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Abstract. We study epidemic forecasting on real-world health data
by a graph-structured recurrent neural network (GSRNN). We achieve
state-of-the-art forecasting accuracy on the benchmark CDC dataset.
To improve model efficiency, we sparsify the network weights via a
transformed-¢; penalty without losing prediction accuracy in numerical
experiments.
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1 Introduction

Epidemic forecasting has been studied for decades [8]. Many statistical and
machine learning methods have been successfully used to detect epidemic out-
breaks [5]. In previous works, epidemic forecasting is mainly considered as a time-
series problem. Time-series methods, such as Auto-Regression (AR), Long Short-
term Memory (LSTM) neural networks and their variants have been applied to
this problem. One of the current directions is to use social media data [9]. In
2008, Google launched Google Flu Trend, a digital service to predict influenza
outbreaks using Google search data. The Google algorithm was discontinued
due to flaws, however Yang et al. [13] designed another algorithm ARGO in
2015 also using Google search pattern data. Google Correlate, a collection of
time-series data of Google search trends, plays a vital role in this refined regres-
sion algorithm. Though ARGO succeeded in accuracy as a time series algorithm,
it lacks spatial structure and requires the additional input of external features
(e.g., social media data). The infectious and spreading nature of the epidemics
suggests that forecasting is also a spatial problem. Here we study a model to
take advantage of the spatial information so that the data from the adjacent
regions can introduce regional spatial features. This way, we minimize external
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data input and the accompanying computational cost. Structured recurrent neu-
ral network (SRNN) is a model for the spatial-temporal problem first adopted
by Jain et al. [4] for motion forecasting in computer vision. Wang et al. [10-12]
successfully adapted SRNN to forecast real-time crime activities. Motivated by
[4,10,11], we present an SRNN model to forecast epidemic activity levels. We test
our model with data provided by the Center for Disease Control (CDC), which
collects data from approximately 100 public and 300 private laboratories in the
US [1]. The CDC data [1] is a well-established authoritative data set widely used
by researchers, which makes it easy for us to compare our model with previous
work. CDC provides the influenza data by the geography of Health and Human
Services regions (HHS regions). We take the geographic structure of ten HHS
regions as our spatial information. The rest of the paper is organized as fol-
lows. In Sect. 2, we overview RNN. In Sects. 3-5, we present a graph-structured
RNN model, graph description of spatial correlations, and sparsity promoting
penalties. Experimental results and concluding remarks are in Sects. 6 and 7.

2 A Short Review of Recurrent Neural Network

Recurrent Neural Network (RNN) is a neural network designed for sequential
data. The idea of RNN comes from unfolding a recursive computation for a chain
of states. If we have a chain of states, in which each state depends on the last
steps: s" = f(s"~1), for some function f. Then we can unfold this equation to:
s" = f(f(...f(s%))). Suppose we have a sequential data z',z?, ....,2", the idea
of RNN is to unfold the 2™ = f(2"1,0) to a computational graph. An unfolded
RNN is illustrated in Fig.1 and given by the recursion:

Fig. 1. An unfolded recurrent neural network.

hy = tanh(b+ W A=t + U 2?), y; = tanh(V hy + ),

where tanh is the activation function; (U, V,W) are the weight matrices; b, ¢
are bias vectors. Given y! the true signal at time ¢, the popular loss function
for classification task is the cross-entropy loss, which reads in the binary case:
L(O) ==,y - In(g) + (1 —y) In(1 — §). The mean-square-error loss is widely
used for regression problem: £(0) = >,(y: — ¥+)?. Then, as in most neural
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networks, RNN is trained by stochastic gradient descent. A major issue of RNN
is the problem of exploding and vanishing gradients. Since
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It is well-known [7] that
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where 17 < 1 under the assumption of no bias is used and the spectral norm of W
being less than 1. We see that the gradient vanishes exponentially fast in large ¢.
Hence, the RNN is learning less and less as time goes by LSTM [3], is a special
kind of RNN that resolves this problem.

fi oc(Wlhi-14,]) by
it _ U(W[ht—l,act]) + bi
(Zt o(Wlhi-1,z,]) b,
Ct tanh(W[ht,th]) bc

Ct = ft * Ct,1 + it * ét7 ht = O¢ *tanh(C’t).

Since one does not directly apply the same recurrent function to h; every time
step in the gradient flow, there is no intrinsic factor n in gﬁ}. This way the
gradient has much less chance to vanish as time goes by. In our model, we use

LSTM for all RNNs.

3 Graph-Strutured RNN Model

Similar to previous work of structured RNN, we partition the nodes into different
classes, and for each class we join the nodes in the class. We compare the level
of activity of nodes by summing up the data of each node. Then, we partition
the nodes based on their activity level, from the class that has highest activity
level to the lowest one. After some experiments, we find that SRNN works the
best when we have two classes (see Fig. 2). We denote the class with relatively
high activity level H, and the other class L. After some experiments, we classify
the nodes based on following criteria: Let G be a weighted graph with nodes
indexed by Z = {1,..., N}, and edge weights w;; > 0. Let g : Z — {1,...,C}
be the function that assigns each node to its corresponding group, and assume
for simplicity that g is a surjection. Let us define:

|v| = sum of the historical activity level of node v,
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o] =m

M = argmax |[v], m = argmin|v|, g(v)= Lm

|
In our model, nodes with label 0 are in the relatively inactive class, nodes with
label 1 or higher belong to another class, the relatively active class.

We define an RNN E); ; for each connected edge w;; # 0. We denote E; ; as the
edge RNN since it models the pairwise interaction between two connected nodes.
We enforce weight sharing among two edge RNNs, RNNEZ,,J, and RNNg, ., if
g(i) = g(i), g(4) = g(j"), i.e., if the class assignments of the two node pairs are
the same. Similarly, we define an RNN N;, for each node in Z, which we denote
as a node RNN, and apply weight sharing if g(i') = g(¢). Even though the RNNs
share weights, there state vector are still different, and thus we denote them with
distinct indices.

Let {vl,i € 1...N} be the set of node features at time ¢. The GSRNN
makes a prediction at node ¢, time t by first feeding neighboring features to its
respective edge RNN, and then feeding the averaged output along with the node
features to the respective node RNN. Namely,

fzt = ZwinNNEi,j (vaaij’l};‘)v gzt = RNNNi (’Ufafzt) (1)

J

Let y! be the true signal at time ¢. We use the mean square loss function below:
1 X
140) = 5 3 (3! — ) 2)

We back-propagate through time (BPTT), a standard method for training
RNNs, with the understanding that the weights for edge RNNs and node RNNs
are shared according to the description above.

5 = relatively active
Us Vg
class

relatively inactive
class

Fig. 2. red edges are of type H-L, green edges are of type L-L, and blue edges are of
type H-H.
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In our model of C' = 2, we have three types of edges, H-H, L-L, and H-L.
The H-H is the type of edge between two nodes in class H, L-L is the type of
edge between two nodes of class L, and H-L is the type of edge a node of class
H and a node of class L. Each type of edge features will be fed into a different
RNN. We normalize our edge weight by maximum degree. Each edge has weight
QG = wij = ﬁev Vi and j, where M, is the maximum degree over the ten nodes.
We use a look-back window of two to generate training data for RNN: the node
feature of v contains the information of node v at t — 1 and ¢ — 2. Then, the
edge features of a node v € H with the edges F, are:

rot + -

- . _
uy U

et e
v,L )
| M. M,

for all u; € L such that (v,u;) € E,. We feed ef}’H and ef)’L into the corresponding
edgeRNNs:

1 1
MeedgeRNNH—L(Ut7ef;,L)7 h?u = M

€

1=

edgeRNN ;4 (v', €l 51).

Each edge RNN will jointly train all the nodes that have an edge belong to its
type:
. 1 "
arggmlnL’H_L(@) = TN Z Z(ywt — 1)’

WEN,, t

where N, = {w € HU L| E, contains an element of type L-H}.

. 1 )
argemm Ly_p(©)= A Z Z(yvt —i5)?

vEN, t

where N, = {v € H| E, contains an element of type H-H}.
Finally, we have a node RNN that jointly trains all the nodes in this class:

. 1 X
arggmln/.:H(@) = T Z Z(yvt —91)?, Vv e H.
veH ¢

We feed the outputs of two edge RNNs, together the node feature of v itself into
nodeRNNp (Fig. 3):
v = nodeRNNg (v, £, h').
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Fig. 3. Edge features of the same type are jointly trained by one edge RNN. Nodes
from the same class are jointly trained by one node RNN.

4 Graph Description of Spatial Correlation

The graph is a flexible representation for irregular geographical shapes which is
especially useful for many spatio-temporal forecasting problems. In this work,
we use a weighted directed graph for space description where each node corre-
sponds to a state. There are multiple ways to infer the connectivity and weights
of this weighted directed graph. In the previous work [10], Wang et al. utilized a
multivariate Hawkes process to infer such a graph for crime and traffic forecast-
ing, where the connectivity and weight indicate the mutual influence between
the source and the sink nodes. Alternatively, one can opt for space closeness and
connect the closest few nodes on the graph, and the weight is proportional to
the historical moving average activity levels of the source node. In this work,
we employ the second strategy, where we regard two nodes as connected if the
corresponding two states are geographically adjacent to each other. The graph
in this work is demonstrated in Fig.4. We will explore the first strategy in the
future.

5 Sparsity Promoting Penalties

The convex sparsity promoting penalty is the ¢; norm. In this study, we also
employ a Lipschitz continuous non-convex penalty, the so-called transformed-¢;.

Definition 1. The transformed £, (T¢1) penalty function on x = (x1,--- ,24) €
R? s
: (a + )]
Py(z) = Zpa(xi), pal;i) = TM, parameter a € (0,+00).  (3)

i=1
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Fig. 4. HHS graph

Since lim, o+ pa(Ti) = 1{z, 20}, iMa— oo pa(i) = |2i], Vi, the T¢; penalty
interpolates £; and ¢y. For its sparsification in compressed sensing and other
applications, see [14] and references therein. To sparsify weights in GSRNN
training via ¢; and T¢;, we add them to the loss function of GSRNN with a
multiplicative penalty parameter o > 0, and call stochastic gradient descent
optimizer on Tensorflow. Though a relaxed splitting method [2] can enforce
sparsity much faster, we shall leave this as part of future work on £y penalty.

6 Experimental Results

Among the previous works on influenza forecasting, ARGO [13] is the current
state-of-the-art prediction model for the entire U.S. influenza activity. To com-
pare with previous works conveniently, we use the CDC data from 2013 to 2015

as our test data. The accuracy is measured in: RMSE = \/% S (v — 0i)2

We use a single layer LSTM with 40 hidden units for edge RNNs, and a
three-layer multilayer LSTM with hidden units [10, 40, 10] for node RNNs. We
use the Adam optimizer to train GSRNN. The RMSE of the forecasting from
2013/1/19 to 2015/8/15, 135 weeks in total, is shown in Table 1. We outperform
LSTM and Autoregressive Model of order 3 (AR(3)) in all nodes, and ARGO in 8
nodes, see Fig. 5 for activity plots in each region. It is easy to see that in regions
1, 2, 7 and 8, there are some under-predictions, while GSRNN’s prediction is
almost identical to the ground-truth. The general form of an AR(p) model for
time-series data is

p
Xi=p+Y ¢ Xii+e,

i=1
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where ¢ = (¢1, ..., ¢,) is computed through the backshift operator. ARGO [13],
as a refined autoregressive model, models the flu activity level as:

52 100
Ut = py + Z Q Yg—j + Z Bi Xt + €ty [uy, o, B] = argm%anz (ye — yAt)Qy
j=1 i=1 Hy, €5 t

€; being i.i.d Gaussian noise, X;; the log-transformed Google search frequency
of term i at time ¢.

We observe that ARGO has inconsistent performance over nodes. We believe
this is because the external feature of ARGO, the Google search pattern data,
does not offer useful information, since the national search pattern does not
necessarily apply to a certain HHS region. Meanwhile, we also have much less
computational cost than ARGO, which takes in top 100 search terms related
to influenza as well as their historical activity levels, with a look-back window
length of 52 weeks. During the time for ARGO to compute one node, our model
finishes all the ten nodes.

We sparsify the network through ¢; and T¢; (Eq. (3) using a = 1 and penalty
parameter a = 10~ during training). Post training, we hard threshold small
network weights to 0 at threshold 1073, and find that high sparsity under T/,
regularization is achieved while maintaining the accuracy at the same level, see
Tables 2 and 3. Hard-thresholding improves the predictions for some nodes but
not all of them, however it reduces the inference latency and is thus beneficial
for the overall algorithm.

Table 1. The RMSE between the predicted and ground-truth activity levels by differ-
ent methods over 10 different states.

Node 1 2 3 4 5 6 7 8 9 10

AR(3) ]0.242 |0.383 |0.481 |0.415 |0.345 | 0.797 | 0.401 |0.305 |0.356 |0.317
ARGO |0.281 |0.379 |0.397 |0.335 | 0.285|0.673 |0.449 | 0.244 | 0.356 |0.310
LSTM |0.271 |0.364 |0.487 |0.349 |0.328 |0.751 |0.421 |0.333 |0.335 |0.310
GSRNN | 0.223 | 0.354 | 0.374 | 0.320 | 0.289 | 0.664 | 0.361 | 0.275 | 0.284 | 0.303

Table 2. Percentages of weights <1072 in absolute value in GSRNN w/ and w/o /1,
T¥¢; penalties.

Penalty 1 2 3 4 5
a=0 51.2% 47.8% |50.3% | 50.6% | 49.9%
lhia=5-10"%) |67.7% 51.8% |57.7% |60.7% |61.2%
TL1(a=5-10"%)|82.3%  58.9% | 71.9%  64.2% 71.1%
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Fig. 5. The exact and predicted flu activity levels by GSRNN and ARGO.

Table 3. Node-wise RMSE of GSRNNSs via post-training hard thresholding at thresh-
old 107%.

Node 1 2 3 4 5 6 7 8 9 10

a=0 0.230 | 0.351 | 0.390 | 0.334 | 0.314 | 0.676 | 0.380 | 0.297 | 0.287 | 0.316
li(a=5-10"%) 0.234 | 0.351 | 0.388 | 0.327 | 0.306 | 0.685 | 0.363 | 0.290 | 0.281 | 0.296
TLl(a=5-10"8)0.225|0.363 | 0.379 | 0.328 | 0.296 | 0.690 | 0.365 | 0.272 | 0.311 | 0.305

7 Concluding Remarks

We studied epidemic forecasting based on a graph-structured RNN model to take
into account geo-spatial information. We also sparsified the model and reduced
70% of the network weights to zero while maintaining the same level of pre-
diction accuracy. In future work, we plan to (1) explore wider neighborhood
interactions and more powerful sparsification methods, (2) study additional fac-
tors such as environmental conditions, population distribution, transportation
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networks, sanitary conditions among others, (3) train RNNs with the recently
developed Laplacian smoothing gradient descent method [6].

Acknowledgments. This material is based on research sponsored by the Air Force
Research Laboratory and DARPA under agreement number FA8750-18-2-0066; the
U.S. Department of Energy, Office of Science, DOE-SC0013838; the National Science
Foundation DMS-1554564 (STROBE), DMS-1737770, DMS-1522383, I1S-1632935. The
authors thank Profs. M. Hyman, and J. Lega for helpful discussions.

References

10.

11.

12.

13.

14.

CDC data: https://gis.cdc.gov/grasp/fluview /fluportaldashboard.html

Dinh, T., Xin, J.: Convergence of a relaxed variable splitting method for
learning sparse neural networks via £1,fy, and transformed-¢; penalties (2018).
ArXiv: 1812.05719

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997)

Jain, A., Zamir, A., Savarese, S., Saxena, A.: Structural-RNN: deep learning on
spatio-temporal graphs. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2016) (2016)

Nsoesie, E., Brownstein, J., Ramakrishnan, N., Marathe, M.: A systematic review
of studies on forecasting the dynamics of influenza outbreaks. Influenza Other
Respir. Viruses 8(3), 309-316 (2014)

Osher, S., Wang, B., Yin, P., Luo, X., Pham, M., Lin, A.: Laplacian smoothing
gradient descent (2018). ArXiv:1806.06317

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neu-
ral networks. In: Proceedings of the 30th International Conference on Machine
Learning (2013)

Perra, N., Goncalves, B.: Modeling and predicting human infectious disease. In:
Social Phenomena, pp. 59-83. Springer (2015)

Volkova, S., Ayton, E., Porterfield, K., Corley, C.: Forecasting influenza-like illness
dynamics for military populations using neural networks and social media. PLOS
one 12(12), e0188941 (2017)

Wang, B., Luo, X., Zhang, F., Yuan, B., Bertozzi, A., Brantingham, P.: Graph-
based deep modeling and real time forecasting of sparse spatio-temporal data
(2018). arXiv:1804.00684

Wang, B., Yin, P., Bertozzi, A., Brantingham, P., Osher, S., Xin, J.: Deep learning
for real-time crime forecasting and its ternarization (2017). arXiv:1711.08833
Wang, B., Zhang, D., Zhang, D., Brantingham, P., Bertozzi, A.: Deep learning for
real-time crime forecasting (2017). arXiv:1707.03340

Yang, S., Santillana, M., Kou, S.: Accurate estimation of influenza epidemics using
Google search data via ARGO. Proc. Natl. Acad. Sci. 112(47) (2015)

Zhang, S., Xin, J.: Minimization of transformed ¢; penalty: theory, difference of
convex function algorithm, and robust application in compressed sensing. Math.
Program. Ser. B 169(1), 307-336 (2018)


https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
http://arxiv.org/abs/1812.05719
http://arxiv.org/abs/1806.06317
http://arxiv.org/abs/1804.00684
http://arxiv.org/abs/1711.08833
http://arxiv.org/abs/1707.03340

	A Study on Graph-Structured Recurrent Neural Networks and Sparsification with Application to Epidemic Forecasting
	1 Introduction
	2 A Short Review of Recurrent Neural Network
	3 Graph-Strutured RNN Model
	4 Graph Description of Spatial Correlation
	5 Sparsity Promoting Penalties
	6 Experimental Results
	7 Concluding Remarks
	References




