2. Lower ε
indicates higher indistinguishability, hence stronger privacy,

and vice versa. We plotted the utility of our method for each

data partition in Figure 3. The non-private baseline is in-

cluded for reference, whose performance should not be af-

fected by the value of ε. As can be seen in Figure 3(a), when

increasing the privacy parameter, i.e., from more private to

less private, the MSE of our method starts to approach that

of the non-private baseline. The relaxation of privacy ben-

efits the large partition the most (dashed blue line with ×),

as the sampling error is dispersed to a larger number of pix-

els. Figure 3(b) shows similar trends for the SSIM measure.

We notice that when ε = 1, SVD-priv yields around 60%
SSIM for both medium and large partitions, demonstrating

high utility. The performance gap between our method and

the non-private baseline is the most significant for the small
partition, indicating the highest privacy impact on utility for

smaller images.

Qualitative Utility. In this section, we showcase the utility

of our private method by presenting several original and ob-

fuscated images in every partition. The example images are

shown in Figure 4. Note that all images have been resized

to fit and the difference in resolution can be observed when

zoom in. It can be seen that our method yields high utility for

the medium and large images, as discovered before. Higher

amount of noise can be observed in the small images and we

will study denoising methods in future work. Overall, we con-

clude that our method can be tuned, i.e., with larger ε values,

to provide high utility.

Re-identification Attacks. Although our solution adopts a

generalized privacy model that is different from standard dif-

ferential privacy, we demonstrate that our solution can effec-

tively mitigate practical re-identification attacks. We sim-

ulated the CNN-based attacks with the AT&T [19] faces

database, outlined in [3]. One CNN model was trained for ev-

ery obfuscation method, to explore how well the models can

Pixelization SVD-priv
16x16 ε = 0.1 0.3 0.5

Accuracy 96.25 17.50 61.25 82.50

Table 1: Accuracy (in %) of Re-Identification Attacks

Fig. 5: Example images and their corresponding obfuscation.

Row 1 - original AT&T images ; Row 2 - images in Row 1

obfuscated by Pix-DP [7] for each 16 × 16-pixel grid cell

with ε = 0.3; Row 3 - images in Row 1 obfuscated by our

method SVD-priv with k = 4 and ε = 0.3.

adapt to obfuscation. Subsequently, the model was used to

attack the obfuscated testing instances via identity classifica-

tion. Higher accuracy leads to a higher re-identification rate,

indicating weaker protection offered by the corresponding ob-

fuscation method. We provided in Table 1 the results of our

method SVD-priv with a range of ε values, along with plain

pixelization for each 16 × 16-pixel grid cell. With provable

privacy and randomized mechanisms, our method results in

lower re-identification risks, compared to standard pixeliza-

tion. Furthermore, imposing stronger metric privacy further

reduces the risk. For instance, SVD-priv with ε = 0.1
yields the lowest risk.

Comparison to Differentially Private Pixelization. We

present several example images in the AT&T dataset and

their corresponding obfuscation in Figure 5, in order to com-

pare the utility of our method to the differentially private ap-

proach [7], denoted by Pix-DP. As can be seen, images in

Row 3 exhibit more resemblance to the originals, compared to

those in Row 2, despite the same ε value. This indicates that

the standard indistinguishability achieved by Pix-DP may

be overly strong in privacy protection. We conclude that our

method yields higher utility than Pix-DP, while providing

provable privacy guarantees.

6. CONCLUSION AND DISCUSSION

We have presented an image obfuscation solution that sat-

isfies metric privacy. Our method protects the input image

against an informed adversary, i.e., one who has knowledge

about visually similar images to the input, and provides indis-

tinguishability according to the similarity. As a result, our



method achieves a balanced trade-off between privacy and

utility. Empirical evaluations with real-world image datasets

demonstrated that our solution can mitigate re-identification

attacks and achieves higher utility than differentially private

pixelization, while providing provable privacy guarantees.

For future work, we will broadly evaluate the applicability

of the proposed solution on different datasets, including ob-

jects and texts. We expect better utility results as those ROIs

tend to be less complex than faces. We will also implement

various denoising techniques to further improve the utility of

the sanitized images, and develop the extension to color im-

ages. Last but not least, we will review other similarity pre-

serving, invertible transforms in image processing literature,

such as Discrete Cosine Transform, for further instantiation

of our proposed solution.
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